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ABSTRACT

The nested- mheriterf mdez has been recently proposed as

an access structure providing an integrated support for

queries in object-oriented databases along both aggrega-

tion and inheritance hierarchies. It is very efficient for re-

trieval operations. However, its high update costs make
this structure suitable only for hierarchies with a small

number of clzw.es. In this paper we propose an enhanced
nested- inherited m dez, able to support update operations

more efficiently, whereas supporting nested predicates as

efficiently as the nested-inherited index. The new organi-

zation supports the construction of several index allocation

strategies, from which the most efficient with respect to a

given workload can be selected. The new and old indices

are compared using an analytical cost model. Results of the

analysis show that the enhanced nested-inherited index pr~

vides superior performance than the inherited-multiindex

and nested-inherited index.

1 INTRODUCTION

The rich expressive power of the object-oriented data mod-

els and query languages requires suitable query optimiza-

tion techniques and access structures. In particular, the fea-

tures of an object-oriented data model that mostly impact

query processing and access structures include: aggrega-

tion hierarchies, inheritance hierarchies, methods. Indeed,

most query languages provide syntactical notations allow-

ing navigation along aggregation hierarchies. Such naviga-

tions can be seen as :rnphctt joins along aggregation hierar-

chies [Ber94]. Their optimization requires access structures

similar to join indices [Va187]. Moreover, inheritance hier-

archies imply that a query may apply to a class or to a

hierarchy of classes. Therefore, access structures like clas-

hierarchy indices [K KD89] may be required. We refer the

reader to [Ber93] for an overview of access structures for
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An access structure, called nested-inher:ted index,

haa been recently proposed to precompute implicit joins

along aggregation hierarchies and inheritance hierarchies

[BeFo95]. It provides an integrated support for queries

along both hierarchies and guarantees low retrieval cost.

However, the index has high update costs, especially if al-

located on long hierarchies (e.g. longer than 3).

In this paper, we propose an enhanced nested-inherited

indez, able to more efficiently support update operations,

whereas supporting nested predicates as efficiently as the

nested-inherited index. The indexing technique involves a

new structure of leaf-node record and, unlike the nested-

inhented index, proposes a number of distinct variants of

index allocation for recording the precomputed join. The

variant providing the minimal total cost for a given query

worldoad is chosen as the best one.

The remainder of this paper is organized as follows.

Section 2 summarizes definitions and notations. Section 3

describes the enhanced nested-inherited index and shows

that the nested-inherited index is equivalent to one of

the variants the enhanced nested-inherited index proposed.

Moreover, section 3 describes a further organization, the

inhented-multiindex, that is also compared with the en-

hanced nested-inherited index. Section 4 describes opera-

tions for the new index organization and section 5 reports

the results of the comparison.

2 PRELIMINARY NOTATIONS

A path represents a branch in an aggregation hierarchy;

more formally a path ‘P is defined as Cl .AI.A2. . . . An (n >

1) where CI is class in the database schema and the root
of the path; Al is an attribute of class Cl and A, is an

attribute of a class C, such that C, is the domain of the

attribute A,_l of class C’,-I, 1 < I < n; n is the path

length. Then, some important notions are the following:

● nc, denotes the number of classes in the inheritance

hierarchy rooted at class C,, 1 ~ i < n,

● given a class C on the path, the position of C, POS(C),

:. is a pair (i, j), such that C belongs to the inheritance

hierarchy rooted at class C, and has position j among

the subclasses in the hierarchy, 1 ~ i < n, 1 < j <CIKM ’95, Baltimore MD USA
Q 1995 ACM 0-89791 -8126/95/11 ..$3.50
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nc,; class c with posltlon (t, J ) ]s denoted as C,,, ; for

the root of the hierarchy C, = C,,l . For simplicity,

we will use a pair ( n + 1, 1) to indicate the position of

the attribute A“ and term Cm+ I to denote attribute

An itself.

C: denotes a set containing class C, itself and all

subclasses in the inheritance hierarchy rooted at class

G: G = u,~,~nc, G,,.

Class (c, ) =U c,,1<]<1
class(P) = class(Am ) = LJl<j<n C,.

.—

scope(C, ) = (J1 <j<, C;,
—

scope (P) = scope(An) = (J I<)<m C;.
.-

We distinguish between instances and members of a

class. An object O is instance of a class C, O E C, if

C is the most specialized class associated with the object

in a given inheritance hierarchy. An object O is member

of a class C, O E C“, if it is an instance of C or of some

subclass of C.

The following is an example path for the schema in Fig-

ure 1: P= Line. flights. routing. art-ival.aj~orts. city, n=4;

Flight” = {Flight, ExceptionalFlight, WeeklyFlight};

class(~)={ Line, Flight, Sector, Airport};

scope(P) ={ Line, ItalianLine, Flight, ExCeptjonaF1jght,
WeeldyF1ight, Sector, Airport};

pos(Line)=(l,l), pos(ItalianLine) =(l,2),

pos(Flight)=(2,1 ), pos( Weekly F1ight)=(2,2),
pos (Except. Flight )=(2,3), pos(Sector)=(3,1 ),

pos(Airport )=(4,1), pos (Airport. city) =(5,1).

Line

wEySm,

d

1 ‘, rrival.airports
social
secur. nbr.

ItalianLine N,+,, @i:ht ‘;7 :

ExceDtionalFli~ht

->
S String

Inheritance relationship N Numeric value
Aggregation relationship * Multi-valued attribute

Figure 1: Example of database schema.

Figure 2 presents an example database for the schema

in Figure 1.

3 INDEX DEFINITIONS

In this section we present the organization of the en-

hanced nested-inherited index, nested-inherited index and

the inherited-multi index.
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Figure 2. Database example.

3.1 ENHANCED NESTED-INHERITED IN-

DEX (ENIX)

Let V be a list of integers from the interval [2. . n] and fist

A = Qu{n + 1}. For n = 4, examples of A are {2,4,5}

and {5}. An integer in A indicates the position of class in

the path where a special index supporting the precomputed

joins is allocated on. Given a list A, two functions preu(t )

and nezt(:) are defined for t, 1 < z ~ n + 1 as follows:

nezt(~) = min{~l~ E A,] > :}, if–l ~ : < n and nezt(n +

1) = n+l; prev(:) = maz{jlj c A,y < i}, if the set {JIJ c

A, j < i} is not empty; otherwise, prev(:) = 1. For A =

{3, 5}, vafues of functions nezt and preu for I = 1,...,5 are

given by {3,3,5,5, 5} and {1, 1, 1,3, 3}, respectively.

Given a path P = Cl .A1,Az.. . . A., an enhanced

nested-inherited index is constructed with respect to a given

list A. For any : c A, the index associates with O, member

of C, , all instances of a class in scope(C, ) referencing O.

In particular, index associates with a value u of attribute

An identifiers of all instances of a class in scope(P) having

v as value of the nested attribute An.

The ENIX organization includes n indices for classes

C1, C2,... , C. and an attribute index for An. Every index

is either a tar-look or one-step type. A far-look index is

allocated on CIFSS C, if i c A. If t @ A, the index allocated

on class C, is of one-step type.

A far-look index allocated on class C, contains as key

values OIDS of members of C,. The index is a B+ -tree

whose leaves have a complex structure. The record in a

leaf node corresponding to some member O of C:, contains
the following information:

● key value

● class-directory

c object-directory
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● descendant-list

The object-directory contains subdirectories for all

classes in class(C, ). In the subdirectory for C, G class(C, ),

entries for members of Cl” referencing O are stored. An

entry contains the OID of a member, its local identifier

and list NCL of local identifiers of the member’s children

in the C:+, Local identifiers are assigned to all OIDS in

the object-directory m order to minimize the leaf record

size since the number of members of C, referencing a given

instance of class C, is rather small as compared to the to-

tal number of members in C;. While OID of an instance

is unique within the entire database, its local identifier is

fique O~Y inside the subdirectory for CJ. A local identi-

fier Of SOme 0’ ~ Cj,rn is simply a shortest sequence of bits
allowing to distinguish it from other instances in the subdi-

rectory. 1t is a concatenation of two sequences, the first one

is the binary representation of m, the position of Cj ,m in

the inheritance hierarchy rooted at Cj, and the second se-

quence is the position of O’ among instances of CJ,m inside

the subdirectory. Clearly, an instance may have different
local identifiers in different leaf records. Apart from the

subdirectory for CJ, the local identifier of O’ may appear
in fathers’ lists NCL m the subdirectory for Cj _,.

The ciass-d:rectory conttins as many entries as the num-

ber of classes in scope (C,). For a class C),* E scope(C, ),

an entry in the directory contains the class identifier, the

(primary ) offset in the object-directory where the subdirec-

tory for class CJ is stored, and the (secondary) offset inside

the subdirectory where entries of class CJ,m are allocated.

The descendant-hst contains leaf record addresses of

members of class C~,=l ~,~ being referenced by 0,

The attribute index ( An-index) is always far-look index
where any leaf record contajns an attribute value as key

value and descendant-list ]s omitted.

The one-step index is allocated on a class C, such

that z @ A. The index is also B+-tree and cont~ns OIDs

of members of class (’, a> search key. A leaf record for any

O c C,* of the index conLains the following reformation:

c key value

● parent-list

s descendant-hst

The parent-list contains the pairs { otd, &o~d }, where

old is the OID of a parent of O and &o:d is an address of the

leaf record of the parent in C, – ~-index. Like the far-look

index, the descendant-list contains addresses of members of

c““.zt(,) being referenced by O. Note that the Cl -index is
always one-step index and does not contain the parent-list.

For the path L,ne. flights. routing. amival.airports. city,

Figure 3 gives the ENIX with A = {3, 5}. The two in-

dices allocated on class Sector and attribute Airport city

are far-look indices, the other ones are of one-step type. In

the index allocated on the class Sector, leaf record for S~]

contains the key value, class-directory of 5 entries, subdirec-

tories for classes Line and Flight in the object-directory and

descendant-list with the address of leaf record for “Milan”

as a value of attribute Airport. ci t y, In the subdirectory for

Line in the record, the unique entry for IL~] is contained,

its local identifier 10 is obtained by concatenating 1, posi-

tion of ItalianLine in the hierarchy rooted at Line, and O,

position of IL[i] in the subdirectory. Since EF[s] is the only
child of IL[i] referencing S&], the NCL list in the entry for

ILfi] consists solely of the local identifier of EF[s]. As for

the NCL fist in the entry for EF[s], it is {O} to indicate the

key value S[h].

3.2 NESTED-INHERITED INDEX (NIX)

Given a path P = Cl .AI. Az. . . . An, the ENIX is con-

structed with a given list A. There are 2“–1 different AS

for the path and, therefore, there are 2’-1 distinct vari-

ants of the ENIX allocation. The ENIX with the fewest

number of far-look indices appears when A = {n + 1}. In

this case, only An-index is the far-look index while alf the

class indices are of one-step type. This variant of the ENIX

is very similar to the nested-inherited index (NIX) intro-

duced in [BeFo95]. The differences between them can be

summarized as follows:

1.

2.

Attr:bute mdec a leaf record of the NIX also has

a class-directory and an object-directory with subdi-

rectories. However, the structure of a subdirectory is

simpler. An entry in the subdirectory afso contains

an O ID of instance referencing the attribute value

of An which is the record key. But, instead of local

identifiers, it contains uniquely the number of chil-

dren referencing the same attribute vafue.

Class :ndices: instead of n indices for classes C,, 1<

i s n, the NIX has the common index (auxiliary

index ) storing the records for instances of all classes

found along the path. It allows to reduce the total

number of indices from n + I to 2, but often incremes

the B-tree height,

Tests show that these differences have not a crucial im-

pact on the index performance, and we assume the NIX to

be a special case of the ENIX with A = {n + 1}.

3.3 INHERITED-MULTIINDEX (MIX)

This organization consists of allocating an index on each

inheritance hierarchy found along the path. Given a path

P = C,. A,. A2 . . .. A”. there is an index on each class C,

in class(P). An index on C, associates with v~ues of

the attribute A, the OIDS of instances of C, and of all

its subclasses. The number of indices allocated is equaf

to the path length. As an example, consider the path

P= Line. tlights.routing. arrival_ &ports. citY. For this path

there would be: a class-hierarchy index allocated on class

Line indexing instances of class Line and ItalianLine; a

class-hierarchy index allocated on class Flight indexing in-
stances of classes Flight, ExceptionalFfight, and Week-

lyFlight; a class-hierarchy index allocated on class Sector;

a class-hierarchy index allocated on class Airport. Note,

in the ENIX, class index allocated on C, contains OIDS of

members of C, as key values while in MIX the index aUo-

cated on class C, contains values of A, as key values.

3.4 VISIBILITY GRAPH

In this subsection we introduce some graph notations for

objects and nested references afong a path to facilitate the

description of operations for the ENIX organization.
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Figure 3. Enhanced nested-inherited

If an instance O of class C, ,k has O’ as a value of nested
attribute A,-l, i < j < n+l, where O’ 6 C’j,m ( 0’ C &),

than O’ is called a descendant of O in class C’),m (attribute

A.) and O is called an ancestor of O’ in class C,,~. Also,

we will say that O is visible for O’.

For any O c Ct,k, let Vj be the set of the members

of C, c d=s(c,,k ) visible for O. Also, let Ej be the set

of directed edges corresponding to the nested references

(0’,0’’),0’ E ~ and O“ c ~+,. A graph G = (V, E) con-

structed with the set of nodes V = u~~~ V, U {O} =d the

set of edges E = u~~~ Ej is called a visibility graph for O.

Given the path P= Lme.flights.routing. arrival. airports. city,

Figure 4.a provides the visibility graph for value “Milan”

of attribute Airport .citv. In the figure, objects of the same

inheritance hierarchy are circled.

The visibility graph for O E Ct,k (0 G An) is a rooted

directed acyclic graph ( DAG). lt has i levels and edges be-

tween adjacent levels are only allowed in the graph. Level

J = 1, . . . . z contains nodes for members of class Cj. Level

i corresponds to the root of the DAG and contains solely

the OID( attribute vahte) of O .

Clearly, a leaf record of O, instance of ChSS Ct,k, in the

far-look index allocated on the CILMS C, has been defined

so that the class and object-directories in the record are an

implementation of the visibility graph for O compressed as

much as possible. An entry in a subdirectory of the object-

directory corresponds to some node of the visibility graph

together with edges going out of the node. Aleo, level i is

omitted since OID of O is hold as a key value.

In the next sections we wifl use some basic manipula-

tions with a visibility graph stored in a leaf record. Here we

define them using the graph notation and give examples:

● removal of a node from the visibility graph
for O: the node is removed from the graph as welf

as all nodes that become invisible for O. All the

edges adjacent to a removing node are removed, too.

Figure 4.b gives a result of the removal of SK] from

the visibility graph for “Milan”.

4

In

index with A = {3, 5}.

removal of an edge from the visibility graph

for O: the edge is removed from the graph; if any

node becomes invisible for O, the node and all adja-

cent edges are removed, too. Figure 4.c gives a restdt

of the removal of the reference (W F~], S[h] ) from the

visibility graph for “Milan”.

reconstruction of the visibility graph for OE

C,,,: Figure 4.d gives the visibility graph for A[s] re-

constructed based on data stored in the leaf record

for A[s] and visibility graphs for S[a] and S~], ances-

tors of A[s] in class Sector.

addition of an edge e to the visibility graph

for O: the edge is added to the graph; if any new

node becomes visible for O, that is, there is a chain

of edges connecting the node with O, the node and

ail edges of the chain will be in the resulting graph.

Figure 4.e gives the visibility graph for “Milan” after

addition of the nested reference (F[t], S[a]).

OPERATIONS

this section, we describe the following five operations

for the ENIX organizations: retrieval, object delete, nested

reference delete, object insert and nested re~erence insert.

4.1 RETRIEVAL

The ENIX supports a fast evaluation of predicates

on the attribute An for queries having as target any

class, or class hierarchy, in the scope of the An. As
an example, suppose that an index is allocated on the

path P =Llne.ffights.routing. tival.tirports. city and that

a query is issued to retrieve all the instances of class 1tal-

ianLine landing at the airports of M]lan. The processing

of the query begins with” a lookup on the Am-index with

key value equal to “Milan”. The leaf record corresponding

to the key value is accessed and the offset of the subdirec-

tory for Line is extracted from the class-directory. Then,
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d)

e)

Figure 4. Visibility graph for value “Milan”

of the attribute Airport .city.

all OIDS of ItalianLine in the subdirectory for Line are re-

turned as the result, that is, {IL[i]}.

4.2 OBJECT DELETE

Given a path P = C1.A,.Az....An and a class C c

scope(p) having position z, 1 ~ t < n + 1, suppose that

an object O, instance of C, is deleted. In ENIX, the eflect

of an object delete operation must be that the identifier

of the object O c C is removed from every leaf record in

Cl-index, ] > t,] c A containing it. In the CJ-index,

preu($) < J < i – 1, leaf record of an ancestor of O is up-

dated if deleting O results in decreasing the descendant-list.

Finally, leaf record of O is deleted from the C,-index while

O must be eliminated from the parent-list of its children

in C,+l. The following steps are executed (numbers in the

brackets indicate subscripts of indices being updated):

1. [z+l]If:~ raandi+l @A, thesetof values SVofthe

attribute A, of O is determined; then the C,+* -index

is accessed with the values of SV as key values and

corresponding leaf records are modified by removing

OID of O andits address from the parent-list of the

records. Othewise, this step is omitted.

2. [i] The C,-index is searched with the value of O as

key value and the leaf record of O is accessed. If

: c A, for every object Oj 6 C~, prev(i) < y < i– 1

in the object-directory of O, an entry (Oj, {O}) is

inserted into list TDLj. The record of O is removed

and k := i, Go to step 4.

Otherwise, if i @ A, the set SP of addresses of the

3.

4.

5.

Ieafrecords in Ge~t(t)-index are determined from the
descendant-list of O. Theleaf record of O is removed

and k := next(;).

[nezt(i)] For a leaf record of O’ c C~e.t(,) whose

address is in the SP, object O is removed from the

object-directory of O’. If during the removal, an en-

try of 03 c C;, preu(i) < J < i -1 is cancelled from
the subdirectory for CJ, then O’ is added to a list

TDLJ. If no entry for 0, is in TDL1, a new entry

(0), {O’}) is inserted into the list. Otherwise, O’ is

added to the sublist of the entry for 01.

After steps 2-3, the list TDLj ,preu(i) < j < i -1,

contains entries for members of C,. An entry for

01 c C; has a form (Oj, sublist) where sublzst con-

sists of members of Cm,=t(j ~ that becomes invisible

for O, after deleting the object O.

~rev(i)... ~ - 1] Every C)-index such that the list

TDL, is not empty, is updated. The CJ-index is

scanned with values of TDL3. A leaf record of 01 c

C; is accessed only if record (OJ, sublist) appears in

TDLj. The leaf record of 03 is updated by deleting

all OIDS of sublist from the descendant-list of the

record.

b’ Z next(k), J G Al ‘Thecl-index, J 2 nedk), J ~
A is updated in the-same way as C“e=,~) -index (step

3). The addresses of leaf records in Cj -index are de-

termined by merging descendant-lists of leaf records

updated in Cp,, v(j J-index. Each such leaf record is
updated by removing OID of O from the object-

directory.

As an example, suppose that the object A[s]

must be removed from the database and that the

ENIX with A = {3,5} is allocated on the path

‘P= Line. flights. routing. arrival airports. city. As Airport is

the last class on the path, the first step of the algorithm E,

omitted. A lookup on the Airport-index is executed with

the OID A[s] as search key. The corresponding leaf record

is accessed and addresses of descendants are determined.

List SP is {&Milan}.

The leaf record with key value equal to “Milan” is ac-

cessed in the index allocated on Airport city and updated

by removing the instance A[s] from the object-directory. As

a result, entry for A[s] is eliminated from the subdirectory

for Airport and the local identifier 1 of A[s] is removed from

the list NCL in the subdirectory for Sector in both records
of S[a] and SW]. Since no entry has been deleted in subdi-

rectories for Line, Flight and Sector, all the TDL lists are

empty. Also, there is no more far-look index to update and

algorithm stops.

4.3 NESTED REFERENCE DELETE

Given a path P = C1,AI.AZ . .,A. and a class C c

scope(P) having position i, I < n, suppose that nested ref-

erence from object O, instance of C, to instance O’ of A,,

is deleted. The effect of a reference delete operation in

the ENIX must be to remove the reference from every leaf

record in C,-index, J > :, J E A containing it. In Cl-index,
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preu(i) < j < Z, leaf record of an instance referencing O

is accessed for update only if the size of its descendant-

Iist decreases due the reference deletion. Finally, O must

be eliminated from the parent-list of the O’ in C,+ 1-index.

The following steps are executed:

1. [i+ I] The C,+ 1-index is accessed with the value of O’

as key value. If i+ 1 @ A, the leaf record of O’ is mod-

ified by removing OID of O and its address from the

parent-list of the record. The set SP of addresses of

the leaf records in the Cn==t(,+,, -index is determined

from the descendant-list and k := nezt(: + 1). If

i+le A, SP={&O’}andk:=i+l.

2. [k] For a leaf record of O“ c C; whose address is

in SP, reference (O, O’) is removed from the object-

directory of O“. If during the removal a node for

03 G CJ, preu(i) < j < i is cancelled from the sub

directory for C,, then O’ is added to a list TDL1. If

no entry for 03 is in TDLJ, a new entry (Oj, {O’})

is inserted into the list. Otherwise, O’ is added to a

sublist of the entry for 03.

After this step, list TDL,, preu(i) < j < i contains

entries for members of C3. An entry for 01 ~ C; has

a form ( Oj, w.diist) where sublist consists of menl-

bers of C~e=t(3) that becomes invisible for 0, after

deleting the object O.

3. ~reu(i). . . Z] Every Cj-index such that the list TDLj

is not empty, is updated. The C)-index is accessed

with values of TDLJ. A leaf record for OJ G C; is

accessed only if record (Oj, sublist) appears in TDLj.

The leaf record of Oj is updated by deleting all OIDS

present in sublist from descendant-list of the record.

4. ~ 2 nezt(k), ~ E A] The Cj-index, j z nezt(k), ~ G

A is updated in the same way as Ck-index (step 2).

The addresses of leaf records in CJ-index are deter-

mined by merging descendant-lists of leaf records up-

dated in CP.CO(J)-index. Each such leaf record is up-

dated by subtracting the reference (O, O’) from the

object-directory.

As an example, suppose that the nested reference be

tween WF~] and S~] must be removed. Since Sector-index

is of far-look type, k := 3 and SP= {& S~]}. A lookup

on Sector-index is executed with Sk] as search key. The

leaf record of Sb] is updated by removing the reference

(WF@],S~]) from the object-directory. As a result, en-

tries for WFP] and L[s] are removed from subdirectories

for Flight and Line, respectively, and lists TDL1 and TD-L2
are created. The former contains an entry (L[s], {& S@I]]),

the later contains (WF~], {&S~]}).

At step 3, Line-index and Flight-index are retrieved

and address &S ~] is deleted from descendant-lists of en-

tries for L[s] and WF&]. Finally, since the descendant-list
for SK] is {&Milan}, the leaf record of “Milan” is accessed

in Airport city-index and the reference (WF~J, S~]) is re-

moved from the object-directory resulting in removing the

entries for L[s] and WF@].

4.4 OBJECT INSERT

Given a path T = C1.A1.A2 . . . An and a CISSS C E

scope(P) having position Z, suppose that an object O, in-

stance of class C, must be inserted. Since the insertion

of O in ENIX changes no visibility graph, the C, -index is

accessed using the OID of O as key value and a new leaf

record with OID of O is inserted.

4.5 NESTED REFERENCE INSERT

Given a path P = Cl .A1.A2 . . . An and a ClaSS C C scope

(P) having position i, z < n, suppose that nested refer-

ence from object O, instance of C, to instance 01 of A,,

is inserted. The effect of a reference insert operation must

be to add the reference to every leaf record in CJ-index,

~ > i, ~ ~ A which is a descendant of O’. In C)-index,
preu(i) < j < i -1, leaf record of an instance referencing O

is accessed for update only if the insertion of the reference

(O, O’) makes visible new descendants in the class C*=.,(.).

Finally, O must be inserted in the parent-list of the O’ in

C,+l-index. The following steps are executed:

1.

2.

3.

[i, i + 1] The C.-index and C,+l-index are searched

with values of O and O’, respectively. Leaf records

of O and O’ are accessed. If i + 1 $?A, parent-list of

O’ is modified by inserting OID of O and its address.

Then descendant-list of O’ is copied to a list SP and

parent-list of O is copied to a list par(i). If z+ 1 c A,

the list SP contains the only OID of O’. The list SP

is added to the descendant-list of O. If the size of the

descendant-list increases, the newly added elements

remain in the list SP, the others are deleted.

~ev(i) . . . i - 1] Then, C~-indices, m = i -

1,..., prev(i) are consequently updated. Whenever

any leaf record of Cm-index with address from list

Par(m + 1) is accessed, its descendant-list is updated

inserting the list SP and parent-list of the leaf record

is extracted and inserted in the list Par(m). Concur-

rently, visibility graph for O is reconstmcted.

fi > i, J E A] The leaf records of CJ-index are ac-
cessed with addresses taken from descendant lists

of Cpreu( j) -index. The leaf records are updated by

adding the reference (O, Q’) using the visibility graph

for O reconstructed at the previous step.

For example, suppose that reference (F[t], S[a]) must be

inserted. The leaf records of F[t] and S[a] are retrieved from

the indices allocated on the classes Flight and Sector, re-

spectively. Since Sector-index is of far-look type, the list SP

is {S[a] } and address &S[a] is inserted in the descendant-

list of F[t]. The leaf record of IL~], parent of F[t], is ac-

cessed in Line-index and updated by inserting &S[a] in the

descendant-list. Then, the reference (F[t], S[a]) is added

to the object-directory of S[a]. As a result, the reference

(IL[i],F[t]) appe~ in the graph visibility for S[a]. ‘Milan”

is the only descendant of S[a] in Airport.cit y and the refer-

ence is added to the object-directory of “Mbn” resulting

in appearance of the reference (IL~] ,F[t] ) in it as well.
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5 COMPARISON RESULTS

In this section, we analyze the performance of the ENIX

organization, comparing it with the NIX and MIX. We

first summarize the cost model and parameters. Then, we

present the results of several tests.

Cost model

The cost model analytically evaluates the number of 1/0s

for all operations described in the previous section. It takes

into account a large number of parameters, describing the

topology of classes in a path ‘P. The cost model for the MIX

and NIX organizations has been developed in [BeFo95] and

the cost model for ENIX is based on the same assumptions

and considerations [B SS95]. Most of the assumptions made

in the cost model are commonly found in analytical mod-

els for database access structures. In particular, we make

the assumption that key values are uniformly distributed

among instances of the same class as well as values of at-

tribute A, are uniformly distributed among the instances
of the inheritance hierarchy rooted at the class C,+ 1.

The selection of the best ENIX

As we have seen in the subsection 3.2, there are 2“- 1 dis-

tinct variants of ENIX allocation for a given path of length

n. Therefore, unlike N] X, the ENIX organization becomes

sensible to the operation workload. The workload is a set

of frequencies of all operations in the path. The selection

of the best ENIX means choosing such variant of ENIX

that provides the minimal total cost with respect to the

given workload. Here we are faced with a complexity prob-

lem. Indeed, the problem of selecting the best variant from
the ~fi-~ possible variants has an exponential complexity.

Therefore, an exhaustive enumeration of all ENIX variants

can be done for a path whose length is not greater than

15-20. In real databases a path longer than 10 is unlikely

to be frequent and such enumeration is quite sufficient for

the practical goals. In the general case, branch-and-bound

technique is applied that considerably reduces the number

of variants to evaluate [BB90].

Tests

We tested the three index organizations, namely, MIX, NIX

and EN IX, for a wide range of database parameters. The

NIX is considered as a special case of the ENIX when the

list A contains the only element n + 1.

The costs of the following operations in the path of

length 4 are being evaluated. The query is issued with

a class C,, 1 s i s 4 as a target class. The update OP

eration may be issued with an instance of any class in the
path or value of the attribute A4. A reference can be in-

serted/deleted between objects of two adjacent classes or

class C4 and attribute Aq. Since the three index organi-

zations cope with inheritance hierarchies in the same way,

we vary in the tests only the parameters that are intrin-

sic for an entire inheritance hierarchy rooted at class C,,

1 < J < 4. The parameters varied in the experiments are

* follows:

1. ~,; number of members of class C,, : = 1,...,4.

‘2. D5; number of values of attribute AA.

3. fan,; average number of children for members of class

C,, $=l,. ..,4.

4. prob; probability of a query.

The total cost is calculated as prob * Retrieval + (l –

prob) * Update, where Retrieval and Update are the sums
of retrieval and update costs, respectively. In the fist test,

we assume a naive workload where query and update op-

erations in the path are equally likely (prob = 0.5). The

reason is to determine how each operation affects the total

cost for all of the tested index configurations. Several tests

has been performed and only some of them are reported

here.

Test 1. D1 = 100.000, D2 = 150.000, D3 = 200.000,

D4 = 250.000, D, = 2.500;

fan, = 5, fan~ =3, fans = 2, fan, = 1.

Costs for all index organizations are collected in Table 1.

RE Retrieval 01 Object Insert
OD Object Delete R1 Reference Insert
RD Reference Delete

Table. 1. Operation costs in test 1

The ENIX with {2,4,5} provides the best total cost

and the MIX performs on average better that NIX. Both

NIX and ENIX have low retrieval cost for any class in the

path. Instead, the MIX requires too much time to retrieve

the members of class Cl, Cj and C3. By comparing the

ENIX and NIX, one can discover that the most impressive

difference appears in the delete cost of attribute value of

A4. The cost hits hardly the total cost of the NIX whereas

it is quite moderate for the ENIX.

Test 2. DI = 250.000, D2 = 200.000, D. = 150.000,
Da = 100.000, Ds = 10.000;

fanl = 1, fanz = 2, fans = 3, fand = 3.

Costs for all index organizations are collected in Table 2.

In this test, the naive workload has been substituted

with a more realistic one. 1t assumes that the frequency

of any update operation is four times less than that of a

retrieval operation (prob = 0.8). Under these conditions,

the total cost for the NIX is essentially lower that for MIX

but ENIX with {2,3,5} has the lowest cost.

The main conclusions from the experiment results can

be summarized as follows:
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RE Retrieval 01 ObJect heert
OD Object Delete RI Reference Insert
RD Reference Delete

Table.2. Operation costs in test 2.

1.

2.

3.

The MIX organization has always the best perfor-

mance for update operations while NIX and ENIX

guarantee the fast evaluation of queries. In database

applications characterized by queries predominance

the advantages of NIX and ENIX over MIX become

essential.

The ENIX has a better performance than NIX for

the object delete operations. The cost of the query is

the same for both indices. Also, tbe object i,wert is

fast for both indexing techniques since the operation

changes no visibility graph. As a result, the ENIX

provides a lower total cost than the NIX does. In all

the tests conducted in a wide range of parameters, the

best ENIX never reached its minimum with A = {n+
1} if only workload frequencies of update operations

are different from O.

The major disadvantage of both NIX and ENIX orga-

nizations is the storage incre=e. In most tests, NIX

organization requires 2-3 times more storage that

MIX, and the ENIX providing the best total cost usu-

ally occupies 1o%-3o% more storage that NIX. Not

every database application may allow extra memory

overhead and two solutions can be here proposed.

The first consists simply in selecting those index al-

locations which safisty some storage limitation. The

second modifies the total cost function to be mini-

mized by adding a storage cost properly weighted.

6 CONCLUSION

Experiments have shown that though the NIX is one of

the possible ENIX variants, the best ENIX never reaches

the minimum total cost at the NIX if only update opera-

tions have some positive weight in the workload. Here we
try to explain this fact, The nested-inherited index WCM

introduced to maintain the basic set of precomputed joins

between the attribute A. and all classes G, 1 S I S n in

the path. The index provides an integrated support for

queries along both aggregation and inheritance hierarchies

and has low retrieval cost. However, the cost of an up-
date operation is high. Indeed, when an object of a class

in the path is deleted /irtserted, the indices supporting the

basic joins should be updated. The easiest way would be

to make use of the precomputed joins between the class the

instance being updated belongs to, and other classes in the

path. But the NIX does not support such joins and it has to

reconstruct the appropriate fragment of the joins. The time

needed for this reconstruction results in the high operation

cost .

Thus, the maintenance of the basic set of precomputed

joins alone is not the optimal strategy. The ENIX over-

comes this problem by adding some precomputed joins be-

tween the classes in the path to the basic set of joins the

NIX maintains. Moreover, the ENIX proposes the new

structure of the leaf-node record permitting to store in a

compressed mode a visibility graph and efficiently use it

when a fragment of a join not present in the index should

be reconstructed.

The set of joins that should be added to the basic set is

determined from the logical database parameters and fre-

quencies of the operationa in the path. The set of addi-

tional joins minimizing the total cost in a given workload

together with the bzwic set composes the best enhanced

nested-inherited index.

The work reported in this paper can be extended by

adding the proposed index organization to the repertoire

of index organizations used in our previous work on index

allocation [Ber!M]. When no indexing technique provides a

satisfactory cost of operations, the path can be split into

several subpaths and possibly different indexing techniques

are used on each subpaths.
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