
Modeling Behavior, a Step Towards Defining Functionally Correct Views of

Complex Objects in Concurrent Engineering

Fawaz S. A1-Anzi David L. Spooner

Computer Science Department

Rensselaer Polytechnic Institute

Troy, New York, 12180

Abstract

Multidisciplinary concurrent engineering needs to model and

manage different views of complex designs. Previous at-

tempts to address the problem of creating views of com-

plex objects in object oriented database systems focus on

the structure of complex objects; little attention is paid

to how complex object behavior is effected when creating

views. We believe that designing functionally correct be-

havior for a complex object should be a major consideration

when defining a view to guarantee correctness of the derived

classes.

In this paper, we study the problem for designing func-

tionally correct views of complex objects in concurrent en-

gineering. View behavioral modeling requirements are pre-

sented. A behavior model that satisfies these requirements

is presented. This model is demonstrated on an example

complex object that represents process management.

1 Introduction

The concurrent engineering methodology is a recent tech-

nological development aimed at reducing the length of the

traditional serial design process, hence, reducing the the ex-

pense of a product, by allowing multiple engineers from dif-

ferent disciplines to work concurrently on an engineering de-

sign. Each engineering discipline participating in the design

of a product has its own perspective on the design. This im-

plies that each engineering discipline needs to optimize the

product design to a form that best serves its perspective.

Object oriented database technology has shown its

promise in supporting multidisciplinary concurrent engi-

neering needs to model and manage complex designs

through its modeling power and natural integration with

the object oriented programming paradigm[20]. Capturing

of the semantics of a design through associations, data pro-

tection by encapsulation and the convenience of reuse via

inheritance make it even more suitable to be used as the

basis for multidiscipline concurrent engineering technology

in which each design can be modeled as a complex object.

However, object oriented database technology has re-

Permission to co y without fee all or part of this material is
Igranted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
ancf/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
@ 1994 ACM 0-89791 -674-3/94/001 1..$3.50

vealed shortcomings when used to restructure design data to

support design perspectives, and it includes limited mecha-

nisms to effectively integrate these perspectives. A natural

way to overcome these shortcomings is to introduce a view

mechanism for complex objects that provides the required

design perspectives.

Conventional relational database views are defined by

declarative queries which are evaluated as needed. This is a

simple task because views modeled in relational databases

are simple tables and languages in relational databases use

declarative queries. On the other hand, language constructs

in object oriented systems tend to be procedural rather

than declarative. For example, the EXPRESS language[21],

which is becoming an international standard for modeling

engineering data, has constructs such as procedures, func-

tions, loops, assignments, etc. which are found in impera-

tive languages. Any language that is less powerful will be

a handicap to the manipulation of the complex network of

objects needed to model engineering data. Hence, declara-

tive views most likely will not be enough to create views of

complex objects for concurrent engineering. Rather, views

of complex object will be constructed using a more powerful

procedural approach. To aid the user in creating such views,

sophisticated tools will be responsible for automating most

parts of the view definition process. These tools will aid

in the construction of a view, the evolution of a view, and

keeping a view consistent with the underlying database as

the underlying database evolves. Put ting all this together,

a Design System for Views of Complex Objects (DSVCO)

is needed.

The DSVCO we envision has three tasks; customization

of virtual classes to allow the user to define his/her own

classes from existing classes, integration of virtual classes

into one consistent global schema with the original classes,

and the specification of functionally correct views of com-.
plex objects on the global schema. Hence, the architecture

of a design system for views of complex objects can be de-

fined as shown in Figure 1. It takes a base schema (Original

Schema in the figure) as input and produces the proper view

schemas for different application programs. The Extended

Schema Constructor and the Schema Evolution Construc-

tor crest e an intermediate schema (Extended Schema) that

integrates the base schema and virtual classes defined by

the user. This process is called extended schema evolution.

The View Constructor and the Extended Schema Evolution

Monitor then create the different views that are interfaced
to the application programs.

Early attempts to address views in object oriented

databases in the research literature focus on designing views

1

,--------..--------.,- ,, -.-......-~,<.--” .- . ..-

Figure 1: Architecture of a Design System for Views of Com-

plex Objects (DSVCO).

of single objects. Of these attempts we mention the follow-

ing.

The FUGUE object model proposed by Heiler and

Zdonik investigates view management as a combination of

the object oriented model and the functional data model [8].

The FUGUE system defines views as a set of abstract types

which are derived from the base types. The operations per-

formed on the view objects are transformed to operations

on the base types.

Multiple interfaces to class objects is proposed by

Shilling and Sweeney [18]. Their approach limits the access

rights to functions and attributes through these interfaces.

Their work focuses on individual classes since their work is

programming oriented.

Schiefer[16] defined customized interfaces for an object-

oriented database. His approach requires the explicit decla-

ration of inheritance relationships between view classes. His

work is done in the context of the STONE project (Struc-

tured and Open Environment).

Abiteboul and Bonner[l] propose using a functional ap-

proach for defining views. They try to overcome the problem

of a model lacking flexibility by proposing a sophisticated

view mechanism that is capable of creating imaginary ob-

jects, virtual classes, and virtual attributes; however, not

enough exploration of functions is done. Although their

work contributes to defining 00 views, their work is mostly

informal.

Recent work has started to realize that the modeling

power of the object oriented paradigm is not only a result

of inherit ante and data encapsulation, but also a result of

the capturing of the semantics of complex objects through

the use of associations between the subparts of a complex

object. Researchers have start ed to investigate e how seman-

tic information can be manipulated by changing associations

between objects in a view. Of these attempts we mention

the following.

Tusda, Yamamoto, Hirakawa, Tanaka, and Tadao [22]

propose to increase flexibility by introducing structural mes-

sages which are used to change the structure of objects in the

schema. They also define the concept of classtype, which is

used to define object properties without changing the class

hierarchy. Their work does not provide a formal view mech-

anism, rather, they try to solve the problems that arise when

restructuring the schema.

The MULTIVIEW project proposed by Rundensteiner

[13] is a recent attempt to address views in object oriented

databases by formalizing the concept of orthogonality be-

tween sets and types. She defines an object algebra for ma-

nipulating a class hierarchy. Although her model clearly

differentiates between the set concept and the type concept

for a class, her object algebra operators do not separate the

two concepts. Also, her work emphasizes the restructuring

of IS-A associations in the object hierarchy without consid-

ering how to restructure other types of associations in the

hierarchy.

Liu’s[l I] work is another recent attempt to address views

in object oriented databases. He defines two different manip-

ulating algebras. The first is to deal with IS-A associations

and the second is to deal with other associations between

classes. This work constitutes the most complete set of al-

gebras to restructure an object hierarchy for both LS’-A and

other types of associations. However, it does not include a

methodology on how to use the algebras to design the views.

In general, the previous attempts propose models that

are designed to capture the structure of views. Little at-

tention is paid to how object methods, simple object con-

straints, and complex object constraints (rules) are effected

when creating views of complex objects. Designing func-

tionally correct behavior (methods and constraints) should

be a major consideration when defining a view to guarantee

correct ness of the behavior for derived classes in the view.

In order to achieve a good understanding of behavior in

views of complex objects, the following questions need to be

addressed.

c What behavior is needed in views of complex objects

and how is it defined?

● How much of it can be derived from the original

database?

● How do we validate that the behavior of a view is func-

tionally correct?

In this paper we study these questions.

1.1 Object Model

The object model we use is built on the model described by

Liu [11]. A class in our object model is defined by a 4-tuple

C = {ATTR, ASSO, FUNC, RULE), where ATTR is a

set of attribute and domain pairs. A domain is restricted

to the primitive data types such as integer, real, etc, or to

the types constructed from primitive data types by the type

construct ors such as array, list, etc. An attribute having an-

other object class as its domain, which is traditionally used

to model associations, is not allowed in our attribute defini-

tion. Associations are modeled by ASSO as a set of 6-tuples:

{A.soName, Cl Name, C2Name, AssoType, CaTd&a[ity,

OTder}, with each 6-tuple in the set specifying that class

ClName is associated with class C2Name under the associ-

ation named AssoName. AssoType defines the association

type. Cardinaidy defines the multiplicity of the association.

oTdeT specifies if the association is ordered or not. Sepa-

rating associations from class attributes is done so that an

algebra can manipulate associations independently of class

attributes. FUNC is a set of functions (methods) defined

on C. RULE specifies both structural constraints and be-

havioral constraints for instances of class C. An object o

is identified by a unique object identifier (OID). Object o

can be instantiated in multiple classes in a class hierarchy

simultaneously (i.e., in a class and all its super classes). The

instance of o in each class is identified by a unique instance

identifier (IID) that is composed of the object’s OID and a

class identifier.

2

A complex object schema in an object oriented database

is a directed and labeled Multigraph SG=(C, A), where C is a

set of vertices representing object classes. A is a set of edges

representing the associations between classes. A is parti-

tioned into two sets. The first set is the L’5-A relationships

(associations). The sub&waDhs of SG connected bv IS-A re-

lationships f&m one or”m~ltiple class lattices. T“he second

set includes all other types of associations. These edges are

labeled by the association names they represent so that if

more than one association exists between two classes, the

associations can be identified by their names. Self loop as-

sociations are allowed in the latter set because a class could

have an association with itself.

For example, Figure 2 shows a class schema that con-

sists of ten classes. Some of these classes are associated via

LS-A associations that form an IS-A lattice and define the

subclass/superclass relationships, i.e., student is a person,

undergraduate e is a student, graduate is a student, employee

is a person, professor is an employee, import is a car, domes-

tic is a car, and Toyota is an import. The other associations

represented by dashed lines are not IS-A associations, but

instead model part of the semantics of the complex object,

i.e., a person is a child of another person, some professor is

the academic advisor of a student, some professor is the re-

search advisor of a graduate student, and some people drive

cars.

.-. .
\ child-of

f’ 8

D

-,
person ‘-<-------------- —---->

&ive8
a

/$ b

employee g~ import

‘\
~c.x.”,. ! t

‘. ---,.

research
advisor

<--* Association
— IS-A

aToyota

Figure 2: Class Schema example.

2 Behavior Model

Behavioral specification languages provide an understanding

of the application domain, problem formulation, and solu-

tions for a particular database. Also they play useful roles

in design and the development cycle as well as serving as

computer based tools for analyzing designs.

Languages for specifying system behavior can be cate-

gorized into two types. The first is languages based on ab-

stract data types, e.g., Tecton [9], and Z [19]. The second

is languages based on finite state machine for modeling re-

active systems and concurrent engineering, e.g., Petri Nets

[12], Statecharts [4], Life Cycle [15], and Behavior Diagrams

[171’.

‘Large scale specification of complex systems needs ap-

propriate abstractions for system design, simple specifica-

tion technology, and automated reasoning technology. We

1 Some systems can be categorized into both types such as LOTUS
[10].

choose finite state machine models for our problem because

they are more concrete in the sense that a reasonable amount

of practical work is done in this field, more readable since

a graphical notation is preferred over logical formulas, and

more computation-oriented since executable specifications

are preferred over non-executable abstract specifications.

We start by selecting the proper behavior model and ex-

tending it to model behavior of complex objects. The mod-

els we choose from are Petri nets, Stat echarts, Objectcharts,

Life Cycle, and Behavior Diagrams.

J.L. Peterson [12] introduced Petri nets as a graphi-

cal and mathematical tool particularly appropriate for sys-

tems which exhibit concurrent, asynchronous behavior. As a

mathematical tool Petri nets allow the development of state

equations and other mathematical models to study system

behavior. Petri nets have been extended in many ways. Two

extensions are of special int crest to us. They are Beha uior

Diagrams presented by M. Schrefl [17], and the Li~e Cycle

model presented by H. Sakai [15].

Statecharts, developed by D. Harel [7], overcome the

problems of using finite-state machines to model reactive

system behavior. D. Coleman, F. HaYesand s. Bear [4] pro-

pose extending the Statecharts model to characterize the

behavior of an object class as a state machine. They call

their model Objectcharts. It is a semantic model for intro-

ducing class behavior as the basis for subtyping.

2.1 Requirements

We survey the behavior models listed above according to the

requirements for modeling the behavior of complex objects

in concurrent engineering. The requirements are highly in-

flunced by the way views of complex objects are defined.

Views, in the behavioral sense, are refinements of the base

behavior of the complex object. This refinement may in-
clude ah ering the way objects are grouped together, chang-

ing the operations that certain group of objects are sub-

jected to, changing the level of detail that the trace of an

object undergoes to change from one grouping to another,

adding a new behavior, or hiding some of the base behavior.

Using this prospective for defining views, the features that

we will use to contrast the models are:

●

●

●

Function Representation: Functions should be mod-

eled as separate entities, where constraints can graph-

ically be placed on them. A node representation for

functions in the behavior graph is preferred over an arc

representation so that constraints can be represented

as arcs between functions.

Single Object States: This allows the objects in a class

to be partitioned into groups of objects according to

their attribute values. In other words, a state is mod-

eled as a predicate defined on the attributes in the

object’s class. Each group of objects has a set of oper-

ations that take an object from one group to another.

This gives us a specific behavioral trace mechanism as

objects undergo operational changes.

Inter- Object States: This enables modeling valid com-

binations of states between two objects connected via

an association. Constraints that relate values of at-

tributes for objects in different classes in a complex

object will be modeled using complex states. A com-
plex object’s state is modeled as a predicate defined

over the attributes of the classes that make up the

complex object.

3

●

✠

●

e

o

e

@

●

Simple Functional Constraints: To model the changes

caused by functions and to keep the behavior graph of

an object in a valid state, these constraints are used

to define the pre-state and post-state requirements of

every invocation of a function.

Association Mortehng Because we are modeling com-

plex objects as a collection of simple objects and as-

sociations between them, a correct modeling of asso-

ciations is needed for complex object constraints in

our model. Such modeling will provide the ability to

capture changes to behavior graphs as associations be-

tween objects are altered, removed or added.

State Hierarchies: These are needed to model the re-

finement process defined for behavior graphs as views

with different levels of abstraction. These state hier-

archies reduce the exponential growth of a model as

design complexity increases.

Transz tion Hierarchy A functional hierarchy is desired

so that the refinement process can rewrite a function as

a network of substates and subfunctions between these

subst ates. This hierarchy is used to refine transitions

in the behavior graph for views at different levels of

abstraction.

Complex Constraints: Functions and stat es in different

object classes should be able to constrain each other

if classes are associated through an association, These

inter-object constraints constitute the building blocks

for defining the overall complex behavior.

AND/OR states: The model should be able to define

sections of the behavior graph that relate to other sec-

tions of the behavior graph in the sense that some parts

are to be mutual exclusive, ored, anded, etc.

State/Transition Refinement It is necessary to sup-

port refinement from coarse states to substates to

study behavior of restriction/abstraction view classes.

Complex Object Invariant We do not expect any of

the models to support this feature; however, ideally a

model should express the state of a complex object as

valid or invalid.

Table 1 compares the five behavior models for each of

these features.

In general, the surveyed models do not fully support our

requirements for modeling the functional behavior of com-

plex objects. The first missing concept is inter-object states.

The second missing concept is behavior modeling of associ-

ations between classes. Third, complex constraints between

objects in different classes are not expressed (except in the

Life Cycle model). Fourth, complex object invariants that

can be used to define valid complex object instances are not

considered.

These four omissions require us to build our own model

of complex object behavior. It is clear that the Life Cycle

model is the closest to our target behavior model. In the

following section we extend the Life Cycle model to be able

to model complex object behavior.

2.2 Extended Life Cycle Model

We define behavior of a simple object in our model by its

life cycle which expresses the process of creation, state tran-

sitions, and elimination of objects. This is based on the Life

Cycle model[15] which is defined as follows. A set of values

of all the attributes of an object at a certain point of time is

called a state, and an operation that brings about changes of

states is called a transition. Every object undergoes changes

of states obeying a defined life schema pattern.

Let B = (U, T, A) denote a bipartite graph, where U and

T are disjoint sets of symbols called states and transitions,

respectively, and A is a set of directed edges such that A c

(U x 2’) U (T x U). The following sets are defined for B and

for an element u of U UT.

pre(rt) = {vlrJ c U uT, (o, u) G A}

post(u) = {VIV c U uT, (u, v) e A}

sources(B) = {UIU ~ U U T,pre(u) = #J}

mnks(l?) = {ulu c U u T,pod(rt) = ~}

A behavior graph2 B in our model is a graph in which a

set ACT is defined as

ACT = u ACT(t),

VtGT–(sources(B) UsLnks(B))

where AC~(t) c p-e(t) x post(t) for a transition t. Every el-

ement of ACT(t) is called an activation of t and constitutes

a valid invocation of the transition t.
We write the behavior of a set of objects C that share

the same properties (i.e., a class) as a behavior graph B =

(U, T, A, ACT) in which the conditions

sources U sz’nks(B) C T

and

lsorsrces(B)\ = lsink(B)l = 1

hold. These conditions mean that no state is allowed to be

a sink or a source in a behavior graph. Also, there is only

one producing transition that creates class instances and

one consuming transition that destroys classes instances per

class,

A life cycle diagram is a Petrt net graph representation of

the life cycle schema. Figure 3 shows a simple schema exam-

ple of an execution process in an operating system which is

composed of three classes3, cpa, task, and 1/0, that are asso-

ciated through associations processed, use_IO, and coupled.

While this example is not directly related to concurrent en-

gineering, it was chosen because it is familiar to most readers

and simple enough to clearly illustrate the concepts. Figure

4 represents the behavior graph of the three classes. The cir-

cles represent states and the rectangles represent transitions.

Arrows to node u in the graph come from all elements in the

set pre(u). Arrows also go from a node u to all elements in

the set post(u).

An object in a state in the pre(t) set for a transition t

undergoes a change to a new state in post(t) if t is invoked by

sending a message to the object. If there are closed paths
in the graph, repeated states of the same object may oc-

cur. The transitions of sow-ces(B) and sinks(B) represent

the producing and consuming operations for objects.

The stat es of objects can be nested, overlapped, or dis-

joint. If a state can be further divided into substates and

2 Sakai [15] defines the behawor graph as: The graph B in which

the conditions [pre(t)l = 1 and Ipo. i(t)l = 1 hold, where lal denotes

the cardmality of a set z. Our definition of behavior graph is more

general since we allow a transition t to have more than one activation.

31n the diagram O is used to show that a part is an aggregation of

other subparts.

4

Table 1: Summary of features of the five models.

Feature Petri Statecharts Objectclmrts Life Behavior

Nets [12] [7] [4] Cycle [15] Diagrams [17]

Function Representation node arc arc node node

Single Object States yes yes yes yes yes

Inter-Object States no no no no no

Simple Functional Constraints yes yes yes yes yes

Association Modeling no no no no no

States Hierarchy no yes yes yes yes

Transition Hierarchy no yes no no yes
Complex Constraints no no no yes no

AND/OR States no yes yes yes yes

State/Transition Refinement no yes yes yes yes
Complex Object Invariant no no no no no

?

execute

&j5j@ ,.--. -----.... ---------------
coupled

0 “a

c1 ado”

---- simple mmmnt

exist J
Figure 3: An abstract schema for execution of a task.

transitions, we say the state is abstract. If a state cannot be

divided further, we say the state is basic. Similarly, we de-

fine an abstract transition as a transition that can be divided

further into states and transitions. If a transition cannot be

divided further, we say the activity is basic [17].

Every object has the abstract state named exist repre-

senting the fact that the object has been created. We arti-

ficially define a basic state named not-exist to express that

the object is not yet produced as a member of the class, or

has been consumed.

When an object enters a state u, values of certain at-

tributes of the object may be updated. The constraints

on attribute values at the time of a transition to a state

u are called the attribute constraints associated with the

state u. These attribute constraints constitute the ba-

sis for the state description of the state, which is de-

fined in terms of boolean expressions of attribute con-

straints. On the other hand, a transition description

is a set of prestate and poststate pairs for the transi-

tion. For example, in Figure 4, the state description

of the state cpu-waiting in class task can be expressed

by the boolean expression (cpu.status == cpu_waiting A

IO-status == IO_not_needed), where cpu.stattss and

10.status are attributes of the class task. Also in the same

figure, the transition get.cpu has the set of two activations

{(cpu-waiting, using.cpu), (start, using-cpu)} as its transi-

tion description. The following example is a specification of

the simple object behavior for the classes in Figure 4.

2.3 Example

Consider the classes task, I/O and CPU in Figure 4. The

class definitions, including the behavior for these objects,

are described in Figures 5 and 6.

In this description, Attributes indicate the data store

J/o

v “me

cp”

begin service Cm,wwfree busy

Figure 4: A basic fife cycle of the three classes.

of the class, and Transitions, States, and Act i vat ions de-

scribe the behavior of the class instances as simple objects.

The class task has two attributes, cpu-status and 10-status.

Since states constrain domain attributes, different states of

the class inst antes are described by the States part of the

class. A task class instance can be in one (or more) of the

following states; cpu-waiting, served, 10.waiting, and us-

s’ng-10. The states are described by a predicate. If the pred-

icate holds for some instance of the class, then the instance is

in that state. An instance can satisfy multiple state descrip-

tions. These corresponding states that an instance belongs

to can be overlapping or nested but not disjoint.

Transitions (functions) to manipulate and update the at-

tributes in the class task are await_cpu, get_cpu, await-10,

get_IO, and end10. The effect of each transition is value

assignment to one or both attributes. There are two spe-

cial transitions, produce and consume, used to create and

destroy instances of the class.

Activations ActO . . . ACt8 describe the behavior of a tran-

sition within an instance of the class task by stating pairs

of prest ates and postst at es for every transition. These are

the constraints on transitions, i.e., transitions can only be

invoked on an instance that is in a state that belongs to a

prestate in one of the pairs, The resulting state must be in

the post state of the same pair. (If an object does not be-

long to the post state specified in the pair after the function

5

r
Ati,lbm t,,,

.~ll~t~t”, =cpu-r, ot_needed, domam {cpu=otaeed cd, cpu.waitim~, enjoy -cpu}
10.statu9 =lOmo&r,eeded, dombin {lO-notaeeded,10 -waitinS,enjey -10}

Tranaitiomst
pmduceo;
Consul. ();
aw&it-cpu() {cpustatus =cpu.waitin g)lO-status =lO.n. t-meeded; } ,
get-c puo{cpud tatus=enj. y-cpu;) ,
await -10() {IO-statu. =10. waiting, cpu=4atus =cpumotaeeded; };
~etdoo{]o-statu, =en,oy. [o;} ;
emd JO(){lO.st atus=IO-n ot=eeded, cpu~tat us=cpu.waiting; };

states,

st.d={Cp” Ai&t US= =cpumot-needed A 10~tatus== 10-not aeeded }

cpu.wai~ins={ cpu-status==cpu-wa~ting A 10-stat”s==lO.not. needed}
Using.cpu= {cpu=tatus==emj oy-epu A 10-stat us==10-notaeeded}
10-w&itin~= {cpustatms==cpu.notJeedcd A 10-statu$==lO-w& lting}
usingJO={ cpaJt&tus= =cpu-notmeeded A 10-stat us==enjoy JO}

Activations,
Acto={&wait-cpu, (start, cpu-wait~ng)}
Act ~={get-cpu, (cpu-waiting,”sin~ -cpu)}
Aci2={get-cpu, (start, using-cpu)}
A.t3={await-10, (using-cpu ,10-waiting)}
Act~={get-lO, (using.cpu,usiuglO)}
Act5={getJ0, (10-waiting, usin$ JO)}
Act~={endJO, (uainS.IO,,tart)}
Act~={produce, (not~xist,start)}
Act8={consume, [exist, not-exist))

}

Figure 5: task class.

{
Attributes,

.pu~tatus =free; doma,n {busy, f,ee}

cp”sp.. d =106, domain real
Transitions,

P-du.eo,
Cc.r., ”meo;
be~inse rviceo{ cpu~tatus= busy;} ;
finish~erviceo{ cpuatatus=free; };

states,
free= {cp” Atat”,==free}
buiy={cpu~t$t”, == busy}

Activations,
Ac*~={beginJervice, (free, buay))
Act~={f!r.ish-se rvice, (busy, free)}

1

{
Attrib. t.ast

Io-,tatu, =free; domain {buay,free}

10-speed =lOS; domain real
T.annitione. $

pmduceo,
Comum. ();
begin service o{cpu=tatus= busy;};
finish 4ervice o{cpu4tatus= free;);

states,
f*ee={cpu Jtat”s==free}
b“ay={cpu-tatus= =busy}

Activations,
Ac#~={bcgin=ervice, (free, busy)}
A.t~={finish-aervice, (busy, free)}

.

Figure 6: cpu and IO classes.

that implements the transition executes, the transition wiU

be aborted andthechange caused by the transition will not

be committed.) For example, the function get.cpu can be in-

voked for an instance in the cpu.waiting or start states and

causes the instance of class task to move to the using_cpu

state.

This methodology of invoking transitions allows the user

to define different implementations (with different names) to

execute on different states of an object. This can be handy

in defining optimized versions of the same function in the

same class, but for different states of the object instance.

The descriptions of the CPU and IO classes are analogous.

2.4 Behavior of Associations

To model the behavior of associations, a state that repre-

sents an association is added to the behavior graph that

represents the association. Constraints are added to the be-

havior model for methods that traverse associations. Also,

constraints that ensure the exist ence of the two inst antes of

the two classes to be associated are needed.

Most importantly, an association is used to hold states

that incorporate values of attributes in the two class in-

st antes associated through this association. For example,

we define a state for the coupled association that ensures

compatibility of the IO instance that is coupled to a cpu

inst ante. The state compatible is true if the speed of the

IO instance is no less than 10-3 times the speed of the cpu

instance to maximize the performance of executing tasks.

Then, we write the state as

compatible = {101. speed > 10–3 * cpul.speed},

where 101 and Cpul are the two states associated through

the coupled association.

Associations are also used as a place to hold complex con-

straints between two classes associated through the associa-

tion. An instance of an association holds inst antes of these

constraints between the object classes associated through

the association. An example of complex constraints in an

association is given in the next section after a formal defini-

tion of complex constraints,

2.5 Behavior of Complex Objects

A life cycle schema defines constraints on the behavior of

a single object by adding them to the prestate of transi-

tions that cause state changes. For example, the transi-

tion get-cpu in the previous example needs a cpu instance in

the free state in order to change the taskinstance from the

cpu-r.uaiting or start states to the state using_cpu.

In general, there are close relationships between the life

cycle of a complex object and those of the component ob-

jects and their associations that it contains, since the behav-

ior of a complex object is a composition of the behavior of

its component objects and associations. We view complex

constraints as comtmints motivated by associations, where

it is necessary to maintain consistent relationships between

the life cycles of the component objects that compose a com-

plex object. To establish this consistency of life cycles, the

following BNF definition of the general complex constraint

is defined4:

Complexform ::= < tevm.list > requires< term-list >

<term.list >::= <te7-m > [<term >< teTmlist>

<term> ::= <state> I <activation>

where a state predicate is defined by state(o : C,u) for an

object oofthe class Cin thestateu. Inactivation is defined

by [o : C,t]where t = {a, (sl, s2)} is the invocation of the

transition a on an object o of the class Cin state Sl, and o

will be in the state S2 when transition a completes.

Note that a state and an activation on the opposite sides

of a form should be in two classes associated through an

association, i.e., if a complex constraint exists between two

classes Ci and C3 then there must exist at least one asso-

ciation ASSOk such that C; ASSOk CJ. This association

AS,$’Ok is the place used to store the complex constraint

form instance.

o “’

D amic.,

‘*M IcFi-“WP. w
-.

0
LLBEkl_---”-. H...Ls,-’-Ls,‘M’-....-

4,,

Figure 7: Behavior ofa complex object.

Returning to the example, letprocessedl bean associa-

tion instance that relates a task instance with a cpu instance.

Then let taskl and Cpul stand forthetwo instances of the

task and cpu classes associated through processed15. Sim-

ilarly, for the association instance use_fO1, let taskl and

101 stand for the two instances of the task and IO classes

associated via use_IO1. Then the description of the behav-

ior constraints for the task class in the complex object is

shown in Figure 7. These constraints can be put into forms

as follows6.

● Y1 =fiaskl:task, ActO] requires state (CPU1:CPU, busy).

Description: the task] instance should undergo a

change of state from start to cpu-waiting via the acti-

4This general complex constraint form is more general than the

specific forms used in Sakai [15]. Not all forms are needed in atypical

system.

5We can imagine a function ~rocessedl : process ed, traverse]
that returns theinstancecptil of the cpuclass that is associated with

taskl via the oroce~sed association. Also, the $’Ur.=tie- ~e--=..dl :

processed, reuevae - traverse] returns the taskl instance associated

with the cpu~ instance.

6See Figures 5 and 6 for the definition of activations.

●

●

●

b

●

●

●

●

●

vation Acto (that uses the function await+m) if the

instance cpul associated with it is in the busy state.

7’2 =state (taskl: task, cpu-waiting) requires state

(CpUI : CpU, busy).

Description: as long as the taskl instance is in the

state cpu-waiting, acpul instance must be in the state

busy.

Y3 =[taskl:task, Actl] requires [cpul:cpu, Acto].

Description: fora taskinstance to invoke the function

get-cpu via the activation Actl, there must be a Cpul

instance that is~r-ee and will change to the state busy

via the activation Act. of transition begin.service. A

similar constraint must be placed on the activation

Act2 of instance taskl.

74 =state(taskl: task, using_cpu) requires state (cpul:

CPU, busy).

Description: as long as the taskl instance is in the

state using-cpu, the cpul instance must be in the state

busy.

-y5 =[taskl: task, Act3] requires [cpul: cpu, Actl].

Description: for a task] inst ante to invoke the function

awaitJO via the activation [taskl :taskl ActZ], the CPU]

instance that served this task has to change state from

busy to free while the task is waiting for the 1/0.

76 =fiaskl :task, Act3] requires state (101 :10, busy).

Description: the taskl instance should undergo a

change of state from using..cpu to IO_waiting via the

activation Act3 (that uses the function awaitJO) if the

instance 101 associated with it is in the busy state.

y? =state (taskl: task, IO-waiting) requires state

(10, : IO, busy).

Description: as long as the taskl inst ante is in the

state .fO.waiting, the 101 instance must be in the state

busy.

Ya =[taskl: task, Act4] requires [101: IO, Acto].

Description: for a taskl instance to invoke the function

getJO via the activation Act4, there must be an 101

instance that is ~ree and will change to the state busy

via the activation Acto of transition begin-service. A

similar constraint must be placed on the activation

Acts of instance taskl.

Y9 =state (taskl :task, uszng-fO) requires state

(10, :10, busy).

Description: as long as the taskl instance is in the

state using-10, the 101 instance must be in the state

busy.

YIO =~askl :task, Acts] requires [101 :10, Act]].

Description: for a taskl instance to invoke the function

endJO via the activation [t askl :task, Acts], the101

instance that served this task has to change state from

busy to free while the task is ending the use of the 1/0.

The association instance processed is constrained by the

existence of an instance of the cpu class and a task class in-
stance that are associated through this association instance.

The association instance use-fO1 is constrained by the exis-

tence of an instance of the task class and an IO class instance

7

that are associated though this association inst ante. (Notice

that we do not show these constraints in Figure 7 to reduce

the complexity of the diagram.) Using the constraint forms

presented above, we can write this formally as follows.

● YII =state (processed :processed, exist) requires

state (taskl :tmk, exist) and state (cpul :cpu, exist).

Description: as long as the processed] instance exists,

an instance of task and an instance of cpu that are as-

sociat ed through this association inst ante must exist.

● 712 = state (uselOl :uselO, exist) requires

state (taskl :task, exist) and state(IO1 :101 exist).

Description: as long as the use-101 instance exists, an

inst ante of task and an inst ante of IO that are asso-

ci ated through this association inst ante must exist.

e 713 =state(cpul :cpu, exist) and state(IOl :10, exist)

requires state (coupledl :coupled, compatible)

Description: as long as the two instances 101 and Cpul

are coupled through and association coupledl, they

must meet the compatibility y constraint, i.e., the speed

of the IO is not less than 10- 3 times the speed of the

Cpu.

Using this model of behavior, a complex object is treated

as a single entity. Looked at in this way, a complex object

is viewed as a complex behavior entity and is denoted r(0),

which is the set of constraints for the complex object. In

the previous example, the complex behavior entity of the

complex object is

r(ezecute) = {71,...,713}.

A complex object O is said to be in a valid state if every

constraint 7 in the complex behavior entity r(0) is either

true or inapplicable. A constraint y is true if both sides of

the constraint are true. On the other hand, if the left hand

side of the constraint is false then the constraint is said to

be inapplicable.

3 Behavioral Views of Complex Objects

The process of defining views of complex objects may include

hiding classes, adding virtual classes, altering associations,

hiding associations, making new association, etc. From the

behavioral point of view, when defining views of a complex

object, one or more of the following operations is done:

● Refinement of a complex constraint.

● Removal of a complex constraint.

s Addition of a new complex constraint.

Q Alteration of the form of a complex constraint.

We are interested in studying what effects such changes

have on the behavior of complex objects and on the rela-

tionship between complex behavior before and after these

changes. To do that, we must be able to define views on the

behavioral level of the complex object schema. This will re-

quire the definition of algebraic operators for behavior that

are similar to the concept of the class algebra introduced

by Rundensteiner [13]. This can be done by defining refine-

ment rules on our behavior model that ensure the correct-

ness of the refinement process. The refinement process can

be thought of as introducing new states and transitions, and

removing states and transitions in a behavior graph. The

refinement operators will be used for extracting valid and

consistent sets of classes, associations and objects from a

database to form a functionally correct view that obeys the

complex behavior invariant and related constraints.

View correctness can have manv interrnetations. There.
are at least four different interpretations (not necessary con-

flicting) of view correctness in the literature: closure of a

view, completeness and independence of a view, consistency

of the generalization hierarchies for a view, and consist ency

of a view extension with the underlying database [13, 14].

A closed view is a view with all classes that are directly

or indirectly referenced by the other classes in the view [13].

The concept of a closed view is essential for a functionally

correct view, since missing classes can cause a computation

to go wrong. However, this definition of closed views is too

simple. Using our model the notion of closed behavior views

must be defined at a behavioral level, where the use of com-

ponents of a class (transitions and states) obey the closed

behavior view definition. The view independence specifi-

cation needs to be extended to include behavior as well as

structure. This will ensure the comdete semantic indepen-

dence of the definition of a view. ‘

One of the naturaf needs of a design evolution process

is the ability of the DSVCO to handle the evolution of the

underlying database of a view. Identifying the problems that

the system encounters as the underlying database evolves

and developing a methodology that automatically fixes these

problems when possible must take behavior into account.

4 Future Directions

In this section we outline the major steps that we propose to

solve the problems described in this paper. The work plan is

divided into four stages: Formalization, Theoretical Analy-

sis, Validation of the Results and Prototyping and Analysis

of the Results.

The work described in this paper is a starting point for

the formalization. As for the theoretical analysis, we will

study the effect of the view definition algebras on the be-

havioral model of the complex object schema, identify points

that need further analysis, develop a proper formalization of

such points and present solutions. Additional operators to

manipulate complex constraints in associations and classes

will need to be formalized.

A limited implementation for our DSVCO to demon-

strate the validitv of the kev Darts of our work will be done.

We will analyze ~ow well o;; methodology solves the origi-

nal problem, identify limitations, and explain the source of

such limitations and how to overcome them by testing the

implementation on a variety of examples.

5 Conclusion

In this paper, the problem of creating complex object views
in object oriented database systems is int reduced, The re-

quirements of this problem for behavioral modeling are de-

veloped and an extension to the Life Cycle behavior model

that satisfies these requirements is presented.

Future research will focus on development of rules for re-

fining states and transitions for individual classes and con-

straints for associations between classes to facilitate devel-

opment of views of complex objects. This will be done by

developing an algebra for manipulating the behavior of the

complex objects and implementing this algebra as part of

the DVSCO system.

8

Acknowledgment: This work was partially supported by

the National Science Foundation, Grant Number DDM-
9215620. Any opinions are those of the authors.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Serge Abiteboul and Anthony Bonner, “Object and

Views”, ACM SIGMOD, 1991.

Amihood Amir and Nicholas Roussopoulos, “Optimal

View Caching”, Information Systems Vol. 15, No. 2, pp.

169-171, 1990.

Jose A. Blakeley, Per-Ake Larson, and Frank Wm.

Tompa, “Efficiently Updating Materialized Views”,

Proceeding of 1986 ACM SIGMOD International Con-

ference on Management of Data, pp. 61-71, New York,

1986.

Derek Coleman, Fiona Hayes, and Stephen Bear, ‘In-

troducing Objectcharts or How to Use Statecharts in

Object-Oriented Design’, IEEE Transaction on Soft-

ware Engineering, Vol 18, No. 1, pp. 9-18, January 1992.

Bogdan Czejdo and David W. Embely, “View Specifi-

cation and Manipulation for A Semantic Data Model”,

Information Systems, Vol. 16, No. 6, pp. 585-612, 1991.

Ronald Fagin, Jeffrey D. Unman, and Moshe Y. Vardij

“On the Semantics of Updates in Databases”, ACM

SIGACT-SIGMOD-SIGART Symposium on Principle

of Database Systems, 1983.

David Harel, “ Statecharts: A Visual Form&m for

Complex Systems”, Science of Computer Programming

8, pp. 231-274, 1987.

Sandra Heiler and Stanley Zdonik, “Object Views: Ex-

tending the Vision”, Sixth International Conference on

Data Engineering, Californiaj Los Angeles, Feb. 5-9

1990.

Deepak Kapur and David Musser, “Tecton: A Frame-

work for Specifying and Verifying Generic System Com-

ponents”, TechnicaJ Report 92-20, Computer Science

Department, Rensselaer Polytechnic Institute, 1992,

Deepak Kapur, “Automated Reasoning in Software De-

sign”, Technical Report, Institute for Programming and

Logics, The University at Albany, New York, 1993.

Kelvin W. Liu and David L. Spooner, “Object-Oriented

Database Views for Supporting Multidisciplinary Con-

current Engineering”, Proc. IEEE Computer Software

and Applications Conf., IEEE Computer Society Press,

1993.

J.L. Peterson, “Petri Net Theory and Modeling of Sys-

tems”, North-Holland, 1981.

Elke A. Rundensteiner, “ MultiView: A Methodol-

ogy for Supporting Multiple Views in Object-Oriented
Database”, Proceeding of the 18th VLDB Conference,

Vancouver, British Columbia, 1992.

Elke A Rundensteiner, “A Class Integration Algorithm

and Its Application for Supporting Consistent Object

Views”, Technical Report 92-50, Department of Infor-

mation and Computer Science, University of California,

Irvine, May 1992.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Hirot aka Sakai, “A Method for Cent act and Delegation

in Object Behavior Modeling”, IEICE Tans. Inf. and

Sys. Vol. E76-D, No. 6, June 1993.

Bernhard Schiefer, “Supporting Integration and Evolu-

tion with Object-Oriented Views”, FZI-Report 15/93,

Forschungszent rum Informatik (FZI), Germany, July

1993.

Michael Schrefl, “Behavior Modeling by Stepwise Re-

fining Behavior Diagrams”, Entity-Relationship Ap-

proach: The Core of Conceptual Modeling, Proc. of

the 9th Int. Conf. on the Entity-Relationship Approach,

Lausanne, Switzerland, 8-10 Oct., 1990.

J.J. Shilling and P.F. Sweeney, “Three steps to views:

Extending the object-oriented paradigm”, Proceeding

of the International Conference on Object-Oriented

Programming, pp. 353-361, 1989.

J. M. Spivey, “Understanding Z, a Specification Lan-

guage and its Formal Semantics”, Readings, Cambridge

University Press, 1988.

D. Spooner and M. Hardwick, “Using Persistent Ob-

ject Technology to Support Concurrent Engineering”,

Concurrent Engineering, editors P. Gu and A. Kusiak,

Elsevier Publishing Company, 1993.

The STEP Programmer’s Tool Kit, Reference Manual

Version 1.1, STEP Tools, Inc, Rensselaer Technology

Park, Troy, NY, 1992.

Kazuyuki Tsuda, and Kensaku Yamamoto, Masahito

Hirakawa, Minoru Tanaka, and Tadao Ichikawa, “

MORE: An Obiect-Oriented Data Model with a Fa-.
cility for Changing Object Structures”, IEEE Transac-

tions on Knowledge and Data Engineering, Vol. 3, No.

4, pp. 444-460, Dec. 1991.

Q

999

