
Massively Parallel Processing on a Chip

Philippe Marquet Simon Duquennoy Sébastien Le Beux
Samy Meftali Jean-Luc Dekeyser

LIFL and INRIA-Futurs
University of Lille

France

ABSTRACT
MppSoC is a SIMD architecture composed of a grid of pro-
cessors and memories connected by a X-Net neighbourhood
network and a general purpose global router. MppSoC is
an evolution of the famous massively parallel systems pro-
posed at the end of the eighties. We claim that today such
a machine may be integrated in a single chip. On one side,
new design methodologies such as IP reuse and, on the other
side, the possible high level of integration on a chip let us
envisage such a revival.

Some improvements of the system architecture are possi-
ble because of the high degree of integration: The mppSoC
processing elements share most of their design with the con-
trol processor, the integrated network allows to exchange
data between PEs, but also between the control processor
and the PE memories, and even to connect the external de-
vices to the system.

This paper presents the mppSoC architecture, a cycle-
accurate bit-accurate SystemC simulator of this architec-
ture, and a prototype of implementation on FPGA. A com-
plete tool chain and the execution of some applications on
the simulator and the FPGA implementation validate the
modeling choices and show the effectiveness of this design.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Processor Ar-
chitectures—Multiple Data Stream Architectures (Multipro-
cessors); C.0 [Computer Systems Organization]: Gen-
eral—Modeling of computer architecture

General Terms
Design

Keywords
Massively Parallelism, SIMD, SoC, System-on-a-Chip, mpp-
SoC, MasPar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005 ...$5.00.

1. SIMD MACHINE ON A CHIP
By the end of the eighties, massively parallel SIMD com-

puters were much known in the community as high perfor-
mance machines, especially in terms of computing speed.
Those SIMD machines were also known as processor-array
machines; they basically consists of an array of fine-grained
computational units connected together by different types of
simple network topology. The computing power of the ma-
chine comes from its relative great number of processors, not
from a huge computational power or a high clock frequency
of the processors.

Typically, a SIMD machine is a grid of processors; each
processor executing the very same instruction at each cycle
in a synchronized manner, orchestrated by an unique control
processor. This control processor is responsible for fetching
and interpreting instructions. Two kind of instructions are
considered: parallel ones and non-parallel (i.e. sequential)
ones. The control processor transfers parallel arithmetic and
data processing instructions to the processor array, and han-
dles any control flow or serial computation that cannot be
parallelized.

This class of processors has been then less and less used
because of its dramatically high fabrication cost. In fact, it
was more interesting for the vendors to use complex stan-
dard processors than several specifics ones when designing
a new system. A second and technological aspect had also
lead to the disappearing of this kind of systems: the operat-
ing frequency increase of most of the electronic components
had make impossible the broadcast of an instruction to a
thousand of elementary processors in a synchronous manner
at each clock cycle.

Nevertheless, nowadays, many modern application do-
mains are concerned by the conjunction of regular parallel
algorithms and high computing resources. They include sig-
nal and image processing applications such as software radio
receiver, sonar beam forming, or image encoding/decoding.
Furthermore, the integration of the system on a single chip
will be of prime interest for those applications that also re-
quire some degree of embeddedness.

When targeting embedded computing, one often considers
power consumption. Parallelism is known to be an effective
answer to the reduction of power consumption, especially
when compared to frequency increase: the power consump-
tion is proportional to the circuit size but exponentially in-
creasing with the frequency.

Present system design methodologies promote component
based design and enforce the use of IP blocks and industry
standard interfaces [10]. This context substantially allevi-

ates the design cost of a dedicated processor for an SIMD
system. On the integration side, one can imagine the inte-
gration of a full SIMD grid on a single chip, facilitating the
synchronous broadcast of an instruction at a high frequency.

Fifteen years after the decline of traditional massively par-
allel systems, significant evolutions of system design, silicon
integration technology and growing application computing
power requirement have change the context and it clearly
seems important to consider and verify the feasibility and
performances of massively parallel machines on a chip.

Contributions and Paper Organization
The objective of this paper is to reconsider the interest and
the feasibility of a SIMD machine, especially in the con-
text of a single chip system integration. We propose a novel
SIMD machine built within nowadays processors. Our ma-
chine is named mppSoC which stands for Massively Parallel
Processing System on Chip. Two versions of mppSoC are
provided: a SystemC version that allows fast simulation and
performance evaluation, and a RTL version that leads to a
physical realization onto FPGA. Both realizations are pro-
grammable with the same tool flow.

The next section presents some significant works related
to SIMD systems and their integration on a chip. Section 3
introduces the mppSoC architecture. A more detailed de-
sign and its SystemC implementation are presented in the
Section 4. Section 5 presents and discusses the FPGA im-
plementation of mppSoC. The mppSoC tool chain and the
execution of some representative applications are briefly de-
scribed in Sections 6 and 7.

2. RELATED WORKS
The history of SIMD machines began with the ILLIAC IV

project [5, 9] started in 1962. The machine was the
first large-scale multiprocessor, composed of 64 processors.
Danny Hillis resurrected the SIMD architecture in 1985 with
his Connection Machine composed of 65,536 1-bit proces-
sors [8, 11]. However, following a short stint in the eight-
ies by several commercial companies such as Thinking Ma-
chines, MasPar, and Wavetracer, SIMD has once again fallen
by the wayside in the arena of commercial general-purpose
computing.

Even though SIMD machines have not found their way
into large scale development in the end of nineteenths, they
have not completely died out. The reason is that SIMD ar-
chitectures still make a lot of sense for special applications
that require a great deal of independent data computation.
In addition, multimedia and graphics applications have be-
come very common place with the advent of the internet and
computer-gaming. Since multimedia such as video or sound
and signal processing are inherently parallelizable tasks that
involve computation on data streams, small-scale commer-
cial SIMD variants have come into the marketplace. Thus,
SIMD has once again found a way to survive in the form
of ISA multimedia extensions, including Intel’s MMX and
SSE, AMD’s 3D-Now, and Motorola’s AltiVec.

With the recent great evolution of silicon integration tech-
nology, some major IP providers start designing special com-
ponents for on-chip SIMD architectures acceleration. For
instance, the Neon technology proposed by ARM [2] is an
architecture option of the with ARMv7A architecture that
provided a 64/128-bits hybrid SIMD architecture to acceler-
ate the performance of multimedia and signal processing ap-

plications. This significant evolution means that it becomes
today economically interesting to design SIMD machines
with hundreds of processing units and embedded memory
on a single chip. Thus, we start seeing in the last years
some small sizes SIMD on-chip systems.

MorphoSys [15, 20, 6] is a reconfigurable SIMD architec-
ture that targets for portable devices. It combines an array
of 64 Reconfigurable Cells (RCs) and a central RISC proces-
sor (TinyRISC) so that applications with a mix of sequential
tasks and coarse-grain parallelism, requiring computation
intensive work and high throughput can be efficiently im-
plemented on it. In MorphoSys, each RC can communicate
directly with its upper, below, left and right neighbors peer
to peer. This gives efficient regular applications, but unfor-
tunately non-neighbors communications seems to be tedious
and time consuming.

The picoChip’s PC101 array [4, 19] integrates more than
400 heterogeneous 16-bit processors on a single die. The
processor arrays have enough redundancy to tolerate some
defective elements during manufacture. It is a kind of very
high performance DSP, furnished with a complete program-
ming environnement based on C. It seems to be a strong
platform for wireless application, but it doesn’t benefit from
regularity aspects of many parallel applications.

Unfortunately, to our knowledge, there are no available
massively parallel SoCs, with significant number of process-
ing unit, and using really the recent integration technology
capabilities.

3. MppSoC ARCHITECTURE
MppSoC is a SIMD machine belonging to the class of pro-

cessor array machines: MppSoC is composed of a 2-D grid of
processors (the PEs) working in a perfect synchronization.
A small amount of local and private memory is attached to
each PE. Each PE in the 2-D grid is potentially connected to
its 8 neighbours via the X-Net, a regular network. Further-
more, each PE is connected to an entry of mpNoC, a mas-
sively parallel Network on Chip that potentially connects
each PE to one another, performing efficient irregular com-
munications. The system operating is organized by a control
processor (the ACU, Array Control Unit) that accesses its
own memory. Figure 1 illustrates the global architecture of
mppSoC.

The whole mppSoC operating is controlled by the ACU in
a synchronous manner. At each cycle, each PE executes the
same instruction that have been broadcasted by the ACU.
The ACU also controls in the same synchronous manner the
two networks of the system: the X-Net and mpNoC.

MppSoC is programmed in a data-parallel language. A
data-parallel language distinguishes sequential instructions
and parallel instructions. A sequential instruction concerns
sequential data of the ACU memory and is carried out by
the ACU as in a usual sequential architecture. A parallel
instruction is executed in a synchronous manner by all the
PE of the system, each PE taking its operands from its
local memory and storing the result in this same memory (or
maybe in its own local registers). Some specific instructions
control the two networks, allowing transfer of values from
one PE to another. Theses transfers are also executed in
a synchronous manner: all the PE communicating at the
same time with a PE designated by the instruction or one
of its operand values.

The whole system is synchronously controlled by the ACU

Data

Instructions

Data

Data

DataDataData

Data

Data

Data

Data

Sequential
memory

X−Net interconnection network

X−Net control

Processing Elements

Parallel memory

Global Router network

Global Router control
ACU

Parallel µinstruction broadcast

Figure 1: The mppSoC architecture. The ACU is connected to its sequential memory, which contains data and
instructions. The ACU reads instructions and, according to the executed program, synchronously controls the whole mppSoC
architecture within these three ways: a) parallel instructions which are broadcasted to the 2-D grid of PEs, b) X-Net controls
which establish the connection topology of this interconnection network and c) the global router control which determines the
route of the irregular communications. Each PE is connected to its local data memory (on the right of the figure), a X-Net
node (on the bottom left-hand side) and to the global router (in the center of this figure), which is realized with mpNoC.

that decodes an instruction at each clock cycle. Sequential
instructions are directly carried out by the ACU, while par-
allel instructions are broadcasted to all the PEs in the form
of what we call a micro-instruction. Communication instruc-
tions concerning one of the two networks are also decoded
by the ACU that broadcasts commands to the networks and
micro-instructions to the PEs to realized those instructions.

Thus the PEs synchronously receive a micro-instruction.
The local execution of the micro-instruction is dependant of
the local state of the PE: a PE may be active or not. This
activity state is store in the activity bit of each PE. This
activity bit is controlled by dedicated instructions (set, and,
or, etc.). All the PEs receive the micro-instructions, but
only the PE with their activity bit set executes the micro-
instructions. The other PEs do nothing.

The design of mppSoC is inspired from the famous Mas-
Par [3, 17]. Nevertheless three major points distinguish
mppSoC from the MasPar:

1. The mppSoC PEs are not any more small 1- or 4-bit
processors as it was by the time of the Connection
Machine CM-1 ar MasPar MP-1. MppSoC uses 32-bit
processors.

2. The ACU and the PEs are designed from a same pro-
cessor. Some minor additions are made to this proces-
sor to design the ACU, while its decode part is sup-
pressed in the PE, performing a better on chip inte-
gration and reducing the power consumption.

3. The mppSoC global router not only connects the PEs
to each others, but also allows to connect the PEs to
ACU and to the devices.

Let us detail these three points.
In term of performances, it is clearly a great advantage

to use a 32-bit processor rather a small 4-bit parallel ALU
and this trend was observed with the second generation of
SIMD machine proposed in the nineties such as the MasPar
MP-2 [12]. Nevertheless, floating point operations were still
taken considerable time on those machines (25 cycles for
a floating point add on a MasPar MP-2 while an integer
addition takes 3 cycles!). If the integration of a pipelined
PE was suggested [1], to our knowledge, no such a machine
were realized despite the interest of floating point arithmetic
in several applications targeted by parallel architectures.

The second difference between traditional SIMD machines
and our mppSoC is the common design of the two proces-
sors: the ACU and PE. Because of the specialization of the
PE, these processors were usually designed for that sole us-
age. We propose to decrease the cost of this dedicated de-
sign by using a single and preexistent processor as a base for
the design of the ACU and the PEs. We consider a typical
pipelined RISC processor and identify several stages in the
instruction pipeline of the processor: the first stages fetch
and decode the instructions while the following ones execute
the instructions. The ACU is build as a modified processor
which produces a micro-instruction at the end of the decode
stage. This micro-instruction is either executed locally by

Table 1: The mpNoC instruction set

r open PRt
Open a Global Router communication channel. PRt contains the destination PE. Set R to 1 for each destination PE.
r send PRd,PRs
Send data via the open channels. PEs with R bit set to 1 receive a data. Dst(PRd) ← Src(PRs)
r osend PRt,PRd,PRs
Open then send data on the router.
r fetch PRd,PRs
Fetch data from the open channels. PEs with T bit set to 1 can receive a data. Src(PRd) ← Dst(PRs). Set F bit to 1 for
fetching PEs.
r close

Set T bit to 0 for open channels PEs.
r fetchc PRd,PRs
Fetch data from the open channels then close channels.
r mode SRh
Set the mpNoC mode (PEs to PEs, devices to PEs, PEs to devices).

PRx: the PE Rx register
SRx: the ACU, thus scalar, Rx register
R and T bits belong to the register status of each PE

the ACU in the case of a sequential instruction, or is broad-
casted to all the PEs in the case of a parallel instruction.

Another major difference between usual SIMD systems
and our mppSoC is the integration of mpNoC, Massively
Parallel Network on Chip, a multi-purpose NoC component
in the mppSoC. MpNoC was designed as an IP that is able to
synchronously connect a set of inputs to a set of outputs [7].
The mpNoC IP fulfills a triple function in the mppSoC ar-
chitecture. Firstly, the mpNoC is used as a global router
connecting, in parallel, any PE with another one. Secondly,
the mpNoC is able to connect the PEs to the mppSoC de-
vices. Finally, the mppSoC is able to connect the ACU to
any PE of the mppSoC. Several implementations of the mp-
NoC have been proposed (one is based on a full crossbar
network, another on an extended delta network [13]). An
effective implementation can be chosen depending, for in-
stance, on the number of PEs.

4. MppSoC COMPONENT DESIGN
The mppSoC general architecture was described in the

previous section, we will now detail the way the mppSoC
SystemC simulator and the RTL implementation are de-
signed. While some IP construction, such as memories, does
not require many attention, some others, such as the proces-
sors, are much more complex. Communication IP, mpNoC
and X-Net, are tedious to integrate due to the number and
the heterogeneity of connexion they manage. The following
deals with particularities of each IP block and its integration
into mppSoC.

4.1 Processors
Both the ACU and the PEs are derived and completed

with several functionalities from the MIPS version furnished
in SoCLib [21]. The choice of the MIPS processor was
mainly based on pragmatic reasons: the MIPS is a quite sim-
ple, standard, representative and well established processor.
Furthermore the SystemC MIPS provided by SoCLib is well
designed and allows easy extensions and modifications.

The MIPS instruction set is extended in two ways:

1. Most of the arithmetic, logical instructions are dupli-

cated to a usual sequential version (executed by the
ACU) and a parallel version (executed by each PE).
Identically, memory access instructions are duplicated.
The sequential memory access instructions allow the
ACU to access its memory, while the parallel accesses
permit each PE to access its own local memory.

2. Some mppSoC specific instructions are added to the
MIPS, mainly:

• X-Net communication instructions. Typically
such an instruction allows each PE to write a local
value in the register of another PE, the distance
and direction between the two PE are the same
for all the PEs. As for all parallel instructions,
these instructions are broadcasted to all the PEs,
but the ACU also broadcasts commands to the
X-Net components to establish the communica-
tion links;

• mpNoC communication instructions. A mpNoC
communication is realized in several steps: a
channel must be opened before sending data and
must be closed after. Table 1 summarizes these
instructions, which are broadcasted to the PEs
and used to control the mpNoC components. The
publication [7] details these instructions and their
realization;

• a set of instructions that manipulates the PE sta-
tus register and especially allows each PE to set
its activity bit. These instructions are broad-
casted to all the PEs that locally operate on their
status register;

• a broadcast instruction that move a value from
an ACU register to a register of all the PEs.

Each of the added instructions uses one of the instruction
format of the original MIPS. We complete the original MIPS
instruction table with some particular attention in order to
facilitate the instruction decoding.

As already mentioned, each PE has an activity bit that in-
dicates if the PE locally executes the instruction or remains

Decode

Execute

Sequential and

Write−Back

PE

Parallel µinstructions

Parallel µinstructions

Initial MIPS processor

Write−Back

Memory

Execute

Decode

Fetch

Sequential instructions

ACU

Memory

Write−Back

Memory

Execute

Fetch

Modified

parallel instructions

Figure 2: The ACU and PE are based on a the MIPS processor. The chosen initial MIPS processor is shown in
the center of the figure. This processor is able to decode sequential instruction. According to the extended instruction set, the
decode pipeline stage is modified, creating the ACU. The ACU is able to decode both sequential and parallel instructions. The
micro-instruction issued from a decoded parallel instruction is sent out from ACU. Parallel micro-instructions are consumed
by PE which is build from the three last pipeline stages of the initial MIPS processor.

idle. Of course the instructions manipulating this activity
bit are systematically executed, whether the activity bit is
set or not. Each PE also contains another dedicated register
that returns its number in the PE grid and that can be used
to particular its own job. On the ACU a dedicated register
is continuously updated with a global or reduction of the
activity bits of the PEs.

The MIPS processor includes a 5-stages pipeline. The
firsts stages of the pipeline load and decode the instructions.
These stages are only implemented in the ACU. The three
last stages of the ACU then execute the instruction per se
in the case of a sequential instruction, or send the command
to the micro-instruction to the PEs and, if necessary, the
command to the communication components. In the first
simulator implementation the commands are sent to the PE
in the form of the rough decode instruction, as illustrated
in the Figure 2. The component that implements the PEs
simply contains the last three stages of the MIPS pipeline
that directly receive these micro-instructions. Consequently,
the PEs have no PC register.

Thus, because they do not include the first decode stages,
the PEs are less complex than the ACU. This significant
gain will allow to integrate a large number of PE on a chip.

Two memory components are distinguished in mppSoC:
the sequential memory attached to the ACU and the mem-
ory attached to each PE. The set of these later forming the
parallel memory of the system. All the memory components
provide a VCI interface (Virtual Component Interface, a
norm of the VSIA consortium [22]). Each of these interfaces
is connected to a PE or the ACU.

4.2 Neighborhood Network
The mppSoC X-Net network is inspired from the MasPar.

It gathers all the PE in a 2-D grid, allowing each PE to

communicate with its eight neighbour PEs, and by extension
to any PEs in the eight main directions.

This 8-directions communication is realized via two kinds
of components: 5-pins X-Net components and 4-pins X-Net
components. Each PE is attached to a 5-pins component,
this 5-pins component is connected to four 4-pins compo-
nents. 5- and 4-pins components are configurable so they
can realize the connection between any two of the compo-
nents they are connected to. The ACU will drives this con-
figuration. The Figure 3 illustrates the X-Net connections.

A given X-Net communication allows all the (active) PEs
to communicate with a PE in a given direction at a given
distance. Direction and distance are here the same for all
the PEs. Such a communication is realized in several com-
munication phases driven by the ACU that sends the ap-
propriate micro-instructions to the PEs and commands to
the X-Net components. Thus, the xnet instruction has been
added to the MIPS instruction set and is only executed by
the ACU that sends OP WRITE XNET and OP READ XNET micro-
instructions to the PEs.

The xnet c instruction is used for some advanced commu-
nication schemes requiring some restrictions on the activity
of intermediate PEs between any couple of communicating
PEs lead to more efficient implementations of the commu-
nication. Identically, the xnet p instruction allows each PE
to broadcast a value to all the PEs in a given direction, as
far as all the intermediate PEs are inactive.

4.3 MpNoC and Global Router
MpNoC is the network component of the mppSoC that

allows a parallel communication of each PE to a distin-
guished PE. MpNoC works using circuit switched: r open

and r close instruction configures the mppSoC (see Table 1,
for instruction parameters), while r send and r fetch trans-

X−Net

X−Net

X−NetX−Net

PE X−Net PE X−Net PE X−Net

X−Net

PEPE

X−NetX−Net

PE X−Net

X−Net

PE X−Net PE

X−Net

X−Net

X−Net PE

X−Net

X−Net

5−pins

5−pins

5−pins 5−pins 5−pins

5−pins 5−pins

5−pins5−pins

4−pins4−pins4−pins

4−pins 4−pins 4−pins

4−pins4−pins4−pins

Figure 3: The X-Net network. Each PE is connected to 5-pins X-Net component, represented within a double box.
Each 5-pins X-Net component is connected to four 4-pins X-Net components. According to a configuration provided by the
ACU and based on the current instruction, the X-Net network allows each PE to be connected to one of its 8 neighbours.

mit data. PEs are not directly connected to the mpNoC but
are connected to switched that allows to connect either the
PEs, either the ACU, or some devices to the mpNoC. See
Figure 4. These switched are controlled via the ACU based
on the r mode instruction.

We have several SystemC implementations of the mp-
NoC. We use a full crossbar for mppSoC systems with a
small number of PEs, and a more complex network (EDN,
extended delta network) for big instances of mppSoC. De-
spite its good properties [13], the EDN network is not a full
network: a given communication pattern may need several
communication phases. These iterations are managed at the
mppSoC instruction level using some dedicated state bit of
the PEs registers.

4.4 MppSoC SystemC Implementation
The general design of the mppSoC architecture is specified

by a SystemC modeling. This implementation of a mppSoC
simulator allows clarifying many implementation details of
the architecture. All the components are described in Sys-
temC at CABA level (Cycle Accurate Bit Accurate) and
have standard VCI interfaces. The whole simulator consists
of about 5.000 lines of SystemC source code.

5. MppSoC FPGA IMPLEMENTATION
A first implementation of the mppSoC was set as a feasi-

bility study of the designed architecture. Targeting a FPGA
platform was chosen for the sake of its, relative, simplicity
and accessibility.

This effective implementation allows to detail the design
of the mppSoC architecture. For example, it has been nec-
essary to modify the instruction set encoding to reduce the
signals from the ACU to the PEs. In other respects, a ac-
curate design of the instruction pipeline and its coherence
between the ACU and PEs has also been elaborated.

This implementation was also a practical experiment of

an IP reuse. Both the ACU and PE implementations were
designed from the miniMIPS [18], a preexistent MIPS im-
plementation on FPGA.

Finally, the choice of a FPGA implementation allows a
generic design that can be tuned with respect to the effec-
tive targeted application. Our prototype generated a FPGA
configuration parametrized by the number of PEs and the
memory size of each PE. In fact, an application may require
many PEs with a short memory, or a small amount of PE
with a large memory.

5.1 Implementation Overview
The current implementation of mppSoC on a FPGA in-

cludes three main components: an ACU, a given number
of PEs, a given amount of local memory attached to each
PE, as illustrated on the Figure 5. All the signals between
these three components are of course included. The fact the
ACU is allowed to access the memories of any PE is used as
a palliative to exchange data between ACU and PEs, and
even between PEs.

We target the Altera Stratix-2 FPGA that contains 60k
logic elements (LEs), a number of dedicated memory blocks,
and 36 DSP blocks (36×36 multipliers). Our implementa-
tion is a VHDL code that can be used either as an input
of the ModelSim simulator [16], or as an input of the Quar-
tus synthesis tools. Both the simulation and synthesis are
parametrized by the number of PEs and by the amount of
local memory attached to each PE.

The mppSoC board contains an ACU and a grid of PEs.
The grid elements are included in a hierarchical unit that
contains a PE, its memory, and its chip select. An interme-
diate hierarchic level grouping several PEs has been defined
to help the synthesis tool and to facilitate the routing.

The mppSoC processor is based on the five-stage pipeline
miniMIPS processor: fetch, decode, execute, memory, and
write-back. The ACU contains the five stages. The decode

H

H

H H H H

H H H

H H H

PE(N;1)

PE(1;N)

PE(1;1) Device B

Device CPE(N;N)Device A

ACU

MpNoC IP input ports

MpNoC IP output ports

Switches controlled by the ACU

Switches controlled by the ACU

Figure 4: MpNoC integration into mppSoC. The mpNoC and its input/output ports are shown on the right-hand
side of the figure. Like one of our implementation, it includes some converters and an EDN. The mpNoC is connected to
mppSoC and their input/output devices via controlled switches (top left and bottom left-hand side). The mppSoC (including
the PE grid and the ACU) and input/output devices are situated between those switches.

stage has been modified: a vector instruction send the micro-
instruction to the PEs and a nop in the ACU execute stage,
while a sequential instruction makes operations in reverse
order. The PE pipeline only contains the three execute,
memory and write-back stages. The input from its execute
stage is connected to the decode stage of the ACU. The
PE write-back stage is controlled by the activity bit of each
PE: operations are realized but their results are not store in
registers or memory.

The ACU pipeline has also been modified to implement
multi-cycle instructions. The only instruction that takes
two cycles is the broadcast of a 32 bit ACU register to the
PEs via the 16 bits data bus. All the other instructions are
realized in one cycle.

The memories are implemented on the dedicated blocks
of the FPGA.

The study of the signals delivered from the ACU to the
PE has required all our attention. In fact, a large number of
signals allows to factorize some work in the ACU and thus
to simplify the PEs, while a great number of signals uses a
significant amount of place on a board. We have choose to
restrict the number of signals without breaking our law that
the PE and the ACU are two synchronized variants of the
same processor (i.e. they execute the same micro-instruction
set). This compromise solution takes care of the necessary
area while keeping the design simple.

5.2 Implementation Outcomes
Our mppSoC prototype implementation on FPGA has

validated several results. Beyond the feasibility confirma-
tion of our design, we have been able to identify a rough
idea of the number of LEs needed to implement a given
mppSoC configuration. We have been able to implement a
16 PEs, with 4kB of memory per PE, mppSoC on our 60k LE
Stratix-2. The number of LEs has been observed to be linear
to the number of PEs. We then interpolate that a 128 PEs
should be implemented on the upcoming next generation of

FPGA. Furthermore, our implementation uses not only the
LEs, but also the memory and DSP blocks of the FPGA in
a well-proportioned manner.

We have also been able to evaluate the maximum fre-
quency of our prototype. Several factors limit this maxi-
mum frequency, the first one is the 60 MHz speed of the
initial miniMIPS processor. We have been able to reach a
50 MHz frequency for some small configurations of mppSoC.
However, a maximum of 42 MHz has been possible with the
16 PEs configuration. The increase of the number of destina-
tion of some signals, the growing length of these signals and
a more complex place-and-route on an overloaded FPGA
explain this reduction. Nevertheless, this 42 MHz frequency
is a good result compared to the initial 60 MHz.

The analyse of the FPGA surface utilization shows that a
PE is much smaller that the ACU. The decode stage is the
biggest stage of the ACU (1350 LEs). The execution stage
(950 LEs on the ACU, 1090 on a PE) uses the greatest part
of the FPGA LEs.

The analyse of the signal shows that most of them are used
to connect the ACU to the PE local memories. Considering
that this instruction is not frequently used and that most
of the SIMD machines do not have such connection, this
double access the PE memory will be reconsidered in our
future designs, specially with an increasing number of PEs
and not to mention a future global router implementation
that will offer such a functionality.

6. MppSoC TOOL CHAIN
As already mentioned, the MIPS instruction set was ex-

tended to program the mppSoC. From a mppSoC assembly
code, the mppSoC compiler generates a binary that can be
used either by the simulator or by the FPGA implementa-
tion. This mppSoC compiler is a modification of the GNU
MIPS assembler.

The execution of mppSoC binary first needs to load the
binary into the instruction memory of the system. The Sys-

Modified

MppSoC Grid

PE(M,N)

PE(1,1)

Parallel µinstruction

Execute

Memory

Write−Back

Local memory

PE

Pipeline

Write−Back

Memory

Execute

ACU

Sequential memory

FetchMemory CTRL

Decode

Figure 5: First FPGA implementation of mppSoC. The left-hand side represents the ACU and its sequential
memory. The 2-D grid of PEs is represented in the center of the figure. The mppSoC FPGA implementation is different
from the SystemC one because it does not yet integrate X-Net and mpNoC. Thus, a bus connecting the ACU to the parallel
memory has temporally been integrated, as suggested by the connection to the PE local memory, on the right-hand side of
the figure. This bus permits basic data exchanges in this very first FPGA implementation of mppSoC.

temC simulator has a dedicated function to do so. Concern-
ing the FPGA implementation, the binary program must be
integrates in the instruction memory and, after the synthe-
sis, is deployed with the bitstream to the FPGA board.

Furthermore, we developed a set of CPP macros that al-
lows to identify the parallel and sequential variables and ex-
pressions. These macros use the asm constructs of CPP to
make the GNU MIPS compiler generates some marks in the
assembler code. This basic method facilitates the manual
editing of the MIPS code to produce a mppSoC assembler
code.

With these tools, it has been possible to compile and to
execute programs on mppSoC. In the following, we present
some execution results of various applications.

7. FIRST MppSoC APPLICATIONS
This section briefly presents the very first applications we

developed on mppSoC and their results, either on the mpp-
SoC SystemC simulator or on the mppSoC FPGA imple-
mentation.

7.1 Mandelbrot Fractal
The Mandelbrot fractal is a representation of a mathe-

matical set of complex numbers. Each point of the plan
represents a complex number. A simple formula permits to
know if a complex is inside the set. The algorithm is iter-
ative. For a given number, if the number is not in the set,
the algorithm stops after a variable number of iterations. If
not, it does not stop.

The idea to represent the fractal is to assign a colour to
each point according to the number of iterations need to
convergence. For instance, if using 256 levels of gray, one
stops after 256 iterations. There is then a range indicating
the more or less fast convergence of calculation.

We have executed this fractal algorithm onto mppSoC. At
the end of the simulation, a memory dump is automatically
realized. Within this dump result, we observe that 84%

of the ACU instructions are parallel. This is surely very
interesting for an SIMD system. In fact, this means that
usually, a major part of the chip is used. We see also that
a mean of 34% of the PEs execute an instruction in each
cycle. The execution speed is about 35 billions instruction
per second, while the theoretical maximum speed is about
100 billion instructions/second.

7.2 Correlation Algorithm
In order to estimate the mppSoC efficiency while targeting

aa intensive signal processing task, we study an implemen-
tation of the following correlation algorithm:

St =
1023
X

i=1

(Ci × Yi+t) (1)

S is the algorithm output, C is the reference code corre-
lated with the input signal Y . Since this algorithm is used
in an automotive context [14], we define a mppSoC grid size
allowing an implementation on the target FPGA and offer-
ing powerful enough computation power. We thus use the
grid composed of 16 PEs, proposed in Section 5. Accord-
ing to the target automotive application specification, the
correlation windows is equal to 1023.

Two main solution allow the algorithm implementation
on mppSoC (16 PEs):

• the coarse grain implementation shares correlation
points to compute between PEs. No data exchange
between PEs are required for this solution while con-
sidering an initial presence (and thus load) of C and
Y in PEs local memories.

• the fine grain implementation shares parts of the cor-
relation points to compute between PEs. This solution
introduces partial correlation results exchange, but the
computation can begin even if C and Y are note stored

Figure 6: Picture rotation

in PEs local memories. The latency is considerably re-
duced compared to the coarse grain implementation,
but the computation time itself increases due to the
large number of data exchange. Moreover, communi-
cation (X-Net or global router) does not yet exist in
the current mppSoC implemented on FPGA. For these
reasons, we did not retain this solution.

The formula 1 is implemented on 16 PEs sharing compu-
tation of the 1023 correlation points which compose one cor-
relation windows. Each PE executes 64 correlation points,
the last one (the 1024th) is not retained. The algorithm on
Figure 7 illustrates the proposed implementation.

dec = 1023 - PEindex ;

for cpt=1 to 64 do

S = 0;

for i=1 to 1023 do

S += Y[i] * C[dec + i mod 1023);

end

s += reduceAdd(S);

dec -= numbersOfPEs;

end

Figure 7: Correlation algorithm executed on each

PE. The reduceAdd() function takes a value on each

PE and combines them, by addition, in an ACU

value.

Loading the input signal Y into all PEs local memories
(by a parallel way) requires 75µs for a 50Mhz mppSoC run-
time frequency. The 16 first correlation points results are
produced and returned to the ACU after 408µs. Thereafter,
16 new results are correctly returned after 330µs. The whole
correlation windows is obtained after 21ms, which is power-
ful enough for the proposed case study [14].

7.3 Picture Rotation
Using the mpNoC can be very interesting to realize sev-

eral kinds of communications. However, the choice of using
X-Net or global router in mppSoC platform for a given ap-
plication is not at all obvious. In fact, using X-Net in non-
regular communications is very tedious, while using global
router in regular ones is time and energy consuming. Thus,
the designer has to make the right choice between the two
networks, depending of the application, in order to optimize
the whole system’s performances.

Picture rotation algorithms seem to be simple and good
examples to use the mpNoC. In fact, in this situation, com-
munications are very irregular: PEs need to communicate
using several different directions and lengths. Obviously, it
is possible to realize that using the X-Net network, but this
needs several communication steps (as much as the num-
ber of PEs). We tried this rotation using the mpNoC on a
picture. With a PE grid of 32×32 PEs, we realized 1024-
pixel picture rotations. Using the EDN based mpNoC, only
sixteen communication steps were required to realize one
picture rotation.

This result shows that using the mpNoC instead of the
X-Net can be really efficient in terms of performances and
easier to program. The resulting pictures of Figure 6 were
provided by the execution of a binary program on our Sys-
temC mppSoC simulator.

8. CONCLUSION
This paper gives a complete view of mppSoC platform. It

consists in a configurable regular grid of MIPS processors
that communicate via a X-Net network, and mastered by
an ACU. In addition to local and global memories, a global
router network is furnished with mppSoC. It allows fast non
regular communications between processing elements. Our
platform in entirely described in SystemC at cycle accurate
bit accurate level, in order to allow fast and accurate simula-
tions. We also present a complete programming, compiling
and execution set of tools to facilitate the use of mppSoC by
application designers. A physical implementation, on FP-
GAs, of the platform is also presented in this paper. Both
the simulator and the FPGA implementation have been val-
idated on several significant applications. This work is a ma-
jor step in the definition and building of a massively parallel
system on a chip.

Our next work is to implement a RTL version of both the
X-Net and the mpNoC networks. This FPGA implemen-
tation will consume the empty area available in the current
version. The area is one of the most important constraint en-
countered during the FPGA implementation. Dealing with
the consumed area for an implementation, it is also nec-
essary to deal with the choice of our initial processor: the
MIPS. The MIPS processor has been chosen for our first im-
plementation because of its open source availability in both
SystemC and RTL level. However, the RTL version of the
MIPS processor is not optimized for a particular FPGA,
contrary to processors such as the MicroBlaze [23]. Using

MicroBlaze as an initial processor to design both the ACU
and PEs could considerably reduce the consumed area and
enhance the implementation effectiveness. At a first glance,
the works done on the MIPS may be reproduced on the
instruction set and the 5-stage pipeline of the MicroBlaze.

The major drawback of pure SIMD machines is their in-
ability to effectively use all the system during all the com-
putation. Typically a parallel if/then/else instruction de-
sactivates half of the PEs during the execution of the then

part and desactivates the other half during the execution of
the else. As it was planned with the MasPar MP-3, we can
imagine several ACU controlling the PEs and allowing to
considerably enhance the SIMD machine effectiveness.

Finally, on the integration side, if large configuration may
not be integrated on a single chip, we are considering multi-
chip implementations. Connecting together on a board,
those chips will be able to act like a unique SIMD machine
executing a single program. The definition of a chip in-
terface and especially the splitting of the networks on the
different chips has to be studied with a special attention on
the scalability of the architecture.

Acknowledgments
The authors would like to thank the students who have
helped in the first implementation of the mppSoC archi-
tecture and specially Frédéric Bastien who has worked on
the FPGA implementation. They would also like to thank
Smäıl Niar who has made useful comments on drafts of this
paper.

9. REFERENCES
[1] James D. Allen and David E. Schimmel. Issues in the

design of high performance SIMD architectures. IEEE
Transactions on Parallel and Distributed Systems,
7(8):818–829, August 1996.

[2] ARM Corporation. NEON technology.
http://www.arm.com/products/CPUs/NEON.html,
2006.

[3] Tom Blank. The MasPar MP-1 architecture. In
Proceedings of the IEEE Compcon Spring 1990, pages
20–24, San Francisco, CA, February 1990. IEEE
Society Press.

[4] Pete Claydon. picoChip: A massively parallel array
processor. In Embedded Processor Forum, San Jose,
CA, May 2003.

[5] Robert L. Davis. The Illiac IV processing element.
IEEE Transactions on Computers, 18(9):800–816,
September 1969.

[6] H. Du, M. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh,
M. L. Anido, and M.Fernandez. Interactive ray tracing
on reconfigurable SIMD MorphoSys. In Design,
Automation and Test in Europe Conference
(DATE’2003), Munich, Germany, March 2003.

[7] Simon Duquennoy, Sébastien Le Beux, Philippe
Marquet, Samy Meftali, and Jean-Luc Dekeyser.
MpNoC design: Modeling and simulation. In 15th IP
Based SoC Design Conference (IP-SoC 2006),
Grenoble, France, December 2006.

[8] W. Daniel Hillis. The Connection Machine. The MIT
Press, Cambridge, MA, 1985. Traduction française,
Masson, Paris, 1988.

[9] R. Michael Hord. The Illiac IV the first
supercomputer. Computer Science Press, 1982.

[10] ITRS, International Technology Roadmap for
Semiconductors. Design, 2005 edition.
http://www.itrs.net/, 2005.

[11] Brewster A. Kahle and W. Daniel Hillis. The
Connection Machine model CM-1 architecture. IEEE
Transactions on Systems, Mans, and Cybernetics,
19(4):707–713, July 1989.

[12] Won Kim and Russ Tuck. MasPar MP-2 PE chip: A
totally cool hot chip. In Proc. IEEE 1993 Hot Chips
Symposium, Palo Alto, CA, March 1993.

[13] Clyde P. Kruskal and Marc Snir. The performance of
multistage interconnection networks for
multiprocessors. IEEE Transactions on Computers,
C-32(12):1091– 1098, December 1983.

[14] Sébastien Le Beux, Vincent Gagne, El Mostapha
Aboulhamid, Philippe Marquet, and Jean-Luc
Dekeyser. Hardware/software exploration for an
anti-collision radar system. In The 49th IEEE
International Midwest Symposium on Circuits and
Systems, San Juan, Puerto Rico, August 2006.

[15] Ming-Hau Lee, Hartej Singh, Guangming Lu, Nader
Bagherzadeh, Fadi J. Kurdahi, Eliseu M. C. Filho,
and Vladimir Castro Alves. Design and
implementation of the MorphoSys reconfigurable
computing processor. The Journal of VLSI Signal
Processing, 24(2-3):147–164, March 2000.

[16] ModelSim simulation and debug environment for
design. http://www.model.com/.

[17] John R. Nickolls. The design of the MasPar MP-1: A
cost effective massively parallel computer. In Proc. of
the IEEE Compcon Spring 1990, pages 25–28, San
Francisco, CA, February 1990. IEEE Society Press.

[18] OpenCores. miniMIPS overview. http:
//www.opencores.org/projects.cgi/web/minimips/.

[19] picoChip. Pc101 picoarray.
http://www.picochip.com/technology/picoarray.

[20] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J.
Kurdahi, Nader Bagherzadeh, and Eliseu M. Chaves
Filho. MorphoSys: An integrated reconfigurable
system for data-parallel and computation-intensive
applications. IEEE Transactions on Computers,
49(5):465–481, 2000.

[21] The SoCLib project: An open modelling and
simulation platform for system on chip design.
http://soclib.lip6.fr/.

[22] VSIA (Virtual Socket Interface Alliance).
http://www.vsi.org/.

[23] Xilinx, Inc. MicroBlaze home page.
http://www.xilinx.com/microblaze.

