
Locking Objects and Classes

in Multiversion Object-Oriented Databases

Wojciech Celfary, W aldemar W ieczerzyclci

France-Polish School of New frrformat~on and Commcrmcatlon Technologies
u]. Mansfelda 4, 60-854 Porsrasr,POLAND

phone: (48)(6 1)48.34.06
e-real: cellary@efp.poz. edu.pl, wleczerzycki(d efp.pez.edu.pl

Abstract

In tfus paper a new approach to Iockrng multwerslon objects and classes

is proposed, called the stamp locking approach. The main notion of this

approach is a stamp lock defined as an extension of a classical lock m

such a way that It contains the mfonnatlon about the pesition of locked

nodes m the mhentance and the version derivation hrerarch]es. The main

advantage of ttns method is simple Iockmg strategy following from the

lack of intentional locks concerning these hrerarchles. In most cases,

setting one stamp lock only, panting to the nodes or to the subtree roots

M snfftclent to lock a hrerarchy nodes or subtrees. To determme stamp

lock compatibility, it is sufficient to compare lock modes and appropriate

pointers. Advantages of dre stamp Iockurg method become parhcrrlarly

beneflc]al m the case of a database contammg many classes and many

vers]ons of obJects. Tins M a typ]cal case of design and software

engmeemg databases where classes, being the artifacts of the des]gn

process, have usually many superclasses and objects are avadable m

many versions.

1. Introduction

Recently databases address non-traditional domains,

such as computer aided design and management (CADICAM),

software engineering and office information. Databases devoted

to these domains need to support new functions. Most of them

are provided by databases that have adopted object-oriented

paradigm extended by object versions. They are called

“multiversion object-oriented databases” (MOODB). MOODBS,

on the one hand, support all traditional database functions, such

as concurrency control, recovery, access authorization, data

distribution, etc., and on tbe other, provide object-oriented

features, such as object encapsulation and identification, class

inheritance, object version derivation, etc. One of the important

MOODB ccmcept is a class of objects. A class groups objects,

called its mstarrc-es, that have the same structure and behaviour,

I.e., that are defined by the same sets of attributes and methods,

and recognize the same messages. When a message is sent to an

instance, the corresponding method is found in the definition of

the class. Classes constitute a hierarchy, called irrher-itance

hierarchy that represents the IS-A relationship. If two nodes are

linked, the lower level node is a specialization of the higher
level node, and conversely, the higher level node is a

generalization of the lower level node. T’he properties of a class,

I.e. its attributes and methods, are inherited by all the classes of

any lower level.

Permission to copy without fee all or part of this materiel is
grsn(ed providad that the copies are not mede or distributed for
direct commercial edventege, the ACM copyriaht notice ●nd the

tit16 of the publication end ite dote eppeer, and notice ie given
thrd copying hI by permission of the Association for Computing
Mechirw~, ‘ro copy otherwise, or to republish, requires a fee

sndlor specific permission.

CIKiVt “93 -1 ‘\/93 /D. C., USA

In MOODBS, after creation of a class instance, i.e., an

object, its versions may be created. From the initial object

version new versions may be derived, which in turn may

become the parents of next new versions, etc. Versions of an

object are organized as a hierarchy, called the version

derivation luerardry. It captures the evolution of the object and

partially orders its versions [4, 7, 8].

Classes of versionable instances require proper

management. The main problem is bow to maintain consistency

of the database, which is related to two aspects: concurrency

and versioning. The concurrency aspect of the MOODB

consistency problem is similar to the one in traditional

databases. It follows from concurrent transaction processing.

Versioning aspect of database consistency concerns

identification of versions of different object that go together.

The problem of concurrency control in MOODBS

cannot be solved by the use of methods addressed to classical

databases, because they dc) not ccmcern new semantic

relationships between classes, objects and object versions, i.e

class instantiation and inheritance, and version derivation.

These relationships impose additional constraints on concurrent

data access. A transaction accessing a particular class virtually

accesses all its instances and all its subclasses. The virtual

access to an object by a transaction does not mean that this

object is read or modified by It, but it means that a concurrent

update of the object by other transactions has to be excluded.
In general, we distinguish two types of operations

which involve inheritance subtrees: schema changes and

queries. Most MOODBS allow more than twenty types of

dynamic changes tc) the database schema, withcmt requiring

system shutdc)wn or database reorganization [1]. These include

adding or dropping an attribute or a method to/from a class,

changing the domain of an attribute, changing the inheritance of

an attribute or a method, adding or dropping a class, adding or

dropping a superclass to a class, etc. The semantic of queries is

impacted by the inheritance hlerrcrchy in twc) ways. One is that

the search space for query against a c]ass C may be only the

instances of C’, or it may encc)mpass the instances c)f the class

subtree rooted by C’. The second is that the domain D of an

attribute of a class C is really the class D and all subclasses of

D. This means that the search space for a query against a class

includes class subtrees rooted by the domain class of each of its

attributes.

Virtual access to nc)des occurs also in the object

version derivation hierarchy. A transacticm accessing an object

versicm may, in some cases. virtually access all the versions

derived from it and come into a conflict with another one

accessing a derived object version directly. Another problem is

the update of an object versicm which is not a leaf of the

derivaticm hierarchy. If the update has tc) be propagated to all

Q 1993 ACM 0-89791-626-3/93/001 1$1.50 586

the derived object versions, the access to the whole derivation

subtree by other transaction has to be excluded.

It may seem that to solve this problem the classical

hierarchical locklng method may be adapted [6]. As is well

known, the main notion of this method is a granule, being the

lockable unit. Three types of granules are distinguished: the

whc)le database, relations and tuples, which are vertices of the

granularity hierarchy. When a particular granule is locked, all

the granules nested in it (i.e., its successors in the granularity

hierarchy) are locked implicitly. The concept of hierarchical

locking is implemented by the use c)f intentional lc,cks, which

make it possible to detect the conflicts between transactions on

a higher level of granularity hierarchy than the level where

basic locks ,are set. The main rule of the hierarchical lc)cking

protocol is to set intentional lc)cks cm all the predecessors of a

granule being basically locked.

Two attempts to adapt tbe classical hierarchical

lc)cking methc)d to the requirements of objects are known from

the literature [2, 5]. Both of them concern the inheritance

hierarchy and none of them concerns the version derivation

hierarchy. In [2] hierarchical locking is applied to two types of

granules only: a class and its instances. If an access of a

transacticm to a class concerns also its subclasses, all of them

have to be locked explicitly by the basic locks. Their number is

as big as the number of class subclasses at any level of the

inheritance hierarchy. In [5] hierarchical locking is applied to

the class-instance hierarchy and the class inheritance hierarchy.

Before basic locking a class or a class with its subclasses, all its

superclasses have to be intentionally locked. In a case of a

transaction accessing the leaves of the inheritance hierarchy, it

leads to a great number of intentional locks to be set.

In fact it is difficult to adapt the classical hierarchical

locking method to classes of multiversion objeck, because it

was constructed under the assumption that there is one

hierarchy only of a small depth. In object-oriented databases the

inheritance and version derivation hierarchies may be composed

of hundreds levels. Thus, setting intentional looks from the roc)t

to a leaf of a hierarchy via hundreds intermediary nodes cannot

be efficient. From this point of view, the approaches proposed

in [2] and [5] are unsatisfactory.

In this paper a new approach to hierarchical locking in

MOODBS is proposed, called the stamp locking approach. It

concerns inheritance and version derivation hierarchies. The

main notion of this approach is a stamp lock defined as an

extension of a classical lock. It is defined in such a way that it

contains information about the position of the locked nodes in

both hierarchies. Thus, in most cases, to lock related nodes or

subtrees of nodes of one or both hierarchies it is sufficient to set

a single stamp lock only.

The paper is organized as follows. In Section 2 the

general concept of stamp locking methods is presented. In

Sections 3 object versioning model is presented. In Section 4

the stamp locking method is described. Section 5 concludes tbe

paper.

2. The Concept of Stamp Locking Methods

The concept of stamp locking methods is

presented by the use of an abstract hierarchy of nodes (Fig. 1).

The main idea is to extend the notion of a lock in such a way

that it contains information on the position of a locked subtree

in the whole hierarchy. Tbe extended lock is called stump lock

and denc)ted SL.

A stamp lock is a pair:

SL = (lm, ns),

where k denc)tes a lock mode and ns denotes a node stamp.

Lock modes describe the properties c)f stamp

locks. They correspcmd to the lock modes used in the classical

locking algc~rithms, namely, shared and exclusive lock modes.

A node stamp is a sequence of numbers constructed in such a

way that it makes it possilie to determine all tbe node ancestors

in the hierarchy. If a node is the rr-th child of its parent whose

node stamp is p, then the child node is stamped pm. The root

node is stamped O. For example, stamp lock SL = (lrn, 0.2)

locks, in the lm mode, all the nodes composing the subtree

rc)oted by the node stamped 0.2. This subtree of nodes is called

stamp lock scope. In Fig. 1, the scope of SL = (lm, 0.2) is

surrounded by the dashed line.

0.1

\\0z26022b!

0.3.2

=. ——. /

Figure 1. An abstract hierarchy

Compatibility of two stamp locks is determined

by the following rule:

Two stamp locks are compatible if and only ~ their lock

modes are compatible, or their scopes have no common

nodes.

Compatibility of lock modes is determined in a

classical way: shared lock modes are mutually compatible,

while exclusive lock mc)des are incc)mpatible with both

exclusive and shared lock modes. As follows from the above

rule, in a case of incompatible lock modes, the corresponding

stamp lock scopes have to be compared. Despite lock mode

incompatibility, the stamp locks may be compatible, providing

their scopes have no common nodes. All the possible

relationships between the scc)pes of two stamp locks: SL1

(dashed line) and SL2 (dotted line) are given in Fig. 2. Tbe

scopes may be equal (Fig. 2a), different (Fig. 2b), the scope of

SLI may include the scope of SL2 (Fig. 2c), or the scope c)f

SL1 maybe included in the scope of SL2 (Fig. 2d).

Compatibility of stamp locks SL1 and SL2 may

be summarized as follows: in cases a), c) and d) to be

compatible the stamp lock modes have to be compatible, while

in case b) stamp locks are always compatible, no matter if their

lock modes are compatible or not.

587

To examine the relationship between the scopes

of two stamp locks it is sufficient to compare their node stamps:

1. The scopes of two stamp Ic)cks SL1 and SL2 are

equal (cf. Fig. 2a) if and only if their node stamps me
identical;

2. The scope of a stamp lock SLZ includes the scope of a

SL2 (cf. Fig. 2c) if and only if the node stamp of Xl

is a headl of node stamp SL2 ;

3. The scope of a stamp lock SLI is included in the

scope of a ,YL2 (cf. Fig. 2d) if and only if the node

stamp c)f SL2 is a head of node stamp SL1;

4. Tire scopes of two stamp locks SLI and SL2 are

different (cf. Fig. 2b) if and only if cases 1,2 and 3 dc)

not occur.

<-. .>
— a)

c)

—

/

l!’
\

c. - ,J<.-.-.——.
d)

Figure 2. Comparison of scopes of two stamp locks

To compare node stamps we define three operators.

Let nsl = a1,u2,...,am and ns2 = b1,b2,...,bn be

two node stamps. We say that:
● node stamp nsl is different from stamp rZS2 , denoted nsl

/= ns2 , if and only if

m<>rzv(m=n A 3 (Ii <>bi) ;

Ism

● node stamp nsl includes stamp ns2 , denoted nsl >>

nsz , if and only if

~>nAV~i=bi;

i<n
● node stamp nsl is included in stamp ns2 , denoted nsl

<= ns2 , if and only if

m~nAi!lma’=b’;

lNode stamp nsl = al,a2,...,am is a head of node stamp ns2 =

b1,b2,...,bnifand only if in<r.t A ~ ai =bli
l~nl

As an example ccmsider four node stamps nsl = 0, ns2 = 0.1,

ns+ = 0.1.2 smd ns4 = 0.2 (cf. Fig. 2). Node stamp nsl includes

st~mp nsl (ns2 >> nsl), because nsl is a head of stamp nsj.

Nc)de stamp ns2 is included in stamp ns; (n.s2 <= nsj), because

ns2 is a head of ns3. Node stamps ns2 and ns4 are di~ferent (ns2

{= ns), because tieir second elements are different. Note that
4

from the fact that one node stamp does not include anc)ther one,

we may not conclude that the first one is included in the second

cme. Node stamp ns2 neither includes stamp ns4, nor nsz

includes ns2 (cf. Fig 2 b).

Applying operators defined above to the node stamps

composing two stamp locks, one may construct a logical rule

which determines stamp lock compatibility. Considering all the

stamp lock combinations it is possible to construct stamp lock

compatibility matrix:

CV~: (SLs, SLr) AR,

where R is a logical rule composed of operators defined above

and node stamps, being their operands. Evaluating these rules

makes it possible to determine the compatibility or

incompatibility of locks compared. As an example consider the

compatibility of two exclusive stamp locks:

SL~ = (X, nsl) and SLr = (X, ns2).

As we know, exclusive lock modes are incompatible. Thus, the

compatibility of stamp locks SL~ and SLr may be determined by

the comparison of their scopes. The scopes must be different

(cf. Fig. 2 b), that means node stamp nsl neither includes stamp

ns2, nor it is included in stamp ns2. We may express it by the

following rule:

r: ~ (ns~ <= ns2) A T (ns~ >> ns2).

If the rule r evaluates to true, then the stamp locks SL$ and SLr

are compatible.

The concept of stamp locking method proposed, may

be extended tc) more then one hierarchy, providing they are

rxthogcmal to each other, that means the hierarchies are

composed of nodes of different types. To enable simultaneous

locking in many orthogonal hierarchies it is necessary to extend

the notion of the stamp lock in such a way, that it contains many

node stamps, corresponding to different hierarchies. As a

consequence, the notion of stamp lock scope is also extended,

because each orthogcmal hierarchy introduces its new

dimension. It is also necessary to modify logical rules

determining stamp lock compatibility. In a case of n hierarchies,

the problem of stamp lock scope comparison resembles finding

an intersection between two figures having edges orthogonal to

axis of n-dimensional space. The intersection is not empty if

shadows of these figures are not distinct on each of n axis. In a

similar way, we may say that the intersection between the

scopes of two stamp locks is empty (i.e. it does not contain any

node), if corresponding lock scopes are different in at least one

hierarchy concerned. It means that two stamp locks having
incompatible lock modes are compatible, if their scopes are

different in at least one of the orthogonal hierarchies.

Thus, in case of two orthogonal hierarchies, the stamp

lock definition has to be extended to the following triple:

SL = (lm, nsl, ns2),

where lrn is a stamp lock mode, nsl and ns2 are node stamps

concerning the first and the second hierarchy, respectively. In

Fig. 3 two sample hierarchies and a scope of a stamp lock SLs

= (lm, O.1, 0.2) are presented.

““’ti““:&””’O.A 15 0.2,:30.2..s \ ,1 “22

-.

Figure 3. Scope of a stamp lock concerning two orthogonal

hierarchies

To determine the compatibility of stamp locks concerning two

orthogonal hierarchies we consider two following exclusive

stamp locks:

SL$ = (X, nsla, ns2a) and SLr = (X, nslb, ns2b).

To decide if these locks are compatible or not, one has to

compare their scopes in both hierarchies. The scopes have to be

different in at least one hierarchy. We may express it by the

following logical rule:

T (ns~a <= nslb) ~ T (ns~a >> ns~b) v

- (?SSza <= ns~b) A 7 (nsza >> i’tszb).

3. Database Version Approach

The concept of stamp locking may be applied to

different versioning models. In the paper we assume the

database version approach, which was originally introduced in

[3] as a new paradigm for maintaining consistency of versions

in object-oriented databases, and which is currently under

implementation for the 02 object-oriented DBMS. The main

concept of this approach is that of a database version which

comprises a version of each multiversion object stored in the

database. Some objects may be hidden in a particular database

version by the use of the nil values of their versions. In the

database version approach, a database version is a unit of

consistency and versioning. It is a unit of consistency, because

each object version contained in a database version must be

consistent with the versions of all the other objects contained in

it. It is a unit of versioning, because an object version cannot

appear outside a database version. To create a new object

versicm, a new database version has to be created, where the

new object version appears in the context of versions of all the

other objects and respects the consistency constraints imposed.

Database versions are logically isolated from each other, i.e.,

any changes made in a database version have no effect cm the

others.

Tc) operate on database versions, dbv-transuctiorrs are

used, while to operate on c)bject versions inside database

versions, object-irunsuctions are used. A dbv-transacticm is used

to derive a new database version, called a child, frcmr an

existing one, called its parent. To derive a child means to make

a logical copy of all the object versions contained in the parent.

Once created, the child database version evolves independently

of its parent also its parent is not prevented from evolving if it

is adm ittect to by the application.

To efficiently implement database versions, and to

avoid versicm value redundancy, database versions are

c)rganized as a tree reflecting derivation histcxy, and are

identified by version stamps. A version stamp which is

syntactically identical with node stamp (cf. Section 2) makes it

possible to easily identify the path in the derivation tree from a

given database version to the rc)ot, i.e., to identify all the

ancestors of a given database version. A multiversion object is

implemented as a set c)f object versicm values and a control data

structure called association table. Each row of the association

table of a multiversion object associates an object version value

with one or several database versions. Some database versions

are associated explicitly, i.e., their version stamps appear

explicitly in the association table. Others are associated

implicitly: if the version stamp of a database version does not

appear in an assc)ciation table, this means that it shares an object

version value with its parent, which in turn may share it with its

parent, etc. This rule gives an important advantage: to derive a

new database version, it is sufficient to register its version

stamp in the system. Just after derivation, this version stamp

does not appear in any association table, so automatically the

new database version shares version values of all the objects

with its parent. As an example consider the database version

derivation hierarchy given in Fig. 4. The multiversion database

ccmtains seven database versions stamped O, 0.1, 0.1.1, 0.1.2,

0.1.3, 0.1.1.1 and 0.1.1.2 and two multiversion objects A and B.

object A appears in two versions: a. (nil version) and al, in

database versions O and 0.1, respectively. Version al is shared

by all the database versions compc)sing the derivation subtree

rc]c]ted by 0.1. Object B appears in five versions: bo, b], b2, bj

and b4, in database versions O, 0.1, 0.1.1, 0.1.3 and 0.1.1.2,

respectively. The database versicm 0.1.2 shares object version

bl with the database version 0.1, while database 0.1.1.1 shares

version b2 with database 0.1.1.

0

w@.,>.”:> “.

“% .. .

.1. 0.1

Figure 4. Database version derivation hierarchy

To update shared version value in a database version

d, the following simple algorithm is used. First, a new row is

added tc) the associaticm table, associating the new version value

and the version stamp of the database version d. Then, in the

original row concerning the old version value, the version stamp

of d is replaced hy the version stamps of those of its immediate

successors (children) that do not explicitly appear in any row c)f

the assc)ciation table. In this way, all the successors of the

database version d immediate and not which implicitly shared

the old version value with database version d will continue to be

associated with it. The same algorithm is also used to create and

delete objects in a database version. Creation c)f an object in a

589

database version consists in updating its nil version value by a

given one; deletion of an object in a database version consists in

updating its value by nil. Creation of a new multiversion object

in the database consists of the creation of its association table

with one row associating the nil version value with the root

database version.

The versioning mechanism described above permits

two object transactions addressed to two different database

versions to run in parallel. They do not conflict and need not be

serialized, even if both write the object version whose value is

shared by both database versions addressed. This follows from

the logical isolation of database versions: the update of a shared

version value in one database version gives birth to a new one,

while preserving the old one as explained above. Two object

transactions addressed to the same database version are

serialized in exactly the same manner as in a monoversion

database.

4. Stamp Locking Method for Multiversion

Objects

In this section we present a stamp locking method

applied explicitly to two hierarchies: the database version

derivation and the inheritance hierarchy, and implicitly to the

object version derivation hierarchy. The inheritance hierarchy is

orthogonal to both database version and object version

derivation hierarchy because it is composed of classes, while

the others of database or object versions.

The database version derivation hierarchy is

constructed according to the rules presented in Section 3. To

identify its single nodes, i.e. database versions, or the subtrees

of its nodes, version stamps vs are used.

An object version derivation hierarchy binds different

versions of the same object. By a “different version” we mean

the one that is not shared by its parent. It may, however, be

shared by its child. In other words, “different versions” are

explicitly associated in the association table. There are as many

different object version derivation hierarchies as the number of

multiversion objects in the database. They, however, are not

independent of one another. Each of them may be considered as

a particular projection c)f the database version derivation

hiemrchy. Consider as an example Fig. 5. The database version

derivation hierarchy is drawn by the use of the solid line, while

the version derivation hierarchy for a particular object O is

drawn by the use of the dashed line. The object version

derivation hierarchy is reduced to four nodes stamped: 0, 0.1,

0.1.2.2 and 0.2, respectively. To identify the nodes of an object

version derivation hierarchy database version stamps vs are

used.

The inheritance hierarchy binds classes, which are

dealt by the method in two ways: as an abstraction of its

instances and as an abstraction of its subclasses. In the first

case, a class comprises its intent, i.e., its schema, and its extend,

i.e., the multiversion objects being its instances. To lock both

the class intent and extent it is sufficient to set one stamp lock

only. Ore stamp lock is enough, because to update a class

intent, i.e., to update its schema, the access to all its instances

has to be fc]rbidden; also to update the class extent, i.e., to

update one or more instances of a class, any modificaticln of the

class schema must be excluded.

-\

0.1.1

C/’+ijjk,0.1.2.1 *

—
Figure 5. The database versicm and object version

derivation hierarchies

A class considered as an abstraction of all its

subclasses is a hierarchy, called the inheritance hierarchy. The

method provides stamp locks which concern inheritance

subtrees and all the instances of the classes included in these

subtrees. To identify a single node of the inheritance hierarchy

or a sub tree of its nodes, inheritance stamps are used, which

are syntactically identical with the node stamps (cf. Section 2).

To distinguish between version stamps vs and inheritance

stamps is we use slashes instead of dots as stamp separators. An

example of an inheritance hierarchy with inheritance stamps

assigned to classes is given in Fig. 6. In the database five

classes Cl, C2, C.?, C4 and C5, being the subclasses of the

Object class are distinguished. Class C3 is stamped 01112,

which means that it is a direct subclass of a class stamped 0/1,

i.e., class C“], which in turn is a subclass of the root class

stamped O.

fi

Object o

0I 1 .$&$ ~:y ol~
,..,..

Figure 6. Class inheritance hierarchy

Fly the combination of particulw subtrees and nodes of

the inheritance, database versic]n and object version hierarchies

the following lockable granules are distinguished:

1) the whole multiversion database,

2) a subtree of database versions,

3) a single database version,

4) a class subtree in a database version subtree,

5) a class subtree in a single database version,

6) a single class in a database version subtree,

590

7) a single class in a single database versic)n,

8) a multiversion object

9) a subtree of object versions,

10) a single version of a single object.

In the method, stamp locks are set cm the multiversicm

database and mttltiversion objects. A lock set on the

multiversion database points to nodes or node subtrees of both

inheritance and database version hierarchies. Thus, it is used to

lock first seven granules, which correspcmd tc) different

combinations of nodes and node subtrees of both hierarchies. A

lock set on a multiversion object points to its single version or a

version derivation subtree, It is used to lock last three granules.

Because each multiversion object is an instance of a particular

class, this class must be somehow protected against locking it

by the use of incompatible stamp lock on the multiversicm

database. To this end, before setting a lock cm a multiversion

object, a single intentional lock set on the multiversion database

is required. This intentional stamp lock, which contains the

inheritance stamp is, identifies the class whose instance is

concerned by the corresponding basic stamp lock set on the

multiversion object, Thus, there is no need to include the

inheritance stamp is to stamp locks set on multiversion objects.

A stamp lock set on the multiversion database is now

defined as a triple:

(1) SL = ([m, VS, is),

while astamp lock set on the multiversion object is defined as a

pair:

(2) SL = (lm, VS),

where lm is a lock mode, vs is a version stamp of the database

version subtree (1) or object version subtree (2) being

concerned, and is is an inheritance stamp of the class (class

subtree) which all or particular instance is locked.

Depending on thelock modelm, stamp locks may be

grouped in four following ways:
●

●

●

●

exclusive and shared stamp locks;

non-hierarchical and hierarchical stamp locks in the

database version derivation tree. Non-hierarchical stamp

locks provide class or object locking in a single database

version, while hierarchical stamp locks provide class or

object locking in a database version derivation subtree;

non-hierarchical and hierarchical stamp locks in the

inheritance tree. Non-hierarchical stamp lc)cks provide

locking single classes, while hierarchical provide locking,

class subtrees, i.e., classes together with all their subclasses.

basic and intentional locks. Basic locks are set on the

multiversion database and on multiversion objecb, while

intentional locks are set on the multiversion database only,

before setting corresponding basic locks on multiversion

objects.

Twelve stamp locks set on the multiversion database

are distinguished:

(x, VS, is), (s, vs, is),

(xi, vs, is), (si, vs, is),

(ix, vs, is), (is, vs, is),

(X, VS, is), (S, vs. is),

(XI, VS, is), (S1, .,s, is),

(IX, VS, is), (IS, VS, is);

and four stamp locks set on multiversion objects:

(x, Vs), (s, Vs),

(x, Vs), (s, Vs),

where x means “exclusive”, s means “shared”, lock modes

written in upper case mean “hierarchical in the database version

derivation tree”, while written in lower case mean “non-

hierarchical in the database version derivation tree”, lock modes

with suffix i tnean “hierarchical in the inheritance tree”, while

lock modes without suffix i mean “non-hierarchical in the

inheritance tree”, lock modes with prefix i mean “intentional”,

while lock modes without prefix i mean “basic”.

Stamp Ic]cks (x, vs. is) and (s, VS, is) concern a single

class whose inheritance stamp is is in a single database version

stamped vs.

Stamp locks (x, VS) and (s, VS,Jconcern a single object

versicm ccmtained in database versicm stamped vs.

Stamp locks (X, VS, is) and (S, VS, is) concern a single

class whose inheritance stamp is is in a subtree of database

versions rooted by vs. In the particular case of vs = 0, locks (X,

O, is) and (S, O, is) concern class is in the whole multiversion

database.

Stamp locks (X, VS) and (S, VS) concern a single

object versicms in a subtree of database versions rooted by vs. In

the particular case of vs = O, locks (X, 0) and (S, 0) concern the

whole multiversion object.

Stamp locks (xi, VS, is) and (si, VS, is) concern a class

whose inheritance stamp is is together with all its subclasses in

a single database version stamped vs. In the particular case of is

= O, locks (xi, VS, 0) and (si, VS, 0) concern all the classes

contained in a single database version, i.e. they lock a database

version vs.

Stamp locks (X1, VS, is) and (SI, VS, is) concern a class

whose inheritance stamp is is together with all its subclasses in

a subtree of database versions rooted by vs. In the particular

case of vs = O and is = O, locks (XI, O, O) and (S1, O, 0) concern

all the classes in all the database versions, i.e. they lock the

whc)le m ultiversion database.

Stamp locks (ix, VS, is) and (is, VS, is) express the

intention of non-hierarchical locking at least one instance of a

class is in database version vs. by the use of stamp locks (x, VS)

and (s, VS), respectively. Stamp locks (ix, VS, is) and (is, VS, is)

protect against setting incompatible basic lock on the

multiversion database.

Stamp locks (IX, vs. is) and (IS, VS, is) express the

intention of hierarchical locking at least one instance of a class

is in database version subtree VS, by the use of stamp locks (X,

VS) and (S, VS), respectively. Stamp locks (IX, VS, is) and (IS, VS,

is) protect against setting incompatible basic Ic)ck on the

multiversion database.

As an example, consider the inheritance hierarchy given in Fig.

6. Assume one instance A of class Cl, two instances B and C of

class C“2, tree instances D, E and F of class L“3, one instance G

of class C4 and one instance H of class C-5. Transaction T sets

stamp lock (XI, 0.1, 0/1). It is hierarchical in both: the database

version and the inheritance tree. Thus, it concerns class Cl

(whose inheritance stamp is 0/2) with all its subclasses, i,e,

classes C2 and C3, in tbe database version subtree rooted by

0.1. The scope of the stamp lock considered is surrounded in

Fig. 7 by a dotted line. In Fig. 8 classes locked explicitly in

both hierarchies are surrounded by a thick line, classes locked

explicitly in the database version hierarchy and implicitly in the

inheritance hierarchy are surrounded by a thin solid line, classes

591

locked implicitly in the database versicm hierarchy and

explicitly in the inheritance hierarchy are surrounded by a

dashed line, while classes locked implicitly in both hierarchies

are surrounded by a dotted line.

m ml@l16ill:l,l@ll@l l@ll@ll@’ll@ll@l

,Icl C2 C31C4 Cisl [Cl C2C3C4C5j

a“’”:m=a”’”’l~l1611@lj@ll@l

1 C2 C3’C4 C5
------ ‘ J ‘~

Figure 7. The scope of stamp lock SL=(XI, 0.1, 0/1)

Compatibility of stamp locks set on the multiversion

database is determined as follows. Shared stamp locks S, s, S1,

si, IS, is are always compatible. Intentional locks IX, ix, IS, is

are also mutually compatible. All the other stamp locks are

potentially incompatible. In the database version tree four stamp

lock type combinations are possible: (non-hierarchical, non-

hierarchical), (hierarchical, non-hierarchical), (non-hierarchical,

hierarchical) and (hierarchical, hierarchical). Similarly, in the

inheritance tree four stamp lock type combinations are possible.

Because every pair of stamp locks concern simultaneously both

hierarchies, 4x4 = 16 combinations of pairs:

stamp_lock_granted, stamp_lock_requested have to be

considered.

0.7

Elm
Figure 8. Classes explicitly and implicitly locked

in derivation and inheritance trees

1. Both stamp locks are hierarchical in both trees: XI and XI,

S1 and XI, XI and S1. The scopes of these locks are

subtrees of the database version tree and the inheritance

tree. The scope intersection is empty if at least one of the

following conditions is observed:

2.

3.

4.

5.

6.

the inheritance subtree concerned by the first stamp

lock does not include the inheritance subtree

ccmcerned by the second one, and vice versa, or

database version subtree concerned by the first

stamp lock does not include the database version

subtree concerned by the second one, and vice

versa.

The above conditions may be formalized in the form of

the following rule:

rl: -I (isl < isz v isl >> isz) v 7 (vsl < vs2 v

Vsl >> VS2).

Both stamp locks are non-hierarchical in both trees: x and

x, s and x, x and s, x and ix, ix and x, s and ix, ix and s, is

and x, x and is. The scopes of these locks are single

classes and single database versions. The scope

intersection is empty if the stamp locks concern different

classes or different database versions. It may be expressed

by the following rule:

r2: isl != is~ v VS1 != VS2

Both stamp locks are non-hierarchical in the inheritance

tree and hierarchical in the database version tree: X and X,

S and X, X and S, X and IX, IX and X, X and IS, IS and X,

S and IX, IX and S. The scopes of these locks are single

classes and subtrees of database version tree. The scope

intersection is empty if the stamp locks concern different

classes or tbe subtree of database versions ccmcerned by

the first stamp lock does not include the subtree

concerned by the second cme, and vice versa. It may be

expressed by the following rule:

r3: isl != is2 v 7 (VSI < vs~ v Vsl >> VS2).

Both stamp locks are hierarchical in the inheritance tree

and non-hierarchical in the database version tree: xi and

xi, xi and si, si and xi. The scopes of these locks are

inheritance subtrees and single database versions. The

scope intersecticm is empty if the inheritance subtree

concerned by the first stamp lock does not include the

inheritance subtree concerned by the second one, and vice

versa, or the stamp locks concern different database

versions. It may be expressed by the following rule:

r4: ~ (isl < is2 v isI >> is2) v VS1 != vs2 .

The first stamp lock is non-hierarchical in the inheritance

tree and hierarchical in the database version tree, while

the second one is non-hierarchical in both hierarchies: X

and x, X and ix, X and s, X and is, IX and x, lx and s, S

and x, S and IX, IS and x. The scope of the first stamp

lock is a single class and a database version subtree,

while the scope of the second one is a single class and a

single database version. The scope intersection is empty if

the stamp locks concern different classes, or the database

subtree concerned by the first stamp lock does not include
the database version concerned by the second one. It may

be expressed by the following rule:

r5: is I != is2 v 7 (Vsl 5 vs2).

The symmetric combination to the one presented above:

fust stamp lock is non-hierarchical in both trees, while

the second one is non-hierarchical in the inheritance tree

and hierarchical in the database version tree. The stamp

lock compatibility may be expressed by the following

rule:

s-6: isl != is2 v T (VS2 5 VSI).

592

7. The first stamp lock is non-hierarchical in the inheritance

tree and hierarchical in the database version tree, while

the second one is hierarchical in both hierarchies: X and

X1, X and S1, S and XI, IX and XI, IX and S1, IS and XI.

The scope of the fwst stamp lock is a single class and a

database version subtree, while the scope of the second

one is a inheritance subtree and a database version

subtree. The scope intersection is empty if at least one c)f

the following conditions is observed:

● the class concerned by the first stamp lock is not a

subclass of the class concerned by the second one,

or
. the database version subtree concerned by the first

stamp lock does not include the database version

subtree concerned by the second one, and vice

versa.

It maybe expressed by the following rule:

r7: ~ (isz < isl) v 1 (VS1 < VS2 v VS1 >> VS2).

8. The symmetric combination to the one presented above.

The stamp lock compatibility may be expressed by the

following rule:

r8: ~ (isl < is2) v ~ (vsl < VS2 v Vsl >> VS2).

9. The first stamp lock is non-hierarchical in both

hierarchies, while the second one is hierarchical in both

hierarchies: x and XI, s and S1, ix and XI, ix and S1, s and

X1, is and Xl. The scope of the first stamp lock is a single

class and a single database version, while the scope of the

second one is a inheritance subtree and a database version

subtree. The scope intersection is empty if the class

concerned by the first stamp lock is not a subclass of the

object concerned by the second lock, or the database

version concerned by the first stamp lock is not included

in the database version subtree concerned by the second

lock. It may be expressed by the following rule:

r9: ~ (is~ < is]) v T (Vsz < vs]).

10. The symmetric combination to the one presented above.

The stamp lock compatibility may be expressed by the

following rule:

rlO: 1 (isl < is2) v 1 (VSI < VS2).

11. The first stamp lock is non-hierarchical in the inheritance

tree and hierarchical in the database tree, while the second

one is hierarchical in the inheritance tree and non-

hierarchical in the database version tree: X and xi, X and

si, IX and xi, IX and si, S and xi, IS and xi. The scope of

the first stamp lock is a single class and a database

version subtree, while the scope of the second one is a

inheritance subtree and a single database version. The

scope intersection is empty if the class concerned by the

first stamp lock is not a subclass of the class concerned by

the second lock, or the database version subtree

concerned by the first stamp lock does not include the

database version concerned by the first lock. It may be

expressed by the following rule:

rll: T {isz 5 isl) v T (vsl < vs2).

12. The symmetric combination to the one presented above.

The stamp lock compatibility may be expressed by the

fc)llowing rule:

r12: - (isl < isz) v 7 (Vsz 5 vsl).

13. The first stamp lock is non-hierarchical in bc)th

hierarchies. while the second one is hierarchical in the

inheritance tree and non-hierarchical in the database

version tree: x and xi, x and si, ix and xi, ix and si, s and

xi, is and xi. The scope of the fkst stamp lock is a single

class and a single database version, while the scope of the

second one is a inheritance subtree and a single database

version. The scope intersecticm is empty if the class

ccmcerned by the first stamp lock is not a subclass of the

class concerned by the second lock, or the database

versicnrs concerned by the stamp locks are different. It

may be expressed by the following rule:

r13: - (isz < is]) v VS1 !=vs2.

14. The symmetric combination tc~ the one presented above.

The stamp lock compatibility may be expressed by the

following rule:

r14: ~ (isl < is2) v VS1 !=vs2.

15. The first stamp lock is hierarchical in both hierarchies,

while the second one is hierarchical in the inheritance tree

and non-hierarchical in the database version tree: Xl and

xi, Xl and si, S1 and xi. The scope of the first stamp lock

is a inheritance subtree and a database version subtree,

while the scope of the second one is a inheritance subtree

and a single database version. The scope intersection is

empty if one of the following conditions is observed:

. the inheritance subtree concerned by the first stamp

lock does not include the inheritance subtree

concerned by the second one, and vice versa, or

● the database version subtree concerned by the first

stamp lock does not include the database version

concerned by the second one.

It maybe expressed by the following rule:

r15: 1 (isl < isz v is] >> is2) v 7 (VS1 < VS2).

16. The symmetric cc~mbination to the one presented above.

The stamp lock compatibility may be expressed by the

fc)llowing rule:

r16: ~ (isl < isz v is] >> is2) v 1 (VS2 5 VS1).

The compatibility of stamp locks set on multiversion

objects is determined in a analogous way. Shared stamp locks S,

and s are always compatible, All the other stamp locks are

potentially incompatible. Because stamp locks set on

multiversion object concern the database version tree only, four

@zrnp_lock_granted, stump_lock_requested) combinations

have to be considered. In result, four new rules are defined:

r17: ~ (VS1 < VS2 v vsl >> vs2)

for two hierarchical stamp locks,

r18: Vsl != VS2

for two non-hierarchical stamp locks,

r19: Y (VS1 < vs2)

for hierarchical and ncm-hierarchical stamp locks, and

r20: 1 (VS2 < vsl)

for non-hierarchical and hierarchical stamp Ic)cks,

The compatibility matrix for stamp locks set on the

multiversion database is given in Fig. 9 (exclusive locks

requested) and in Fig. 10 (shared locks requested). The

compatibility matrix for stamp locks set on multiversion objects

is given in Fig. 11. In the case of compatible stamp locks the

word true is put to the respective matrix field. In the case of

putentiall y incompatible stamp lo~ks a reference t.) rules rl, r2,

. . .. rl 6 is put, respectively for all 16 cc)mbin at ions c~fstamp lock

types set on the mrrltiversion database, and to rules r17, r20,

593

respectively for four combinations of stamp lock types set on

multiversion objects.

r31r51r71rlllr31r5

r3 r5 r7 rll true true

r6 r2 r9 r13 true true

r3 r5 r7 rl 1 r3 r5

r6 r2 r9 r13 r6 r2

r8 r10 rl r15 r8 r10

r12 r14 r16 r4 r12 r14

r3 r5 r7 rll true true

r6 r2 r9 r13 true true

Figure 9. Lock compatibility matrix

r3 r5 r7 rll r3 r5

r6 r2 r9 r13 r6 r2

r8 r10 rl r15 rtt r10

r12 r14 r16 r4 r12 r14

r3 r5 r7 rll true true

r6 r2 r9 r13 true true

true true true true true true

true true true true true true

true true true true true true

true true true true true true

true true true true true true

true true true true true true

Figure 10. Lock compatibility matrix

To

Figure 11. Lock compatibility matrix

illustrate the way of determining stamp lock compatibility

consider two stamp locks: SL~ = (X, VS1, isl) and SLr = (X, VJ2,

is2,). Referring to the compatibility matrix given in Fig. 9 we

find out that the compatibility of stamp locks considered is

determined by the rule rl. The rule says that stamp locks SLs

and SLr are compatible if they concern different classes (classes

having different inheritance stamps) or their scopes in the

database version tree are different.

Now, consider two stamp lock pairs:

SLsl = (IX, Vsl, is), SLrl = (ix, VS2, is)

and

SLs2 = (X, VS1), SLr2 = (X, VS2)

Stamp locks from the first pair, set on the multiversion

database, concern the same class is. As follows from Fig. 9,

they are compatible. Stamp locks from the second pair are set

on multiversion objects, providing corresponding locks from the

first pair are granted. If they concern different instances of class

is - they are also granted. otherwise, their compatibility is

determined by rule r19 (cf. Fig. 11). The rule says that locks

may be granted if the database version VS2 is not included in

the subtree of database versions roctecl vsl.

The locking protocol depends on the size of a granule

being locked and requires setting one or two stamp locks only.

If a class or a class subtree in a single database version or

database version subtree is locked - one stamp lock on the

multiversion database is required. If a single object version or

an object version subtree is locked - two the following stamp

locks are required:

1. intentional stamp lock on the multiversion database with

inheritance stamp is pointing to a single class whose

particular instance will be locked,

2. basic stamp lock on the multiversion object with version

stamp vs pointing to its single version or version subtree.

To illustrate this protocol assume a transaction T1 which

updates all the instances of class Cl (cf. Fig. 6) and its

subclasses in a single database version stamped 0.1 (cf. Fig. 7).

It has to set the following stamp lock on the multiversion
database:

SL1 = (xi, 0.1, 011).

Now, assume transacticm T2 which updates all versions of the

object 0, being an instance c)f class C4. It has tc] set two

following stamp locks:

SL2 = (IX, O, 0/2) and SL3 = (X, O),

on the multiversicm database and multiversion object O,

respectively. As follows from the evaluation of rule r12 stamp

lock SL2 is compatible with the stamp lock SL2. Stamp lock

SL%3is the only lock set on object O.

594

Finally, consider transaction T3 which reads a single version Cl

instance in database version 0:1. It has to set two stamp locks.

The first one:

SL4 = (is, 0.1, 01112)

will not be granted, however, because of its incc)mpatibility with

the stamp lock SL1 set by T]. It follows from the evaluation of

rule r14.

6. Conclusions

The stamp locking method presented in this paper may

be efficiently used in object-oriented databases to solve the

problem of concurrent transaction execution. The main

advantage of this method is simple locking strategy following

from the lack of intentional locks concerning the inheritance

and the version derivation hierarchies. In most cases, tc) Icwk

hierarchy subtrees it is sufficient to set one stamp lock only,

whc)se node stamps identify the subtree roots. To determine

stamp lock compatibility, it is sufficient to compare stamp lock

modes and scopes.

Advantages of the stamp locking method become

particularly beneficial in the case of a database containing many

calasses and many versions of objects. This is a typical case c~f

design and software engineering databases where classes, being

the artifacts of the design process, have usually tnany

superclasses and objects areavailable in many versions.

Future work will be focused on taking into account

the composition hierarchy in the same hierarchical way and

extending the method for directed acyclic graphs instead of

trees of object versions and classes.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Banerjee J,, Kim W., Kim H.J., Korth H. F.,

“Semantics and Implementation of Schema Evolation

in Object-Oriented Databases”, Proc. ACM SIGMOD

Conf., San Francisco, Calif., 1987.

Cart M., Ferrie J. “Integrating Concurrency Control

into Object-Oriented Database System”, EDBT Proc.,

Venice, Italy, 1990.

Cellary W., Jomier G., “Consistency of Versions in

Object-Oriented Databases’’, Proc. 16th VLDBConf.,

Brisbane, Aug. 1990, pp. 432-441.

Chou H., Kim W., “A Untfiing Frurnework for

Version Control in CAD Environment”, 12 VLDB

Conf., Kyoto, Aug. 1986.

Garza J., Kim W., “Transaction Management in an

Object-Oriented Database System”, Proc. ACM

SIGMOD Conf., June 1988.

Gray J. “Notes on Database Operating Systems”,

Operating Systems: An Advanced Course, Springer-

Verlag, 1978.

Hubel C., Kafer W., Sutter B., “ConmoJling

Cooperation Through Design-Object Spec*~iccztion, u

Database-oriented Approach” Proc. of the European

Design Automation Conf., Brussels, Belgium, 1992.

[8] Zdonik S.B. “Version Munagctnent in un Object-

Oriented Database”, Int. Works. cm Advanced

Programming Environments, Norway 1986, pp. 139-

200.

595

