
Information Agents

Chanda Dharap
Philips Research Labs.

chanda@ptpa.research. philips.com

for Automated Browsing

Abstract

The proliferation of information providers has led to an increased

number of users browsing the World Wide Web. ‘lime-consuming

interaction and increased network loads are some of the adverse

effects of browsing activities. This paper presents a design based

on agent technology and the use of structured information, that

significantly lowers network load and hits user-interaction by

automating the task of browsing.

1 Introduction

The World Wide Web (WWW) [4] and its clients, Mosaic

and Netscape, in particular, provide a distributed and

heterogeneous environment tied together via hypertext links.

However, existing client-server hypertext approaches to

content discovery exhibit several properties that limit the

eff’tiveness of browsing.

Fhst, the constantly changing nature of information makes

it difficult to keep track of out-of-date and dynamic data. The

user has to constantly browse and search for new additions

and as yet undiscovered information. This constant act of

browsing is a primary cause of communication overhead.

In addition, wide-area networks add latency to information

retrieval. Second, browsing is a user-guided activity in that

the user filters and sorts through a considerable amount of

uninteresting information in order to identify desired content.

However, in existing models of information discovery, the

operations of filtering and scanning the content are executed

at the client’s workstation. This is clearly inefficient. Third,

existing information spaces are unstructured or primitively

structured in that even when information is organized in

specific patterns, it is not easy to extract and use these

patterns effectively. This is a serious disadvantage as search
in unstructured information spaces is imprecise — the return

set flom a search may be unreasonably large. Finally, wide-

area information is heterogeneous — documents are stored

Permission to make digitslhwd copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
ara not made or dktributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to tista, requires specific
permission and/or fee.
CIKM 96, Rockvilte MD USA
@ 1996 ACM &89791.873.8f96/l 1 ..$3.50

Martin Freeman

Philips Research Labs.

rnartin@ptpa.research. philips.com

in various formats, accessed via multiple protocols, and

transmitted across multi-platform architectures. Thus it is

a truly difficult task to locate, share and organize wide-area

information.

The work presented here highlights using both agents and

structured information to improve the quality of browsing

across wide-area networks. We present an object-oriented

implementation of agent-based infrastructure that is in close

association with structured representation of information. An

important feature of our infrastructure is that it efficiently

combines the use of Knowledge Query and Manipulation

Language (KQML)[14] and Java[3] to design a scalable

model for agent communication. KQML is a protocol for

information exchange among agents. Java is an object-

oriented, interpretive language specifically developed for

heterogeneous, platform-independent, distributed network

computing. Our design enables us to pass object-oriented

Java code in declarative KQML messages.

It is our belief that building a model based on these

ideas, should significantly lower network load and limit

user-interaction by automating the task of browsing and

composing information. It is our hypothesis that agent

technology significantly reduces the complexity of browsing

wide-area information by reducing communication and

filtering overhead as well as by distributing the workload. In a

simplistic view, an agent accepts specifications for the desired

information, interacts with relevant information providers,

and composes information from various information sources

to fit the user’s specification. Our goal is to make the

infrastructure as general as possible in order to accommodate

a wide range of information content and agent-based

tmmactions.

Specifically, our work addresses the issues of automating

the task of browsing by executing content filtering and

evaluation at remote sites. In addition, we believe that well-

stntctured information content eases the task of automated
browsing by agents. We demonstrate this by using the

Nebula File System[8] for storage and retrieval of content

via agents. The Nebula F1le System is a prototype wide-area

information system, that offers a model for organizing and

storing structured information.

Section 2 describes the problems and issues regarding

296

browsing. In section 3 we present the idea of an agent and

discuss some of the design issues involved. We also present

the agent primitives - in particular, content primitives,

communication primitives and movement primitives for

mobile agents. Section 4 demonstrates a small example.

Section 5 discusses background and related work.

2 Browsing Issues

Users locate and cluster wide-area information via searching

and browsing. Examples of searching systems are commonly

available search engines, databases and library lookup

systems, where the user provides a query with sufficient

information and gets back a set of documents that match

the query. However, the precision of results depends entirely

on the precision of the query. If the query is not very precise,

the user is left with the task of scanning through a large

amount of result data to identify documents of interest.

To avoid scanning large quantities of documents, a user

browses through various collections before identifying the

collection to search. Browsing is different from searching

in that it is the act of clustering together information of

interest. Typical browsing systems are Gopher and the

WWW. The approach of clustering together information has

been studied extensively in Information theory. In particular,

the Scatter/Gather [10] approach uses a browse paradigm for

demonstrating that document clustering can be an effective

tool for information access. However existing systems

do not include any primitives for organizing information

and automating searches. Our goal is to automate browse

and search, yet obtain reasonable recall 1 values and high

precision values for searching and browsing. A high recall

implies a large quantity of useful material returned and a high

precision implies less irrelevant material.

Wide-area browsing also results in time-consuming user-

interaction where the user loops through the cycle of evalu-

ating results and visiting and revisiting sites. Consequently,

network load and inefficient use of networidserver resources

become key issues in browsing wide-area information.

To reduce the network load and time-consuming user-

interaction, the key idea in our design is to use agents to

perform the browsing activity. Agents in our system are

capable of carrying state information and partial results from

provider to provider in an effort to satisfy the user’s request.

The key advantage here is that user-interaction is reduced for

most requests. For example, when searching the home page

of an information provider for content of interest, the user

might indicate several different search criteria by clicking on

HTML form buttons. To customize the results and organize

them as appropriate, the user might sift through a returned list

of items and possibly through similar lists from other service
providers. We reduce this interaction by performing both the

l&ca~~ ~d pre&~~ ~ rnessums used in information reoievat ~eow.

Recall is defined as the proportion of relevant rnsterird ~trievedand precision

is defined as ttre proportion of retrieved materiat that is relevant.

297

la)Userbtuwrii uucrauiai lb) Mobikagentksaramm

Figure 1: Browsing

database access and the content filtering at the provider site

through agents.

Figure 1 shows typical browsing interactions — by a user

as well as by an agent. The user’s browsing pattern may

contain duplicate traversals; for example, in browsing the

network, the user may inadvertently click on a hypertext link

which leads to a previously visited site. In contrast to this,

the mobile agent, that has the capability to move around from

site to site, lessens the user interaction and network load by

avoiding duplication of traversals.

Toward efficient use of client resources, the key idea

is pushing the computation to the server. Even though

information servers may have the machine cycles to handle

much of the computation associated with information

services at their sites, a considerable portion of client-server

applications are cumently built to run primarily on the user’s

machine. Thus there is inefficient use of resources. In the

domain of information systems, the information provider

exists solely to provide the service, whereas for the typical

user, information searching and browsing are two of the many

activities performed during the workday. Network resources

can be used more effectively if the provider cart handle

most of the application processing, by providing resources to

mobile agents.

To summarize, these issues are resolved by re-distributing

information access and processing to the server sites rather

than the client site.

3 Agent Infrastructure

3.1 Overnew

The work presented in this paper is based on two important

ideas — the use of an agent network and the use of structured

information to improve the efficiency of browsing. We

implemented an example agent network and simulated an

information provider that supports structured information.
The implementation of the agent network is in Java and uses

KQML, whereas the presented example and implementation

of the information provider is based on the Nebula system.

To simulate an information provider, we chose to index

data into Nebula, As mentioned earlier, Nebula is a

prototype file system that indexes compact summaries

of files. It provides a flexible search interface to

accessing information, allowing the dynamic reorganization

of the underlying indexed information. Nebula uses

structured information collectors, which automate the task of

appropriately summarizing documents. The data we indexed

is originally from the USENET newsgroup rec.arts.movies.

We used Nebula collectors 12] to summarize and index

approximately 600 movies of various categories.

Part of Nebula is a lightweight semi-relational database.

An added advantage is the ability to maintain context

information to refine further queries. It would be quite

possible to replace the Nebula component by any suitable

commercially available database.

3.2 Agents

In our system, an agent is a software program that

communicates with any other agent using a universal agent

communication language (ACL). In the literature, there are

two general classes of agent-based interactions: prescriptive

and descriptive.

In the prescriptive case, programs in the form of scripts are

sent between a sender and a receiver, the receiver executing

the scripts on behrdf of the sender. In the descriptive case,

the sender issues declarative statements and the receiver

uses an inferencing engine to derive the required results.

Additionally, agents can be characterized in terms of their

use of static or mobile capabilities 15]. Static agents are

associated with a particular client or server. Mobile agents

roam the network visiting various servers in carrying out their

tasks,

To unify these aspects of agent technology, we view an

agent infrastructure as consisting of a confederation of static

agents and mobile agents, where static agents communicate
with each other through messages (descriptive) and mobile

agents (prescriptive). In our design, static agents are

gatekeepers for applications and may themselves perform

additiomd functions (e.g.; send mail, filter netnews). In

this view, mobile agents combine the functionrdity of both

descriptive and prescriptive interactions. Mobile agents may

contain da@ programs, procedure calls and query scripts.

In addition, they may contain administrative information

used by static agents. A detailed description and example

is presented later.

303 Design Issues

This section discusses the issues of language considerations,

agent communication, mobile code and security.

3.3.1 Language Considerations

The agent infrastructure consists of static processes and

mobile scripts which collaborate across wide-area networks.

Safe execution, flexibility, ease of programming, and

scalability and ubiquitousness of the code are of primary

importance when considering a language for implementation.

Of the above, safe execution is of singular importance

because of the interoperating nature of agent code. Safe

execution entails execution in a restricted namespace as

well as strong type-checking in order to eliminate common

programming errors as have been seen in traditional C

programming. We make the tradeoff between speed and

flexibility by choosing an interpretive language compiled

to an underlying virtual machine. Interpretive languages

are easier to program as compared to compiled languages.

Interpretive languages also provide for fast prototyping. This

is particularly important in order to reprogram an agent, if

necessary.

In our infrastructure, the language of implementation

is Java. The Java environment provides the ability to

build secure, compact, platform-independent and scalable

applications. Java is object-oriented and dynamic, allowing

for inheritance and code reuse as well as inn-time extensions

to existing code. We make full use of Java’s abstraction

mechanism and techniques of information-hiding in order

to provide a uniform and protected interface to registered

information providers. This is particularly important in

our infrastructure design as it is intended to scale to

diverse information services with varied interfaces. In the

implementation of the infrastructure we provide abstractions

for mapping agent requests into the provider’s query language

of choice. Abstraction, as provided by Java, allows us the

sharing of programming interfaces without being completely

aware of the implementation.

These considerations make Java a great vehicle for
delivering the agent paradigm to the Intemet, where a Java

encoded agent could move across heterogeneous hardware

platforms.

3.3.2 Agent communication language

This section discusses the decisions made in choosing a

mechanism for agent communication. Since the agent

infrastructure is designed to be general and extensible, the

communication between agents must not solely be dependent

on procedural implementation (hard-coded); rather it must be

based on the ability to exchange information and vocabulary.

That is, Tel-based agent code should be able to communicate

with Java-based agent code without understanding the actual

implementation language. This is possible via KQML.

KQML defines message formats as well as communication

primitives to support run-time knowledge sharing among

agents. The advantage of using KQML is that we may use any
of tlte existing standards for communication at the transport

level; for example, TCP/IP, email, H’ITP and CORBA[21].

New and upcoming standards can be folded into KQML as

well.

We combined the use of KQML and Java to design a

scalable model for agent communication. In order to do this,

we implemented a variant of KQML with a core set of KQML

primitives for inter-agent,, inter-component communication.

The infrastructure is extensible in that it is designed

to accommodate a gamut of agent technologies — for

298

example agent communication with other agent applications

is possible. Messages that are sent between elements of

the agent infrastructure are a variants of KQML messages.

Foragent systems that support only static agents, standard

KQMLperformatives2 are used, but additional parameters

are supplied associated with authentication, resource use,

etc. For mobile agents, an additional execute performative

is used with an agent program being transmitted as one of the

associated parameters.

For KQML messages that support descriptive agents, the

message contains a performative and a set of narrdvalue

pairs. One of these pairs describes the actions that the agent

is to take, but not how the actions are to be accomplished.

The receiving agent takes the description and processes it.

As a simple example, a KQML message might be issued

with the performative ask and a content field containing the

description of data to be fetched. After due processing at

the information provider, a reply performative is sent back

with the results. KQML has more than two dozen reserved

performative names, which fall into specific categories. We

implemented some of the reserved performatives as well

as extended KQML by adding our own. For reserved

performatives, we followed the semantics defined by the

DARPA Knowledge Sharing Initiative as closely as possible.

(See appendix for some of the currently implemented KQML

primitives.)

Our approach is novel in that it shows the way to combine

descriptive and prescriptive approaches with the help of static

and mobile agents encoded in Java and communicating via

an evolving standard for agent communication.

3.3.3 Mobile Code and Security

Mobile agents are used to reduce computing overhead and to

increase flexibility, presenting a clean solution with respect

to a number of issues.

First we address the issue of safety. As a precursor to

allowing an agent to execute on a remote site, we implement

a KQML performative to handle the authentication phase.

This performative negotiate is not in the recommended set

of KQML specified performatives. We add this optional

performative to enable authentication and negotiation for re-

sources to be encapsulated within the agent communication.

The authentication phase carries out the verification of the

agent asking to execute on the site. Resource requests are

checked by computing the costs of the request at that site and

comparing those costs with the agent’s available credits. If

a request is turned down, the agent can come back with a

modified credit or resource requirement or an updated credit

amount. Our infrastructure is extensible in that any new au-

thentication protocol can be added to the communication by

simply implementing to the exported interface.

Next, we address the issue of actually transferring the
agent’s code across the network, and executing it in a safe

environment. The threat of a virus or malicious agent is a big

2De~criptionof an action to be ‘en.

concern. Since the language of implementation is Jav% we

use many of its safety features. Java implements a loader for

local and remote classes that works as follows. It checks for

local versions of any referenced classes. If a local version

exists, it is used instead of using the newly loaded remote

class definitions. The classes local to the machine reside

in one narnespace and all other classes that are loaded from

remote sites are given separate name spaces. Thus, by using

different namespaces for local and remote code, local class

definitions cannot be overloaded and redefined by a malicious

agentiuser.

Java also uses a bytecode3 verifier, which is essentially

a theorem prover. This checks the downloaded code

for transgressions. Some of the items that are checked

are forged pointers, access restriction violations, object

mismatches in the code, operand stack overflow and

underflow, parameter checks and illegal data conversions.

3.4 Content Primitives

An agent in our infrastructure is a code object capable of

holding content specifications, resource requirements and

partial results. The user specifies the content to be discovered

using an interface tool. This specification is translated into

appropriate KQML primitives, with structured descriptions

of the desired domain of results. Structured descriptions are

unordered lists of name-value pairs.

Since users have varied preferences and selection criteri%

we propose the use of preference functions that enable the

agent to make a choice on the user’s behalf. More precise

results are possible when the user specifies preference func-

tions. In our prototype implementation we use preference

functions based on result size. More complex preference

functions may be added by the user or administrator. Prefer-

ence timctions [6] area great help in pruning data and throw-

ing away undesired information. As part of future work we

propose to develop a model to define and specify preferences.

4 System Structure

This section outlines the basic system stmcture, the agent

communication flow and the semantics of primitives. The

system is comprised of four major classes of objects. The

guard class, the static agent class, the mobile agent class and

the interface class.

The guard class provides the functionality of a gateway. It

supports KQML primitives to communicate with all the other

components of the system. The guard maintains two major

data structures - a global mapping table and a local mapping

table. The global mapping table maintains information about

other guards in the system, and the local mapping table

maintains information about static agents registered at its site.

These mapping tables act as natneservers in that they maintain
appropriate information about registered static agent objects,

sme Java compiler creates a platform-independent set of bytecodes

for its own virtuaf machine, and the interpreter convens them to machine
language at inn-time.

299

i.e. key services provided, popular search words, and host

and port number information among others. The guard class

mns in its own thread and listens for connections. It spawns

an agent handler for every new connection from an agent.

Once the connection is made, the handler thread listens for a

KQML message to arrive. The handler decides the guard to

agent communication path based on the KQML performative

that is read.

The Static Agent (SA) provides an interface to the

information provider’s content. It runs in its own thread

and exports an interface of abstract methods to map KQML

queries into the information providers’s database language.

Thus, a SA needs to be tailored to the provider’s interface.

‘l%e SA, after opening a connection to a well-known guard,

registers itself and closes the connection. The SA spawns

a connection handler to handle incoming mobile agent

connections. Mobile agents spawned by the Guard use

KQML to communicate with the SA.

The Mobile Agent (MA) operates in several stages. It

first communicates ajind request to the Guard. The Guard

performs a table lookup in the local table and finds art

appropriate Static Agent for the MA to communicate with.

If no such Static Agent is available at its site, the request is

forwarded to another guard after performing a global table

lookup. After an appropriate SA is located, the Guard uses

a cktssloader to load the Mobile Agent and its supporting

classes over the connection. The MA wraps itself in a KQML

message and exits after the classloader finishes the transfer.

At this stage the MA is in stasis. The Guard instantiates the

MA and passes to it the SA’S connection handle. From that

point on the MA communicates with the SA for information.

Some communication primitives and KQML messages are

discussed below.

4.1 Communication Primitives

KQML is comprised of three parts: a vocabulary, an inner

content language, and art outer transport language. The

vocabulary part is related to the application area being

ddressd, while the content language may be anything from

the propositional calculus to being a scriptlike language.

A KQML expression consists of a performative and a set

of related name-value pairs, some of which are standard.

A performative is an action that closely models the

actions, assumptions and conventions associated with human

interaction. Performatives include tell,ask, reply, etc,
whereas the name-value pairs specify associated parameters.

KQML is structured as a three layer architecture the

content layer, the message layer and the communication

layer. The communication layer encodes a set of features

that describe lower-level communication parameters such

as the identities of the sender and receiver of a KQML

message, while the message layer provides the performatives

that indicate speech acts. KQML messages are not aware of

the content that they carry, and thus there are no restrictions

on the content language.

L==l /4=1 PROCESSOR

x w’ “
[

..-.7 Guard --. -”

2-. -””--- . /.... ,.’””.7
SA ..---”

... ...
,.. ...

., ..

L
4 ...-..:”’...

....::.”..3
1) Instatl Guard

... ,,~
5 ,.. ... 2) Register Static Agent

.......
...... 3) Resource Negotiation

.,,
4) Spawn MoW Agent....’..

~:,.
5) Content Negotiation

MA
SA - Static Agent

MA-Motile Agent

Figure 2: Example Message Flow

An example KQML message:

(ask-one:

:Ianguage SQL

:content (SELECT MOVIE WHERE TITLE

= “Maverick”)

:receiver Western-Movie-Server

)

In our implementation one of the content languages of

KQML messages are Java bytecodes representing executable

Java classes. Java supports the transmission and execution

of bytecodes between machines as well as their remote

execution. Associated with each Java system is an interpreter

that executes the received Java bytecodes. Classes may be

transmitted from one machine to another and executed by

the receiving machine’s interpreter. Each machine has a Java

class library, so that agent code need not carry these common

classes, thereby saving valuable communication bandwidth

and time.

4.2 Movement Primitives (Message Flow)

There are four classes of objects in our infrastructure. This

section specifies these classes and shows by example how the

message flow between the component objects is achieved, see
figure 2.

e Initialization: A guard is associated with each server

or processor that supports the infrastructure. See 1) in

figure 2. A guard process starts up on installation. Its

function is to receive a message and spawn a mobile agent

process when satisfied that the agent has the appropriate

authority and resource requirements. The guard is

therefore responsible for preliminary negotiations with

the mobile agent. The guard vaiidates the agent’s

authority to execute, checks the resource graph of the

300

●

●

●

processor to ensure that the agent’s demands can be met

and finally negotiates with the mobile agent for resource

payment, if any. The prototype does not implement a

payment module. However, the infrastructure is built in

a way that existing payment schemes can be plugged in

with minimal effort. The guard also plays a role in the

registration step (below).

Registration: A static agent is associated with each

information service. See 2) in figure 2. When

first activated, a static agent must register itself with

the local guard process at its site. The static agent

provides a mapping between the mobile agent’s KQML

communication and valid queries in the service’s query

language. In the event that a certain server provides more

than one information service, more than one static agent

may reside at a server. As part of the registration process

the static agent exchanges information with the guard

process by registering key attributes of the information

service. This provides a mechanism to locate information

whose exact placement is unknown to the mobile agent

or the user. By further improving the quality of such

registered attributes, resource discovery becomes easier.

Mobile agenh When a mobile agent seeks to travel,

a KQML message is issued to another guard. See 3)

and 4) of figure 2. This message is a wrapped up

agent code. A guard is a process which sends outgoing

KQML messages, receives incoming KQML messages

and processes them. At the receiving end, if the content

language is prescriptive like Jav& the guard will spawn a

thread that executes the Java code; if the content language

is KQML, the guard process becomes a local proxy for

the sender.

Movement: Mobile agents may negotiate for a service

with the service provider’s st&ic ~gent, schedule the

delivery of content, and pay for the service. See 5) of

figure 2. When this interaction is completed, whether

successfully or not, the mobile agent, in consort with

its current guard, packages up its state and code and is

transported to another service provider. This is so when

the agent’s global task is incomplete. The agent is sent

back to its originator when it completes its mission. Being

sent home can also happen if the mobile agent fails on a

remote machine or expends its specified resource usage

limit.

In our current implementation, the next place to go is

inferred by checking a list of available guards. However,

by using Java class libraries, it is possible for the

agent code to dynamical y load and execute an inference

module to make this decision. This inference module

could range from primitive to complex prolog or rule-
based engines.

Using the infrastructure outlined above it is possible to

build a model for automated browsing using agents. For

I

1! /++’’’’:,..-.
o

Figure 3: Example browsing model

example, Figure 3 shows an example of an architecture where

nameservers, brokers and information providers combine

to provide a better and more usable access to wide-area

information using agents. The nameservers and brokers

in this model could be used by mobile agents and their

users to narrow the search space. In a business model, the

brokers could charge for information requests or even lease

out accesses for automated crawlers to extract information.

5 Example

We constructed a prototype of the infrastructure presented

in this paper to demonstrate the feasibility of its various

components. ‘Ihe prototype implements an information

provider with a guard and a static agent and as well as a

mobile agent that queries for information.

‘The key idea behind indexing structured information in

Nebula is that interesting attributes of the movie data are

made available in the form of compact summaries for

structured querying. Some of the attributes we index are

title, production company, summary, cast, writer etc. The

entire document is stored as part of the text attribute for a

detailed display. The summary may instead contain pointers

to the actual location of the dat% either on disk or on the video

provider who may allow downloachtg of the movie to the

user. Nebula also provides a mechanism to logically organize

an information space into contexts based on the attributes they

index. We use this mechanism to organize the data by genre.

For our example, we used two logical partitionings of the

movies; western movies and saence fiction movies. In a

real world application of this model, the two contexts could

represent individual information providers.

Following is an example Nebula object:

((uid !ab09)

(title “9 to 5“)

(production ‘20th century Fox”)

(category “comedy”)

301

(summary “Frank Hart is a pig. His 3

assistants manage to trap

him in his own house

and assume control”)

(cast “Jane Fonda”)

(cast “Lily Tomlin”)

(cast “Dolly Parton”)

(writer “Coilin Higgins and

Patricia Resnick”)

(text “Located at.. “)

)

llte uid attribute uniquely identifies the object and points to a

fixed record that contains storage and protection information.

Further, we constructed an agent that lwks for movie

information and schedules it for viewing. The rest of

this section highlights how an agent can step through the

information space, by providing refinement queries at each

step in order to locate correct information.

Browsing is a two-step activity. First the agent must locate

appropriate information providers. The user specifications

and preferences are mapped into KQML messages. Some

of these preferences may be implicit. For example, let us

consider the case where the user is interested in viewing

a reasonably recent science fiction movie. The user is

also in the mood for light relaxation and places a further

constraint on the information sought viz “A reasonably

recent science fiction movie with a comedy theme.” However

the scheduling for this movie can only be made at a particular

two hour time-slot. Obviously the best place to locate such a

movie is by searching a movie database. The agent uses

a default set of guards to locate candidate static agents

associated with information providers. There are many ways

in which the agent may get this list. The set of such guards

and static agents may be obtained from information brokers

for a fee, or by exchanging information with peer agents.

This information might also be accessed from newsgroups,

mailing lists and electronic bulletin boards.

The second step is to retrieve from the set of candidate

information providers, the movies that match the agent’s

request. This retrieval may be carried out in several iterations

of searching and browsing. The agent may compare results

from more than one provider in order to obtain a near perfect

match. For example, the running time of the movie under

consideration has to be within the time-slot available to the
user. The agent may search more than one provider for a

movie that matches these implicit specifications.

Nebula provides dynamic reorganization of the underlying

object space to support browsing. The mobile agent

via its interactions with the static agent carries out such

reorganizations and clustering until the desired information

is obtained. See figure 4. The mobile agent formulates a

KQML perforrnative which encapsulates the desired query.

NEBULAOBJKT SPACE

()ROOT

MOBILE AGSNT -&-:-----

0

----.----

.~.- . ..-
‘, ‘. . .

, ‘. -.--B) ;
. ‘. ---, , ‘.. --. :y

. ‘.? A
.
\
\ \ ‘.. :

. . ‘.:
. . . .
. :...

“~) : “’..,
. ‘.,:

A)tc@cxt=movics&& ‘. {

m==m “.;

B)ycu>lWl&&ycar <19% ;

c)-.- ; “,

D) dcsii malts

Figure 4: Example

:sender 12

:receiver SAI

:language NEBULA-QUERY

: content “context= movies & type= scifi)

In Nebula information is partitioned into contexts that

index the atrnbutes of information within that context,

see Figure 2. For example, the “movie” context indexes

attributes like title, cast, director, producer, running time,

summary and category, among others. The static agent

unwraps the KQML performative and translates the query

into Nebula expected format. The query may contain

additional sptxifications about actors, directors, writers or

key phrases in the summary. Nebula resolution is different

from traditional resolution in that the results of a resolution

are clustered together in a temporary view. An identifier

for this view is passed back along with the objects in the

result. This identifier can be used for subsequent refinement

by further queries. Thus Nebula provides the fimctionality

to organize information for precise query resolution.
Information within the “movie” context that is about

science fiction is clustered together in a temporary view. The

identifier of the view and the size of the set is passed back

by the static agent to the mobile agent. If information about

the year of the movie is absent from the result, the agent may

send a query for the date to another information provider,

after refining the query (by adding the name of the movie

that was just resolved) as follows:

(ask-one:

:Content “view-ids ! 8 &

(y= > 1990&year< 1996)“

302

This descriptive namelquery is scoped on the view of

science fiction movies. Scoping within the earlier view
obviates the need to evaluate the query over the entire set

of movie objects. This improves the precision of the result

set and improves the performance of query resolution. T%e

result of the above is another view along with the result set.

If the provider categorizes only by the genre science

fiction, the agent may query a comedy movie database for the

movie titles obtained in the earlier result. On the other hand,

the agent may qualify the query by adding the following and

scoping it on the previous results:

summary = “comedy”

Finally, when there are no more implicit preferences to be

satisfied, it sends a message to the static agent indicating the

end of the protocol. This is a signal for the static agent to send

a destroy-temporary-views message to the Nebula server.

Complex queries can be constructed from the refinements

by using and and or operators. This complex query can

be stored with the agent and used to shortcircuit a path

to that precise information cluster in the already browsed

information space. Example:

(context= “movies” & type= “scifi &

summary = “comedy” &
(year> 1990& year< 1996)

This complex query can be used to get the same results with

possibly less browsing. The information that the agent used

to construct the query can be shared with peer agents, thus

shortcircuiting a path to most commonly desired infomnation.

Sharing provides the basis for building topic-specific agents

that act as specialized archives of information.

On successful termination the agent will be packaged up

as a KQML message and transported to its next destination.

This destination is provided to the guard at termination via

the inference mechanism of choice. For the next version,

a destination transfer protocol will ensure recoverability

by leaving shadow images until the agent has been safely

transported to the next destination.

6 Related Work

Previous studies on improving access to wide-area informa-

tion systems have focused on increasing the efficiency of

searching by using better indexing techniques and partition-

ing of the data [11] [16].

Information systems like Harvest[S], TSIMMIS[9] and the

Stanford Data Warehouse[18] provide an architecture that can

be used to construct information brokers or service brokers.

These brokers lessen the bottleneck at the server site by
significantly reducing server load and space requirements

at the information provider’s domain. However, with the

vast expansion of information, the brokers themselves can

become the bottleneck.

More recent efforts have concentrated on building indexes

of WWW information. Web crawlers, robots and spiders

are programs that traverse the World Wide Web and

automatically download and index the content. Some
automated indexerdclassifters are Alta Vka[l], Yahoo[2],

Lycos[20] and MOMspider[13]. These systems ~ to

automate the indexing process, and in many cases even

categorize the collected information. However, most of these

collect information from around the Intemet and index it for

further retrieval. While this may increase the recall of the

service, it effectively decreases the precision.

Automated indexers do not obviate the need for browsing,

nor do they make browsing any easier. Problems with
network and server load are not eliminated; they only occur

at different times. That is, users do not account for a lot of

the server load at browsing time, the server load is caused by

web crawlers at downloadhtg and indexing time. Network

communication is simply shifted from the user’s interaction

with an information server to interaction with an indexed

server that points to the information. Large quantities of

unpruned information still come back to the user, who then

goes through the process of eliminating and clustering this

information. The communication load is still associated with

the user.

However, agents help in moving the computation load

from client to server by moving the program from the client

to the server. Consequently, server bandwidth is reduced,

since already pruned information comes back to the user as

opposed to the large number of bytes that have to be pinned.

Browsing becomes a much less daunting task as the amount of

information to be browsed is already reduced. This situation

is further improved by providing more information about the

content being indexed.

Prominent examples of agent-based architectures are

Telescript [22], Tacoma [19] and Agent Tcl [17], among

others.

Telescript is an object-oriented scripting language for agent

programming. A Telescript agent uses a go command to

migrate from one site to another. Each Telescript network

site runs a server that executes incoming agents, The server

logs the state of resident agents, thereby permitting the agent

state to be restored after a site failure.

Tacoma is a mobile agent system that uses Tcl for its agent

language. Each agent carries a briefcase of folders containing

Tcl programs and data. An agent may execute a meet

command to meet another agent and pass a briefcase to that

agent. Tacoma does not support the interruption of executing

Tcl scripts, and interrupted scripts that are passed on must

start from the beginning. In our approach, transferring

execution state involves modifying the Java interpreter, and

we have chosen not to do this at this point. Scripts are
migrated by storing state information in the data that migrates

along with the agent. In our approach folders correspond to

name-value pairs, and the briefcase corresponds to a KQML

message.

303

Agent Tcl is an extension to the Tcl scripting language

to allow scripts to be suspended on one machine and to be

started up on another machine. Additional ‘I’cl commands

are provided to move the agent through the network and to

send and receive messages. As with our approach, Agent Tcl

requires a server to be operational at each site to which an

agent can be sent. The server watches a socket connection

and accepts incoming agents.

Our work is distinct from these approaches in that we use

KQML to provide more semantic information through the

use of peflormatives. In addition, the use of Java offers

universality of underlying agent code and any modules,

inference engines, interface libraries can be dynamically

linked in.

7 Conclusions

This paper presents the use of information agents for

automated browsing. Browsing is distinguished from

searching in that content may be evaluated at more than one

indexed server.

We present a prototype implementation of information

agents where agents find requested information by browsing

various information servers. The key features of our

approach include

1.

2.

3.

The combination of KQML and Java for agent commun-

ication,

The use of structured meta information to decrease the

complexity of browsing.

An infrastructure that uses static as well as mobile

agents. The use of static and mobile agents allows for

both descriptive and prescriptive messages to be used to

communicate among peer agents.

It is our expectation that this design will significantly

reduce user interaction by automating the task of browsing

and composing information. We believe that performance in

terms of speed is not as importrmt in this case as performance

in terms of what is rerneved. Information theory uses

precision and recall metrics to measure the quality of retrieval

of an information system. However, there are two problems

with this approach. First, it is laden with subjectivity. One

needs user feedback to judge the relevance of the retrieved

results. Second, and most important, these measures are

used for search and rernevrti engines. Browsing is relatively
ambigious in its definition and does not have a set of

benchmarks or benchmarking procedures. An interesting

extension to this work would be to evaluate and come up

with possible benchmarks to measure navigation systems and

browsing systems. One of our recent papers describes studies

of precision measures for structured content [7].

We conclude that we can use.agent technology to reduce

the complexity of browsing wide-area information in two
ways: by reducing communication and filtering overhead,

and by moving the computation away from the client.

We believe that information agents can be categorized

based on preference functions and associated inference

mechanisms used to implement them. We plan on analyzing

the class of information agents further in this manner.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A fast search engine. At httpJ/www.altavista.digital.com.

Yahoo, a search index. At url: http:llwww.yahoo. cornl.

The Java Language: A White Paper. Sun Microsystems. At

urk httpd/www.java. sun.com/, 1995.

T. Bemers-Lee, R. Calliau, and B. Polletmann. World-Wide

Web: The Information Univers. Electronic Networking:

Research, Applications and Policy, 2:52-58, Spring 1992.

C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi

Manber, and Michael F. Schwartz. The Harvest Information

Discovery and Access System. In Proceedings of the Second

International World Wide Web Conference, Chicago, Illinois,

October 1994.

Mic Bowman, S Debray, and L.L. Peterson. Reasoning

about naming systems. ACM Transactions on Programming

Languages and Systems, 15(5):795-825, November 1993.

Chanda Dharsp, and Mic Bowman. ~ped Structured Docu-

ments for Information Retrieval. To Appear in Proceedings

of the Third International Workshop on Principles of Docu-

ment Processing, Palo Alto, California, September 1996.

Mic Bowman, Chanda Dharap, Mrinal Baruah, Bill Camargo,

and Sunil Potti. A File System for Information Management.

In Prooceedingsof the International Conference on Intelligent

Information Management Systems, Washington D.C., March

1994.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,

Y. Papakonstantinou,J. UUman, and J. Widom. The TSIMMIS

Projecc Integration of Heterogeneous Information. In

Proceedings of the IPSJ Conference, Tokyo, Japan, October

1994.

R. Douglas et. al. Cutting. Scatter/Gather A Cluster-based

Approach to Browsing Large Document Collections. 15th

Annual Int’1 SIGIR, pages 318-328, June 1992,

Peter B. Danzig, Li Shih-Hao, and Katie Obraczka. Dis-

tributed Indexing of Autonomous Intemet Services. Comput-

tig Systems, 5(4):433-459, Fall 1992.

Chanda Dharap and Mic C. Bowman. Structure in file

systems. Technical Report CSE-94-021, The Pennsylvania

State University, February 1994.

R. T. Fielding. Maintaining Distributed Hypertext Infostruc-

tures: Welcome to MOMspider’s Web. In In Proceedings

of the First International Conference on the Worid-W7de Web

(WWW’94), Geneva, May 1994.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML
as an Agent Communication Language. In Proceedings

of the Third International Conference on Information and

Knowledge Management (CIKM ‘94), November 1994.

M. R. Geneseretb and S. P. KetchPedal. Software Agents.

Communications of the ACM, 37(7), July 1994.

304

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, OToele,
and James W. Jr. Semantic File Systems, In Proceedings of

the 13th ACM Symposium on Operating Systems Principles,

pages 16-25, Oct. 1991.

R. Gray. Agent Tel: A Transportable Agent System. In

Proceedingsof the CIKIU Workshop on Intelligent Information

Agents, Fourth International Conference on Information and

Knowledge Management, December 1995.

J. Hammer, H. Garcia-Molina, W. Labio, and Y. Zhuge. The

Stanford Data Warehouse Project. IEEE Data Engineering

Bulletin, June 1995.

D, Johansen, R. Renesse, and Schneider F. Operating System

Support for Mobile Agents. In Proceedings of the Stk IEEE

Workshop on Hot Topics in Operating Systems, May 1995.

M. L. Mauldin. Measuring the Web with Lycos (poster

presentation). In Proceedings of the Third International

Worki- W& Web Conference @’WW’95), April 1995.

T.J. Mowbmy and R. Zahavi. The Essential CORBA:

Systems Integration Ustig Distributed Objects. NumberISBN

0471106119. Wiley/OMG, 1995.

J.E. White. Telescript Language Reference Manual. General

Magic, Inc., Sunnyvale, CA., October 1995.

Performatives

1. ask-all

(ask-aik

:content-language

:content

:receiver

:sender

:reply-with

)

The ask-all is a basic query performative. When the ask-

all perfonnative is encountered, the results are sent back as

they are computed, until all the processing is finished. Each

communication carries the identifier that is supplied as values

of the :reply-with parameter. This helps to regroup the replies

together.

2. reply

(reply:

:receiver

:sender

:reply-with

:content

)

The reply performative is a response perfonnative, whose

content parameter canies the value of the query resolution.

3. tell

(tell:

:receiver

:sender

:ack

)

4.

5.

6.

The tell performative is used as a generic informational

performative. Although it is generally used as pureiy troth

setting operation on meta data, we use it to acknowledge a

request.

register

(registtx

:content-language

:content

:receiver

:sender

:ISname

:SAname

:sAhost

:SAport

:ISkeys

)

We use the register perfortnative to register an information

provider. This performative communicates various parameters,
like information provider name, hostname, pmtnumber and
some meta data which describes the content at the information
providers database.

execute

(execute:
:content-hmguage
:content
:receiver
:sender

)

In our case the content language for this perfonnative is always

Java. The contdnt field contains Java bytecodes, which is the

compiled agent code. The agent is thus transported as content

across the network infkastmcture.

Iind

(find

:keyword

:receiver
:sender

)

We use the find performative as a n?quest to locate an

appropriate information provider.

305

