Locking Objects and Classes
in Multiversion Object-Oriented Databases

Wojciech Cellary, Waldemar Wieczerzycki
Franco-Polish School of New Information and Communication Technologies
ul. Mansfelda 4, 60-854 Poznan, POLAND
phone: (48)(61)48.34.06
e-mail: cellary@efp.poz.edu.pl, wieczerzycki@efp.poz.edu.pl

Abstract

In thas paper a new approach to locking multiversion objects and classes
is proposed, called the stamp locking approach. The main notion of this
approach is a stamp lock defined as an extension of a classical lock in
such a way that 1t contamns the information about the position of locked
nodes 1n the inheritance and the version denvation hierarchies. The main
advantage of this method is simple locking strategy following from the
lack of intentional locks concerning these hierarchies. In most cases,
setting one stamp lock only, pointing to the nodes or to the subtree roots
1s sufficient to lock a hierarchy nodes or subtrees. To determune stamp
lock compatibility, it is sufficient to compare lock modes and appropriate
pointers. Advantages of the stamp locking method become particularly
beneficial in the case of a database containing many classes and many
versions of objects. This 1s a typical case of design and software
engineering databases where classes, being the artifacts of the design
process, have usually many superclasses and objects are available
many versions.

1. Introduction

Recently databases address non-traditional domains,
such as computer aided design and management (CAD/CAM),
software engineering and office information. Databases devoted
to these domains need to support new functions. Most of them
are provided by databases that have adopted object-oriented
paradigm extended by object versions. They are called
"multiversion object-oriented databases” (MOODB). MOODBs,
on the one hand, support all traditional database functions, such
as concurrency control. recovery, access authorization, data
distribution, etc., and on the other, provide object-oriented
features, such as object encapsulation and identification, class
inheritance, object version derivation, etc. One of the important
MOODB concept is a class of objects. A class groups objects,
called its instances, that have the same structure and behaviour,
1.e., that are defined by the same sets of attributes and methods,
and recognize the same messages. When a message is sent to an
instance, the corresponding method is found in the definition of
the class. Classes constitute a hierarchy, called inheritance
hierarchy that represents the /S-A relationship. If two nodes are
linked. the lower level node is a specialization of the higher
level node, and conversely, the higher level node is a
generalization of the lower level node. The properties of a class,
1.e. its attributes and methods, are inherited by all the classes of
any lower level.

Permission to copy without fee all or part of this materisl is
granted provided ihat the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice sand the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

CIKM '93 - 11/93/D.C., USA

© 1993 ACM 0-89791-626-3/93/0011$1.50

586

In MOODBs, after creation of a class instance, i.e., an
object, its versions may be created. From the initial object
version new versions may be derived, which in turn may
become the parents of next new versions, etc. Versions of an
object are organized as a hierarchy, called the version
derivation hierarchy. It captures the evolution of the object and
partially orders its versions [4, 7, 8].

Classes of versionable instances require proper
management. The main problem is how to maintain consistency
of the database, which is related to two aspects: concurrency
and versioning. The concurrency aspect of the MOODB
consistency problem is similar to the one in traditional
databases. It follows from concurrent transaction processing.
Versioning aspect of database consistency concerns
identification of versions of different object that go together.

The problem of concurrency control in MOODBs
cannot be solved by the use of methods addressed to classical
databases, because they do not concern new semantic
relationships between classes, objects and object versions. r.e
class instantiation and inheritance, and version derivation.
These relationships impose additional constraints on concurrent
data access. A transaction accessing a particular class virtually
accesses all its instances and all its subclasses. The virtual
access to an object by a transaction does not mean that this
object is read or modified by it, but it means that a concurrent
update of the object by other transactions has to be excluded.

In general, we distinguish two types of operations
which involve inheritance subtrees: schema changes and
queries. Most MOODBs allow more than twenty types of
dynamic changes to the database schema, without requiring
system shutdown or database reorganization [1]. These include
adding or dropping an attribute or a method to/from a class,
changing the domain of an attribute, changing the inheritance of
an attribute or a method, adding or dropping a class, adding or
dropping a superclass to a class, etc. The semantic of queries is
impacted by the inheritance hierarchy in two ways. One is that
the search space for query against a class C may be only the
instances of C, or it may encompass the instances of the class
subtree rooted by C. The second is that the domain D of an
attribute of a class C is really the class D and all subclasses of
D. This means that the search space for a query against a class
includes class subtrees rooted by the domain class of each of its
attributes.

Virtual access to nodes occurs also in the object
verston derivation hierarchy. A transaction accessing an object
version may, in some cases. virtually access all the versions
derived from it and come into a conflict with another one
accessing a derived object version directly. Another problem is
the update of an object version which is not a leaf of the
derivation hierarchy. If the update has to be propagated to all

the derived object versions, the access to the whole derivation
subtree by other transaction has to be excluded.

It may seem that to solve this problem the classical
hierarchical locking method may be adapted [6]. As is well
known, the main notion of this method is a granule, being the
lockable unit. Three types of granules are distinguished: the
whole database, relations and tuples, which are vertices of the
granularity hierarchy. When a particular granule is locked, all
the granules nested in it (i.e., its successors in the granularity
hierarchy) are locked implicitly. The concept of hierarchical
locking is implemented by the use of intentional locks, which
make it possible to detect the conflicts between transactions on
a higher level of granularity hierarchy than the level where
basic locks are set. The main rule of the hierarchical locking
protocol is to set intentional locks on all the predecessors of a
granule being basically locked.

Two attempts to adapt the classical hierarchical
locking method to the requirements of objects are known from
the literature [2, 5]. Both of them concern the inheritance
hierarchy and none of them concerns the version derivation
hierarchy. In [2] hierarchical locking is applied to two types of
granules only: a class and its instances. If an access of a
transaction to a class concerns also its subclasses, all of them
have to be locked explicitly by the basic locks. Their number is
as big as the number of class subclasses at any level of the
inheritance hierarchy. In {5] hierarchical locking is applied to
the class-instance hierarchy and the class inheritance hierarchy.
Before basic locking a class or a class with its subclasses, all its
superclasses have to be intentionally locked. In a case of a
transaction accessing the leaves of the inheritance hierarchy, it
leads to a great number of intentional locks to be set.

In fact it is difficult to adapt the classical hierarchical
locking method to classes of multiversion objects, because it
was constructed under the assumption that there is one
hierarchy only of a small depth. In object-oriented databases the
inheritance and version derivation hierarchies may be composed
of hundreds levels. Thus, setting intentional locks from the root
to a leaf of a hierarchy via hundreds intermediary nodes cannot
be efficient. From this point of view, the approaches proposed
in [2] and [5] are unsatisfactory. .

In this paper a new approach to hierarchical locking in
MOODBs is proposed, calléd the stamp locking approach. It
concerns inheritance and version derivation hierarchies. The
main notion of this approach is a stamp lock defined as an
extension of a classical lock. It is defined in such a way that it
contains information about the position of the locked nodes in
both hierarchies. Thus, in most cases, to lock related nodes or
subtrees of nodes of one or both hierarchies it is sufficient to set
a single stamp lock only.

The paper is organized as follows. In Section 2 the
general concept of stamp locking methods is presented. In
Sections 3 object versioning model is presented. In Section 4
the stamp locking method is described. Section 5 concludes the

paper.
2. The Concept of Stamp Locking Methods

The concept of stamp locking methods is
presented by the use of an abstract hierarchy of nodes (Fig. 1).
The main idea is to extend the notion of a lock in such a way
that it contains information on the position of a locked subtree

587

in the whole hierarchy. The extended lock is called stamp lock
and denoted SL.

A stamp lock is a pair:

SL = (Im, ns),

where Im denotes a lock mode and ns denotes a node stamp.

Lock modes describe the properties of stamp
locks. They correspond to the lock modes used in the classical
locking algorithms, namely, shared and exclusive lock modes.
A node stamp is a sequence of numbers constructed in such a
way that it makes it possible to determine all the node ancestors
in the hierarchy. If a node is the n-th child of its parent whose
node stamp is p, then the child node is stamped p.n. The root
node is stamped 0. For example, stamp lock SL = (im, 0.2)
locks, in the Im mode, all the nodes composing the subtree
rooted by the node stamped 0.2. This subtree of nodes is called
stamp lock scope. In Fig. 1, the scope of SL = (im, 0.2) is
surrounded by the dashed line.

Figure 1. An abstract hierarchy

Compatibility of two stamp locks is determined
by the following rule:

Two stamp locks are compatible if and only if their lock
modes are compatible, or their scopes have no common
nodes.

Compatibility of lock modes is determined in a
classical way: shared lock modes are mutually compatible,
while exclusive lock modes are incompatible with both
exclusive and shared lock modes. As follows from the above
rule, in a case of incompatible lock modes, the corresponding
stamp lock scopes have to be compared. Despite lock mode
incompatibility, the stamp locks may be compatible, providing
their scopes have no common nodes. All the possible
relationships between the scopes of two stamp locks: SL;
(dashed line) and SL, (dotted line) are given in Fig. 2. The
scopes may be equal (Fig. 2a), different (Fig. 2b), the scope of
SL; may include the scope of SLy (Fig. 2¢), or the scope of
SL; may be included in the scope of SLy (Fig. 2d).

Compatibility of stamp locks SL; and SL; may
be summarized as follows: in cases a), ¢) and d) to be
compatible the stamp lock modeg have to be compatible, while
in case b) stamp locks are always compatible, no matter if their
lock modes are compatible or not.

To examine the relationship between the scopes

of two stamp locks it is sufficient to compare their node stamps:

1. The scopes of two stamp locks SL; and SL, are

equal (cf. Fig. 2a) if and only if their node stamps are
identical;

2. The scope of a stamp lock SL; includes the scope of a
SLy (cf. Fig. 2¢) if and only if the node stamp of SL;
is ahead! of node stamp SL, ;

3. The scope of a stamp lock SL; is included in the
scope of a SLy (cf. Fig. 2d) if and only if the node
stamp of SL, is a head of node stamp SL;,

4. The scopes of two stamp locks SL; and SLj are
different (cf. Fig. 2b) if and only if cases 1,2 and 3 do

not occur.

Figure 2. Comparison of scopes of two stamp locks

To compare node stamps we define three operators.
Let ns; = aj.a,....a,, and nsy = by,by,....b, be
two node stamps. We say that:
® node stamp ns; is different from stamp ns; , denoted ns;
/= nsy , if and only if

m<>nv (m=n n 3 ai<>bi);
i<m
¢ node stamp ns; includes stamp nsy , denoted ns; >>
nsy , if and only if

m>n A V ai=bi 5
i<n
® node stamp ns; is included in stamp ns; , denoted ns;
<= nsy, if and only if

m<n A V ai=bi;

i<m

INode stamp ns; = a},dy,....4,, is a head of node stamp nsy =

by.by,...by,if andonly if m<n A YV a-= bi;

i<m

As an example consider four node stamps ns; = 0, nsy = 0.1,
nsz = 0.1.2 and nsy = 0.2 (cf. Fig. 2). Node stamp ns; includes
stamp ns; (nsy >> nsy), because ns; is a head of stamp ns,.
Node stamp ns; is included in stamp ns3 (nsy <= ns3), because
nsy is a head of ns3. Node stamps ns, and nsy are different (ns;
/= nsy), because their second elements are different. Note that
from the fact that one node stamp does not include another one,
we may not conclude that the first one is included in the second
one. Node stamp nsy neither includes stamp nsy, nor nsy
includes nsy (cf. Fig 2 b).

Applying operators defined above to the node stamps
composing two stamp locks, one may construct a logical rule
which determines stamp lock compatibility. Considering all the
stamp lock combinations it is possible to construct stamp lock
compatibility matrix:

Cy, (SLg, SL,) > R,
where R is a logical rule composed of operators defined above
and node stamps, being their operands. Evaluating these rules
makes it possible to determine the compatibility or
incompatibility of locks compared. As an example consider the
compatibility of two exclusive stamp locks:
SLy=(X,ns;) and SL,= (X, nsy).
As we know, exclusive lock modes are incompatible. Thus, the
compatibility of stamp locks SL and SL, may be determined by
the comparison of their scopes. The scopes must be different
(cf. Fig. 2 b), that means node stamp #s; neither includes stamp
nsy, nor it is included in stamp nsy. We may express it by the
following rule:
r: - (nsp<=nsy)A o (ns]>>nsy).

If the rule r evaluates to true, then the stamp locks SL and SL,
are compatible.

The concept of stamp locking method proposed, may
be extended to more then one hierarchy, providing they are
orthogonal to each other, that means the hierarchies are
composed of nodes of different types. To enable simultaneous
locking in many orthogonal hierarchies it is necessary to extend
the notion of the stamp lock in such a way, that it contains many
node stamps, corresponding to different hierarchies. As a
consequence, the notion of stamp lock scope is also extended,
because each orthogonal hierarchy introduces its new
dimension. It is also necessary to modify logical rules
determining stamp lock compatibility. In a case of » hierarchies,
the problem of stamp lock scope comparison resembles finding
an intersection between two figures having edges orthogonal to
axis of n-dimensional space. The intersection is not empty if
shadows of these figures are not distinct on each of » axis. In a
similar way, we may say that the intersection between the
scopes of two stamp locks is empty (i.e. it does not contain any
node), if corresponding lock scopes are different in at least one
hierarchy concerned. It means that two stamp locks having
incompatible lock modes are compatible, if their scopes are
different in at least one of the orthogonal hierarchies.

Thus, in case of two orthogonal hierarchies, the stamp
lock definition has to be extended to the following triple:

SL = (Im, nsy, nsp),
where [m is a stamp lock mode, ns; and ns, are node stamps
concerning the first and the second hierarchy, respectively. In
Fig. 3 two sample hierarchies and a scope of a stamp lock SL,
= (Im, 0.1, 0.2) are presented.

Figure 3. Scope of a stamp lock concerning two orthogonal
hierarchies

To determine the compatibility of stamp locks concerning two
orthogonal hierarchies we consider two following exclusive
stamp locks:

SLg = (X, nspg nsy,) and SL, = (X, nsyp, nsop).
To decide if these locks are compatible or not, one has to
compare their scopes in both hierarchies. The scopes have to be
different in at least one hierarchy. We may express it by the
following logical rule:

o (nspa<=nspp) A - (nsp,>>nspp) v

- (nsyg <= nsgpl A (nsy, >> nsyp).

3. Database Version Approach

The concept of stamp locking may be applied to
different versioning models. In the paper we assume the
database version approach, which was originally introduced in
[3] as a new paradigm for maintaining consistency of versions
in object-oriented databases, and which is currently under
implementation for the O, object-oriented DBMS. The main
concept of this approach is that of a database version which
comprises a version of each multiversion object stored in the
database. Some objects may be hidden in a particular database
version by the use of the nil values of their versions. In the
database version approach, a database version is a unit of
consistency and versioning. It is a unit of consistency, because
each object version contained in a database version must be
consistent with the versions of all the other objects contained in
it. It is a unit of versioning, because an object version cannot
appear outside a database version. To create a new object
version, a new database version has to be created, where the
new object version appears in the context of versions of all the
other objects and respects the consistency constraints imposed.
Database versions are logically isolated from each other, i.e.,
any changes made in a database version have no effect on the
others.

To operate on database versions, dbv-transactions are
used, while to operate on object versions inside database
versions, object-transactions are used. A dbv-transaction is used
to derive a new database version, called a child, from an
existing one, called its parent. To derive a child means to make
a logical copy of all the object versions contained in the parent.
Once created, the child database version evolves independently
of its parent; also its parent is not prevented from evolving if it
is admitted to by the application.

To efficiently implement database versions, and to
avoid version value redundancy, database versions are
organized as a ftree reflecting derivation history, and are

589

identified by version stamps. A version stamp which is
syntactically identical with node stamp (cf. Section 2) makes it
possible to easily identify the path in the derivation tree from a
given database version to the root, i.e., to identify all the
ancestors of a given database version. A multiversion object is
implemented as a set of object version values and a control data
structure called association table. Each row of the association
table of a multiversion object associates an object version value
with one or several database versions. Some database versions
are associated explicitly, i.e., their version stamps appear
explicitly in the -association table. Others are associated
implicitly: if the version stamp of a database version does not
appear in an association table, this means that it shares an object
version value with its parent, which in turn may share it with its
parent, etc. This rule gives an important advantage: to derive a
new database version, it is sufficient to register its version
stamp in the system. Just after derivation, this version stamp
does not appear in any association table, so automatically the
new database version shares version values of all the objects
with its parent. As an example consider the database version
derivation hierarchy given in Fig. 4. The multiversion database
contains seven database versions stamped 0, 0.1, 0.1.1, 0.1.2,
0.1.3,0.1.1.1 and 0.1.1.2 and two multiversion objects A and B.
Object A appears in two versions: ag (nil version) and g, in
database versions 0 and 0.1, respectively. Version a; is shared
by all the database versions composing the derivation subtree
rooted by 0.1. Object B appears in five versions: by, by, by, by
and b4, in database versions 0, 0.1, 0.1.1, 0.1.3 and 0.1.1.2,
respectively. The database version 0.1.2 shares object version
b with the database version 0.1, while database 0.1.1.] shares
version by with database 0.1.1.

Figure 4. Database version derivation hierarchy

To update shared version value in a database version
d, the following simple algorithm is used. First, a new row is
added to the association table, associating the new version value
and the version stamp of the database version d. Then, in the
original row concerning the old version value, the version stamp
of d is replaced by the version stamps of those of its immediate
successors (children) that do not explicitly appear in any row of
the association table. In this way, all the successors of the
database version d immediate and not which implicitly shared
the old version value with database version d will continue to be
associated with it. The same algorithm is also used to create and
delete objects in a database version. Creation of an object in a

database version consists in updating its nil version value by a
given one; deletion of an object in a database version consists in
updating its value by nil. Creation of a new multiversion object
in the database consists of the creation of its association table
with one row associating the nil version value with the root
database version.

The versioning mechanism described above permits
two object transactions addressed to two different database
versions to run in parallel. They do not conflict and need not be
serialized, even if both write the object version whose value is
shared by both database versions addressed. This follows from
the logical isolation of database versions: the update of a shared
version value in one database version gives birth to a new one,
while preserving the old one as explained above. Two object
transactions addressed to the same database version are
serialized in exactly the same manner as in a monoversion
database.

4. Stamp Locking Method for Multiversion
Objects

In this section we present a stamp locking method
applied explicitly to two hierarchies: the database version
derivation and the inheritance hierarchy, and implicitly to the
object version derivation hierarchy. The inheritance hierarchy is
orthogonal to both database version and object version
derivation. hierarchy because it is composed of classes, while
the others of database or object versions.

The database wversion derivation hierarchy is
constructed according to the rules presented in Section 3. To
identify its single nodes, i.e. database versions, or the subtrees
of its nodes, version stamps vs are used.

An object version derivation hierarchy binds different
versions of the same object. By a "different version” we mean
the one that is not shared by its parent. It may, however, be
shared by its child. In other words, "different versions" are
explicitly associated in the association table. There are as many
different object version derivation hierarchies as the number of
multiversion objects in the database. They, however, are not
independent of one another. Each of them may be considered as
a particular projection of the database version derivation
hierarchy. Consider as an example Fig. 5. The database version
derivation hierarchy is drawn by the use of the solid line, while
the version derivation hierarchy for a particular object O is
drawn by the use of the dashed line. The object version
derivation hierarchy is reduced to four nodes stamped: 0, 0.1,
0.1.2.2 and 0.2, respectively. To identify the nodes of an object
version derivation hierarchy database version stamps vs are
used.

The inheritance hierarchy binds classes, which are
dealt by the method in two ways: as an abstraction of its
instances and as an abstraction of its subclasses. In the first
case, a class comprises its intent, i.e., its schema, and its extend,
i.e., the multiversion objects being its instances. To lock both
the class intent and extent it is sufficient to set one stamp lock
only. One stamp lock is enough, because to update a class
intent, i.e., to update its schema, the access to all its instances
has to be forbidden; also to update the class extent, i.e., to
update one or more instances of a class, any modification of the
class schema must be excluded.

590

) 0.2.1

Figure 5. The database version and object version
derivation hierarchies

A class considered as an abstraction of all its
subclasses is a hierarchy, called the inheritance hierarchy. The
method provides stamp locks which concern inheritance
subtrees and all the instances of the classes included in these
subtrees. To identify a single node of the inheritance hierarchy
or a subtree of its nodes, inheritance stamps are used, which
are syntactically identical with the node stamps (cf. Section 2).
To distinguish between version stamps vs and inheritance
stamps is we use slashes instead of dots as stamp separators. An
example of an inheritance hierarchy with inheritance stamps
assigned to classes is given in Fig. 6. In the database five
classes CI, C2, C3, C4 and CS5, being the subclasses of the
Object class are distinguished. Class C3 is stamped 0/1/2,
which means that it is a direct subclass of a class stamped 0/1,
i.e., class CI, which in turn is a subclass of the root class
stamped 0.

Object | o

0/2

0/2/1

Figure 6. Class inheritance hierarchy

By the combination of particular subtrees and nodes of
the inheritance, database version and object version hierarchies
the following lockable granules are distinguished:

1) the whole multiversion database,

2) asubtree of database versions,

3) asingle database version,

4) aclass subtree in a database version subtree,
5) aclass subtree in a single database version,
6) asingle class in a database version subtree,

a single class in a single database version,
a multiversion object

a subtree of object versions,

10) a single version of a single object.

In the method, stamp locks are set on the multiversion
database and multiversion objects. A lock set on the
multiversion database points to nodes or node subtrees of both
inheritance and database version hierarchies. Thus, it is used to
lock first seven granules, which correspond to different
combinations of nodes and node subtrees of both hierarchies. A
lock set on a multiversion object points to its single version or a
version derivation subtree. It is used to lock last three granules.
Because each multiversion object is an instance of a particular
class, this class must be somehow protected against locking it
by the use of incompatible stamp lock on the multiversion
database. To this end, before setting a lock on a multiversion
object, a single intentional lock set on the multiversion database
is required. This intentional stamp lock, which contains the
inheritance stamp is, identifies the class whose instance is
concerned by the corresponding basic stamp lock set on the
multiversion object. Thus, there is no need to include the
inheritance stamp is to stamp locks set on multiversion objects.

A stamp lock set on the multiversion database is now
defined as a triple:

1) SL = (Im, vs, is),

while a stamp lock set on the multiversion object is defined as a
pair:

2) SL = (Im, vs),

where Im is a lock mode, vs is a version stamp of the database
version subtree (1) or object version subtree (2) being
concerned, and is is an inheritance stamp of the class (class
subtree) which all or particular instance is locked.

Depending on the lock mode I, stamp locks may be
grouped in four following ways:
® exclusive and shared stamp locks;
® non-hierarchical and hierarchical stamp locks in the
database version derivation tree. Non-hierarchical stamp
locks provide class or object locking in a single database
version, while hierarchical stamp locks provide class or
object locking in a database version derivation subtree;
non-hierarchical and hierarchical stamp locks in the
inheritance tree. Non-hierarchical stamp locks provide
locking single classes, while hierarchical provide locking
class subtrees, i.e., classes together with all their subclasses.
basic and intentional locks. Basic locks are set on the
multiversion database and on multiversion objects, while
intentional locks are set on the multiversion database only,
before setting corresponding basic locks on multiversion
objects.

Twelve stamp locks set on the multiversion database
are distinguished:

(x, vs, is), (s, vs,is),

(xi, vs,is), (si, vs, is),
(ix, vs, is), (is, vs, is),
(X, vs, is), (S, vs, is),

(X1, vs,is), (S, vs,is),
(IX, vs, is), (1S, vs, is);

and four stamp locks set on multiversion objects:
(x, vs), (s, vs),

591

(X, vs), (S, vs),
where x means "exclusive”, s means "shared”, lock modes
written in upper case mean "hierarchical in the database version
derivation tree", while written in lower case mean "non-
hierarchical in the database version derivation tree", lock modes
with suffix { mean "hierarchical in the inheritance tree”, while
lock modes without suffix / mean "non-hierarchical in the
inheritance tree”, lock modes with prefix { mean "intentional”,
while lock modes without prefix / mean "basic".

Stamp locks (x, vs, is) and (s, vs, is) concern a single
class whose inheritance stamp is is in a single database version
stamped vs.

Stamp locks (x, vs) and (s, vs) concern a single object
version contained in database version stamped vs.

Stamp locks (X, vs, is) and (S, vs, is) concern a single
class whose inheritance stamp is is in a subtree of database
versions rooted by vs. In the particular case of vs = 0, locks (X,
0, is) and (S, 0, is) concern class is in the whole multiversion
database.

Stamp locks (X, vs) and (S, vs) concern a single
object versions in a subtree of database versions rooted by vs. In
the particular case of vs = 0, locks (X, 0) and (S, 0) concern the
whole multiversion object.

Stamp locks (xi, vs, is) and (si, vs, is) concern a class
whose inheritance stamp is is together with all its subclasses in
a single database version stamped vs. In the particular case of is
= 0, locks (xi, vs, 0) and (si, vs, 0) concern all the classes
contained in a single database version, 1.e. they lock a database
version vs.

Stamp locks (X1, vs, is) and (S1, vs, is}) concern a class
whose inheritance stamp is is together with all its subclasses in
a subtree of database versions rooted by vs. In the particular
case of vs = 0 and is = 0, locks (XI, 0, 0) and (SI, 0, 0) concern
all the classes in all the database versions, i.e. they lock the
whole multiversion database.

Stamp locks (ix, vs, is) and (is, vs, is) express the
intention of non-hierarchical locking at least one instance of a
class is in database version vs, by the use of stamp locks (x, vs)
and (s, vs), respectively. Stamp locks (ix, vs, is) and (is, vs, is)
protect against setting incompatible basic lock on the
multiversion database.

Stamp locks (IX, vs, is) and (IS, vs, is) express the
intention of hierarchical locking at least one instance of a class
is in database version subtree vs, by the use of stamp locks (X,
vs) and (S, vs), respectively. Stamp locks (IX, vs, is) and (IS, vs,
is) protect against setting incompatible basic lock on the
multiversion database.

As an example, consider the inheritance hierarchy given in Fig.
6. Assume one instance A of class C/, two instances B and C of
class C2, tree instaneces D, E and F of class C3, one instance G
of class C4 and one instance H of class C5. Transaction T sets
stamp lock (X/, 0.1, 0/1). It is hierarchical in both: the database
version and the inheritance tree. Thus, it concerns class C/
(whose inheritance stamp is 0/1) with all its subeclasses, i.e.
classes C2 and (3, in the database version subtree rooted by
0.1. The scope of the stamp lock considered is surrounded in
Fig. 7 by a dotted line. In Fig. 8 classes locked explicitly in
both hierarchies are surrounded by a thick line, classes locked
explicitly in the database version hierarchy and implicitly in the
inheritance hierarchy are surrounded by a thin solid line, classes

locked implicitly in the database version hierarchy and
explicitly in the inheritance hierarchy are surrounded by a
dashed line, while classes locked implicitly in both hierarchies
are surrounded by a dotted line.

N r—’\ r——\,'*'—\ 0

0/213l0!
-

C1 (‘2 C3 C4 Cb

- /\

(T g, T) (r— X2 — 0.2

0/®8'ollal [6/210lg!le
| 119||@|| g II‘HII |
6;- C2 C3,C4 Eg ET cs

cz C3 (‘4 C5
. S \. J

011 g r——\

® HQII@IIII | le'®iglglol
I A D LI

Cl 02 C3 (A C5 .| €1 CZ C3 C4 05
R Jo p

Figure 7. The scope of stamp lock SL=(XI, 0.1, 0/1)

(g rﬂ 0.1.2

Compatibility of stamp locks set on the multiversion
database is determined as follows. Shared stamp locks S, s, SI,
si, 1S, is are always compatible. Intentional locks IX, ix, IS, is
are also mutually compatible. All the other stamp locks are
potentially incompatible. In the database version tree four stamp
lock type combinations are possible: (non-hierarchical, non-
hierarchical), (hierarchical, non-hierarchical), (non-hierarchical,
hierarchical) and (hierarchical, hierarchical). Similarly, in the
inheritance tree four stamp lock type combinations are possible.
Because every pair of stamp locks concern simultaneously both

hierarchies, 4x4 = 16 combinations of pairs:
stamp_lock_granted, stamp_lock_requested have to be
considered.
0.1
®

0.1.1 / \ 0.12

‘o) . o2 cs ‘e L o2

NN NN

Figure 8. Classes explicitly and implicitly locked
in derivation and inheritance trees

1. Both stamp locks are hierarchical in both trees: XI and X/,
SI and XI, XI and SI. The scopes of these locks are
subtrees of the database version tree and the inheritance
tree. The scope intersection is empty if at least one of the
following conditions is observed:

592

® the inheritance subtree concerned by the first stamp
lock does not include the inheritance subtree
concerned by the second one, and vice versa, or
® database version subtree concerned by the first

stamp lock does not include the database version

subtree concerned by the second one, and vice

versa.
The above conditions may be formalized in the form of
the following rule:
rl: = (is;)< ispv o isp>>isg)v = (vsy< sy v

vsy >> vsy).
Both stamp locks are non-hierarchical in both trees: x and
x, s and x, x and s, x and ix, ix and x, s and ix, ix and s, is
and x, x and is. The scopes of these locks are single
classes and single database versions. The scope
intersection is empty if the stamp locks concern different
classes or different database versions. It may be expressed
by the following rule:
r2: lS] /= tSZ v VS] I= VSZ
Both stamp locks are non-hierarchical in the inheritance
tree and hierarchical in the database version tree: X and X,
Sand X, X and S, X and IX, IX and X, X and IS, IS and X,
S and /X, IX and S. The scopes of these locks are single
classes and subtrees of database version tree. The scope
intersection is empty if the stamp locks concern different
classes or the subtree of database versions concerned by
the first stamp lock does not include the subtree
concerned by the second one, and vice versa. It may be
expressed by the following rule:
r3tispl=isy v — (vs;< vsyv vsp>>vs)).
Both stamp locks are hierarchical in the inheritance tree
and non-hierarchical in the database version tree: xi and
xi, xi and si, si and xi. The scopes of these locks are
inheritance subtrees and single database versions. The
scope intersection is empty if the inheritance subtree
concerned by the first stamp lock does not include the
inheritance subtree concerned by the second one, and vice
versa, or the stamp locks concern different database
versions. It may be expressed by the following rule:
rd:— (isp< sy v o dsp>>isy)v vspl=vsy.
The first stamp lock is non-hierarchical in the inheritance
tree and hierarchical in the database version tree, while
the second one is non-hierarchical in both hierarchies: X
and x, X and ix, X and s, X and is, IX and x, IX and s, S
and x, S and /X, IS and x. The scope of the first stamp
lock is a single class and a database version subtree,
while the scope of the second one is a single class and a
single database version. The scope intersection is empty if
the stamp locks concern different classes, or the database
subtree concerned by the first stamp lock does not include
the database version concerned by the second one. It may
be expressed by the following rule:
rS:ispi=isy v o (vsp< vsy).

The symmetric combination to the one presented above:
first stamp lock is non-hierarchical in both trees, while
the second one is non-hierarchical in the inheritance tree
and hierarchical in the database version tree. The stamp
lock compatibility may be expressed by the following
rule:

r6:ispi=isy v oo (vsy £ vsg)

10.

11.

12.

The first stamp lock is non-hierarchical in the inheritance
tree and hierarchical in the database version tree, while
the second one is hierarchical in both hierarchies: X and
XI, X and SI, S and X!, IX and X!, IX and SI, IS and XI.
The scope of the first stamp lock is a single class and a
database version subtree, while the scope of the second
one is a inheritance subtree and a database version
subtree. The scope intersection is empty if at least one of
the following conditions is observed:

® the class concerned by the first stamp lock is not a

subclass of the class concerned by the second one,
or

® the database version subtree concerned by the first

stamp lock does not include the database version
subtree concerned by the second one, and vice
versa.

It may be expressed by the following rule:

P7: = (isp S isphv o (vspS vsyvovsp >>usy).
The symmetric combination to the one presented above.
The stamp lock compatibility may be expressed by the
following rule:

r8: - (is;< isy)v - (vspS vsyvoovsp>>vsy).
The first stamp lock is non-hierarchical in both
hierarchies, while the second one is hierarchical in both
hierarchies: x and X/, s and S1, ix and X/, ix and S/, s and
X1, is and XI. The scope of the first stamp lock is a single
class and a single database version, while the scope of the
second one is a inheritance subtree and a database version
subtree. The scope intersection is empty if the class
concerned by the first stamp lock is not a subclass of the
object concerned by the second lock, or the database
version concerned by the first stamp lock is not included
in the database version subtree concerned by the second
lock. It may be expressed by the following rule:

ro: — (iSZS lSI) vV - (VSZ < VS]).
The symmetric combination to the one presented above.
The stamp lock compatibility may be expressed by the
following rule:

rl0: — (isp< isp)v = (vsp< vsy)
The first stamp lock is non-hierarchical in the inheritance
tree and hierarchical in the database tree, while the second
one is hierarchical in the inheritance tree and non-
hierarchical in the database version tree: X and xi, X and
si, IX and xi, IX and si, S and xi, IS and xi. The scope of
the first stamp lock is a single class and a database
version subtree, while the scope of the second one is a
inheritance subtree and a single database version. The
scope intersection is empty if the class concerned by the
first stamp lock is not a subclass of the class concerned by
the second lock, or the database version subtree
concerned by the first stamp lock does not include the
database version concerned by the first lock. It may be
expressed by the following rule:

rll: = (isp £ isp)v = (vsp < vsp)
The symmetric combination to the one presented above.
The stamp lock compatibility may be expressed by the
following rule:

r12: = (is;< isy)v = (vsy < vsp)
The first stamp lock 1is non-hierarchical in both
hierarchies, while the second one is hierarchical in the

593

inheritance tree and non-hierarchical in the database
version tree: x and xi, x and si, ix and xi, ix and si, s and
xi, is and xi. The scope of the first stamp lock is a single
class and a single database version, while the scope of the
second one is a inheritance subtree and a single database
version. The scope intersection is empty if the class
concerned by the first stamp lock is not a subclass of the
class concerned by the second lock, or the database
versions concerned by the stamp locks are different. It
may be expressed by the following rule:
r13:— (isy < isp) v vspl=vsy.
The symmetric combination to the one presented above.
The stamp lock compatibility may be expressed by the
following rule:
rld: — (is; < isy) v vspI=vsy.
The first stamp lock is hierarchical in both hierarchies,
while the second one is hierarchical in the inheritance tree
and non-hierarchical in the database version tree: X/ and
xi, XI and si, SI and xi. The scope of the first stamp lock
is a inheritance subtree and a database version subtree,
while the scope of the second one is a inheritance subtree
and a single database version. The scope intersection is
empty if one of the following conditions is observed:
® the inheritance subtree concerned by the first stamp
lock does not include the inheritance subtree
concerned by the second one, and vice versa, or
® the database version subtree concerned by the first
stamp lock does not include the database version
concerned by the second one.
It may be expressed by the following rule:
r1S: - (isys ispv o isp>>isp)v - (vsy < ovsy).
The symmetric combination to the one presented above.
The stamp lock compatibility may be expressed by the
following rule:
rl6: — (is;< ispv isp>>isy)v o (vsy < sy
The compatibility of stamp locks set on multiversion
objects is determined in a analogous way. Shared stamp locks S,
and s are always compatible. All the other stamp locks are
potentially incompatible. Because stamp locks set
multiversion object concern the database version tree only, four
(stamp_lock_granted, stamp_lock_requested) combinations
have to be considered. In result, four new rules are defined:
r17: — (vs;< vsy v vs; >> vsp)

14.

15.

16.

on

for two hierarchical stamp locks,
ri8: vs; /= vsy
for two non-hierarchical stamp locks,
r19: = (vs; < vsy)
for hierarchical and non-hierarchical stamp locks, and
r20: — (vsy < vsg)
for non-hierarchical and hierarchical stamp locks.

The compatibility matrix for stamp locks set on the
multiversion database is given in Fig. 9 (exclusive locks
requested) and in Fig. 10 (shared locks requested). The
compalibility matrix for stamp locks set on multiversion objects
is given in Fig. 11. In the case of compatible stamp locks the
word true is put to the respective matrix field. In the case of
potentially incompatible stamp locks a reference to rules rl, r2,
.. I'16 is put, respectively for all 16 combinations of stamp lock
types set on the multiversion database, and to rules r17, ..., r20,

respectively for four combinations of stamp lock types set on
multiversion objects.

r3 rs r7 ril r3]
ré r2 r9 ri3 ré r2
r8 rl0 rl rls r$ r1o
r12 rl4 rl6 rd4 r12 ri4
r3 r§ r7 rl1 true true
ré r2 r9 ri3 true true
r3 r§ r7 rit r3 r5
ré r2 r9 ri3 ré r2
r$ ri0 rl r15 r8 r10
ri2 r14 rl6 rd ri2 ri4
r3 r5 r7 ril true true
ré r2 r9 rl3 true true
Figure 9. Lock compatibility matrix
3 r5 r7 ril r3 rs
ré r2 r9 rl3 ré6 r2
r8 r10 rl ris r8 ri0
rl2 rl4 rie r4 rl2 rl4
r3 r§ r7 rll true true
ré r2 r9 r13 true true
true true true true true true
true true true true true true
true true true true true true
true true true true true true
true true true true true true
true true true true true true

Figure 10. Lock compatibility matrix

594

Figure 11. Lock compatibility matrix

To illustrate the way of determining stamp lock compatibility
consider two stamp locks: SL¢ = (X, vsy, isp) and SL, = (X, vs,
isp). Referring to the compatibility matrix given in Fig. 9 we
find out that the compatibility of stamp locks considered is
determined by the rule rl. The rule says that stamp locks SLg
and SL,. are compatible if they concern different classes (classes
having different inheritance stamps) or their scopes in the
database version tree are different.

Now, consider two stamp lock pairs:

SLgy =(IX, vsy, is), SL,j = (ix, vss, is)
and
SLyy =(X,vsy), SL,y={x,vsy)
Stamp locks from the first pair, set on the multiversion
database, concern the same class is. As follows from Fig. 9,
they are compatible. Stamp locks from the second pair are set
on multiversion objects, providing corresponding locks from the
first pair are granted. If they concern different instances of class
is - they are also granted. Otherwise, their compatibility is
determined by rule r19 (cf. Fig. 11). The rule says that locks
may be granted if the database version vsy is not included in
the subtree of database versions rooted vs;.

The locking protocol depends on the size of a granule
being locked and requires setting one or two stamp locks only.
If a class or a class subtree in a single database version or
database version subtree is locked - one stamp lock on the
multiversion database is required. If a single object version or
an object version subtree is locked - two the following stamp
locks are required:

1. intentional stamp lock on the multiversion database with
inheritance stamp is pointing to a single class whose
particular instance will be locked,

basic stamp lock on the multiversion object with version
stamp vs pointing to its single version or version subtree.

To illustrate this protocol assume a transaction T; which
updates all the instances of class CI (cf. Fig. 6) and its
subclasses in a single database version stamped 0./ (cf. Fig. 7).
It has to set the following stamp lock on the multiversion
database:
SLy=(xi,0.1,01).

Now, assume transaction T, which updates all versions of the
object O, being an instance of class C4. It has to set two
following stamp locks:

SLy = (IX, 0, 0/2) and SL3 = (X, 0),
on the multiversion database and multiversion object O,
respectively. As follows from the evaluation of rule r12 stamp
lock SLj is compatible with the stamp lock SLy. Stamp lock
SL3 is the only lock set on object O.

Finally, consider transaction T3 which reads a single version €3
instance in database version 0.1. It has to set two stamp locks.
The first one:

SLy = (is, 0.1,0/1/2)
will not be granted, however, because of its incompatibility with
the stamp lock SL; set by T. It follows from the evaluation of
rule r14.

6. Conclusions

The stamp locking method presented in this paper may
be efficiently used in object-oriented databases to solve the
problem of concurrent transaction execution. The main
advantage of this method is simple locking strategy following
from the lack of intentional locks concerning the inheritance
and the version derivation hierarchies. In most cases, to lock
hierarchy subtrees it is sufficient to set one stamp lock only,
whose node stamps identify the subtree roots. To determine
stamp lock compatibility, it is sufficient to compare stamp lock
modes and scopes.

Advantages of the stamp locking method become
particularly beneficial in the case of a database containing many
calasses and many versions of objects. This is a typical case of
design and software engineering databases where classes, being
the artifacts of the design process, have usually many
superclasses and objects are available in many versions.

Future work will be focused on taking into account
the composition hierarchy in the same hierarchical way and
extending the method for directed acyclic graphs instead of
trees of object versions and classes.

References

[1] Banerjee J,, Kim W., Kim HJ., Korth H.F.,
"Semantics and Implementation of Schema Evolution
in Object-Oriented Databases"”, Proc. ACM SIGMOD
Conf., San Francisco, Calif., 1987.

[2] Cart M., Ferrie J. "Integrating Concurrency Control
into Object-Oriented Database System", EDBT Proc.,
Venice, Italy, 1990.

[3] Cellary W., Jomier G., "Consistency of Versions in
Object-Oriented Databases", Proc. 16th VLDB Conf.,
Brisbane, Aug. 1990, pp. 432-441.

[4] Chou H., Kim W., "A Unifying Framework for
Version Control in CAD Environment", 12 VLDB
Conf., Kyoto, Aug. 1986.

[51] Garza J., Kim W., "Transaction Management in an
Object-Oriented Database System”, Proc. ACM
SIGMOD Conf., June 1988.

[6] Gray J. "Notes on Database Operating Systems",
Operating Systems: An Advanced Course, Springer-
Verlag, 1978.

7 Hubel C., Kafer W., Sutter B., "Controlling
Cooperation Through Design-Object Specification, a
Database-oriented Approach” Proc. of the Buropean
Design Automation Conf., Brussels, Belgium, 1992.

595

(8]

Zdonik S.B. "Version Management in an Object-
Oriented Database”, Int. Works. on Advanced
Programming Environments, Norway 1986, pp. 139-
200.

