
Dynamic and Hierarchical Spatial Access Method using
Integer Searching

Kyoosang Cho
Broadband Network Management Development

Sprint Corporation
Overland Park, Kansas 66251

kyoosang.cho@mail.sprint.com

ABSTRACT
Dynamic and complex computation in the area of Geographic
Information System (GIS) or Mobile Computing System in-
volves huge amount of spatial objects such as points, boxes,
polygons, etc and requires a scalable data structure and
an efficient management tool for this information. In this
paper, for a dynamic management of spatial objects, we
construct a hierarchical dynamic data structure, called an
IST/OPG hierarchy, which may overcome some limitations
of existing Spatial Access Methods (SAMs). The hierarchy
is constructed by combining three primary components: (1)
Minimum Boundary Rectangle (MBR), which is the most
widely used method among SAMs; (2) the population-based
domain slicing, which is modified from the Grid File [14];
(3) extended optimal Integer Searching algorithm [4]. For
dynamic management of spatial objects in the IST/OPG hi-
erarchy, a number of primary and supplementary operations
are introduced. This paper includes a comparative analysis
of our approach with previous SAMs, such as R-Tree, R-t-
Tree and R*-Tree and QSF-Tree. The results of analysis
show that our approach is better than other SAMs in con-
struction and query time and space requirements. Specifi-
cally, for a given search domain with n objects, our query
operations yield 0(,/z) compared to O(logn) of the
fast SAM and an IST/OPG hierarchy containing n objects
can be constructed in O(n 4x) time and O(n) space.

Keywords
spatial access method, grid file, dynamic and hierarchical
structure, integer searching algorithm.

1. INTRODUCTION
Recently, Wireless Mobile Computing and Geographic In-

formation System (GIS) have been widely used. Those ap-
plications dynamically deal with geographical positions of
mobile users and the surrounding environmental informa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’OZ, November S-10,2001, Atlanta, Georgia, USA.
Copyright2001 ACM I-58113-436-3/01/0011...$5.00.

Yijie Han, Yugyung Lee, E.K. Park
Computer Science Telecommunications

University of Missouri at Kansas City
Kansas City, Missouri 641 lo-2499

{ban, yugi, ekpark}@cstp.umkc.edu

tion. In these applications, fast information retrieval from
very large spatial databases and efficient geographical com-
putation are largely required. Real world objects are dis-
tributed, heterogeneous, and large in size. Much of the
information is spatial in nature; objects are dispersed in
space and are interacting with each other. The challenging
task in the mobile computing application, is to effectively
store, retrieve and update interesting and relevant infor-
mation among vast heterogeneous and distributed spatial
datasets.

Mobile computing focuses on mobile device users who are
seeking geographical and online information using cellular
phones or PDAs. Current user locations are dynamically de-
termined, requested information are retrieved from the Lo-
cation Dependent Information repository and presented to
the user. Location Dependent Queries acquire query results
depending on location from where the query originates. As
an example, “How far is Kansas City International airport
from here”? The answer to this depends on the location from
where the query is issued, the answer for the query issued
from Lenexa, KS, would be a different one from Lee Sum-
mit, MO. Location information of the mobile unit is closely
related to local spatial data including the hotels, ATMs, the-
aters in that area. The Global Positioning System (GPS)
would provide information about the position of the mo-
bile unit in terms of longitude/latitude, cellular phone num-
ber, sector id or zip codes. Efficient spatial database man-
agement is critical for diverse GIS services such as ground
traffic, avionics, mobile computing, wireless communication,
autonomous navigation, environmental protection, etc. [8].

The major goal of these applications is to provide an effi-
cient repository and methods to facilitates real-time spatial
information access, update, and analysis. Spatial objects
are represented as points, boxes, polygons, etc. in two di-
mensional or multidimensional space. The spatial object
management deals with the absolute or relative positions of
objects and relationships between objects [23]. There are
two well known spatial object access methods: point ac-
cess method (PAM) and spatial access method (SAM). The
PAMs primarily perform spatial search on point databases
(i.e., only points of objects are available) but SAMs man-
age more complex objects, such as lines, polygons, or even
higher-dimensional polyhedron. We adopt Tree-based SAMs,
which use a recursive decomposition of the object space
into smaller subspaces. This recursive process traverses a
spatial object tree from the root node, through guided in-
ternal nodes and to a leaf node, which is either empty or

341

pointing to object information in secondary storage. The
various tree-based SAMs are different in the decomposition
process and the mapping approaches between nodes and re-
gions of the tree. The most well-known tree-based SAMs
are the KD-Tree [6] and the R-Tree [12]. A major limitation
of these SAM methods is comparison-based access in the
relative positions of two objects, which are determined by
comparing the coordinates of the objects. This comparison-
based searching takes B(logn) steps for a tree with n objects
[26]. To improve the object searching speed, we adopt inte-
ger searching algorithm 141 to manage the spatial databases,
which yieldsO(-JE) time. - -

The goal of this research is to develop a suitable frame-
work for the scalable and dynamic spatial object manage-
ment. Specifically, in this paper, we evaluate existing tech-
niques and introduce a novel data structure and efficient
management for spatial objects. Our approach has three
ingredients: (1) the Minimum Boundary Rectangle (MBR),
which is widely used method among SAMs; (2) the object
population-based space decomposition, which is modified
from Grid File [14]; (3) information retrieval and update
using optimal Integer Searching algorithm [4]. A multi-
layered (hierarchical) structure, called the IST/OPG hier-
archy, is modeled by the combination of those ingredients
for dynamic and scalable spatial object management. Our
IST/OPG hierarchy is flexible, incremental, and dynamic
corresponding to the requirements of spatial object man-
agement. More importantly, our searching and update op-
erations are better than other SAMs in terms of space and
time requirements.

The rest of paper is organized as follows: Section 2 surveys
previous spatial object access methods. Section 3 explains
our IST/OPG hierarchy. Section 4 analyzes the IST/OPG
hierarchy. Section 5 shows the primary and supplementary
operations for IST/OPG Hierarchy. Finally, we conclude in
Section 6.

2. RELATED WORK

2.1 Spatial Access Methods (SAMs)
Spatial objects are various and diverse in the form of

point, line, rectangle, polygon, etc. Some objects are too
complex to model as database elements, and some objects
are geographically related to others by overlapping or cov-
ering. Thus, the way of representing spatial object affects
the performance of spatial access and update as well as the
space requirement. The object can be represented by either
accurate or approximated representation. Some representa-
tion [lo, 21, 221 represent spatial object in an accurate way.
However, most SAMs adopt some form of approximation
because this reduces the storage overhead and simplifies the
search and update processes. The typical spatial object ap-
proximations include minimum bounding rectangle (MBR)
[5, 121, minimum bounding circle (MBC) [20, 271, and min-
imum bounding polygon (MBP) [16].

The minimum bounding rectangle (MBR) represents a
spatial object by the smallest rectangle that besieges the
object with two points (x and y coordinates of an object):
{(x-start, y-start), (x-end, y-end)}. The minimum bound-
ing circle (MBC) represents a spatial object by the smallest
circle which covers the object. Considering the line calcu-
lation for MBP and floating point overhead for MBC, the
MBR-based approximations are characterized by an inter-

mediate degree of complexity and accuracy between MBC
and MBP. Our approach is based on MBR which is used
more frequently than other approximations.

Several SAM schemes [8] include transformation (object
mapping), overlapping regions (object bounding), clipping
(object duplication), and multiple layers [17]. First of all,
the transformation method maps a PAM object to higher di-
mensional point or transforms it into a SAM object. Then,
the SAM object is represented as a set of one-dimensional in-
tervals by means of space filling curves [16]. Some problems
of the PAM approaches can be resolved through the trans-
formation method. The major limitations of this method are
computational overhead required for transformation, dupli-
cated multi-dimensional searching, and requirements of po-
tential changes of relationship between objects.

The overlapping method uses different data buckets for
mutually overlapped regions [8]. This method efficiently
accesses objects using bucket, where objects are assigned.
The R-tree [12] and R*-Tree [5] belong in this category.
The performance of R*-Tree is superior to R-Tree [8] be-
cause the R*-Tree effectively restricts the search space using
splitting and reinserting operations. Therefore, the search-
ing area is limited to some of overlapped regions. However,
the splitting algorithm requires additional overhead because
continuously sorting object along each axis and partitioning
the overloaded region into several subregions are required.
Thus, there is a trade-off between updating cost and access
time.

The clipping methods such as the R+-Tree [24] and Cell-
tree [ll] resolve overlapped objects by using mutually dis-
jointed bucket regions. For the overlapped objects, the R+-
Tree excludes them from the search space but inserts a
duplicated version of object information into all the over-
lapped regions. Although this method reduces the overhead
of searching, deficiency still exists in deletion [8].

The multiple layer methods include the multi-layer Grid
File [25, 141 and the multi-layer R-File [15]. The multi-
layer Grid File excludes the overlapping regions by creating
another layer of Grid File. However, the creation gradually
reduces the storage utilization. To overcome this problem,
the hyperplane may be recursively split by using buckets like
R-Tree method, but the overlapped buckets still exist and
some buckets may overflow, which results in inefficiency.

The SAM operations include object searching, insertion,
and deletion operations. In [12], splitting and merging op-
erations were introduced for overloaded and thin regions.
These operations improve efficiency in the searching [12].
Our approach supports these SAM operations and some re-
lational query operations introduced in [23], such as disjoint,
meet, overlap, covered-by, etc.

2.2 Integer Searching Algorithm
Most comparison-based searching methods, like Binary

Search Tree, compare the searching value with values repre-
sented in tree nodes until the process finds a matching node
or reaches a leaf node of tree. Since the value comparison
performs through a traverse path of a tree, it takes O(log n)
t ime.

Boss proposed an efficient method of searching an integer,
which uses bit wise operations instead of comparison oper-
ations [9]. In his method, a tree is designed to represent
integers. Thus, the bits of integers are partitioned over the
multiple levels of the tree, and only fixed bits of a search-

3 4 2

Figure 1: Index Search Tree

ing value are compared at each level. As an example, for
an 8-bit word, this method first considers 4 bits from left,
which are 7th to 4th bits and proceeds to the next level for
the remaining bits only if there is a match. Boas’s algo-
rithm [9] improved the searching time to O(log log m) using
a stratified tree structure with m leaf nodes, where m 2 n.
Amir et al. also demonstrated an efficient searching method
based on controlling the size of the stratified tree and the
distribution of integer extant [l].

As the computer memory is fixed by the word size, the
RAM modeling [2] supports sub-logarithmic searching with-
out multiplication. Recently, Andersson and Thorup’s [4]
designed an optimal Integer Searching algorithm by build-
ing an exponential search tree for word sized integers. In
the exponential search tree (Figure l), the root has a degree
O(nl/k) for a selected number k, and their children use a lo-
cal S-structure to store d integers, unlike Boas’s algorithm,
which checks a half of the word size or unchecked bits . The
local S-structure can be built in 0(&-l) time and space.
Through a recursive decomposition of the searching space,
their searching algorithm yields O(dE) in a fully dy-
namic linear space. In addition, Their original exponential
tree structure [2, 31 requires the amortizing cost in time. Re-
cently, they introduce a new de-amortization approach that
is optimal or near optimal [4].

3. THE IST/OPG HIERARCHY
Real world objects are always large in size, form in any

shape, and evolve dynamically. In order to deal with such
objects, we should represent their dynamic features, effi-
ciently retrieve them when needed, and incrementally up-
date them as they are evolving. There are difficulties in stor-
ing typical spatial object datasets in main memory and re-
trieving relevant information from unlimited object spaces.
Furthermore, updating information on continuously evolv-
ing object is the most challenging task.

In order to deal with large spatial databases, we build a
hierarchy, called an IST/OPG hierarchy, supported by two
primary structures: Index Search Tree (IST) and Object
Point Grid (OPG). The main idea of the IST/OPG hierar-
chy is to recursively decompose object space both in hori-
zontal and vertical modes. An IST/OPG hierarchy, which
is formed through the recursive vertical and horizontal de-
composition processes, is composed of a set of ISTs (Index

Figure 2: The IST/OPG Hierarchy

Search Trees) and OPGs (Object Point Grids) (Figure 2).
Figure 2 shows our IST/OPG hierarchy. We now demon-

strate how the IST/OPG hierarchy is used to search an ob-
ject. Consider an object Ocss,sz). First, at the level 0, we
access IST,O and IST,O to search the indices of OPGo.
From IST,O we obtain 3 for the given x value, 85, and 2
for the y value, 32, from ISTyO. Then, we access the ob-
ject space indicated by the indices (OPGo[3,2]) and check
the population of the object space (OPGs[3,2].p-c). As-
sume that OPG~[3,2].p.x is 7. Since OPGo[3, S].opt > 1,
we further traverse the IST/OPG hierarchy for the object
O~ss,sz). Similarly, at the lower level, i, we obtain 2 and
1 as the OPG indices from ZST,i and IST,i, respectively.
Finally we can obtain the O(ss,sz) pointer from the object
space (OPGr[2,1]).

The IST/OPG hierarchy, resided in the main memory,
represents approximated information (pointers) of detailed
objects, resided in the secondary storage. The Integer Search
Tree (IST), applied Andersson and Thorup’s algorithm [4],
deals with large amount of object information and plays a
significant role in our fast and dynamic searching. Using
the IST/OPGs, we dynamically decompose a large object
space into dynamic hierarchical sub-structures. Compared
to the performance of existing R-Tree, O(logn) time and
O(n) space, our approach achieves 0(d=) time and
O(n) space.

3.1 The Extension of MBR: Multi-dimensional
Attributes Representation

There are many ways to represent spatial objects. In
mobile computing and GIS domain, the most crucial infor-
mation on spatial objects must be the location of spatial
objects. The location information can be represented us-
ing its absolute position in an object space. We use Min-
imum Bounding Rectangle (MBR), which is one of widely
used SAMs [23], to represent an object and for a typical
object retrieval and a relational search according to some
search criteria. MBR represents the location of object with
a boundary information of object such as a starting point(
[S,,S,]) and ending point ([&,E,]). In many cases, the
starting point is sufficient for object retrievals. However,
c0nsidering.a situation that more than two objects locate in
the same starting point, the ending point is additionally re-
quired to distinguish them. In this way, we efficiently resolve

343

the limitation of R-Tree family approach, such as difficulty
of “overlapping” and “covered-by” quires in &SF-Tree [28].

In this paper, we limit our object model with two di-
mensional attributes such as the starting and ending points.
However, our model is flexible and dynamic, so that addi-
tional attributes of object can be represented by simply ex-
panding dimension (see [7]). For instance, an object shape
or type information might be useful information in spatial
object retrieval. Consider a typical query of GIS, “find In-
dian restaurants for me.” The intelligent mobile computing
system may answer the query with the Indian restaurants lo-
cated within walkable distance from the location of the user.
For this kind service, the mobile database system first re-
trieves Indian restaurant represented as a type, identifies the
user’s location, selects appropriate restaurants according to
the relative distances between the selected restaurants and
the user and finally generates a list of the restaurants. Our
approach can support this kind of computing by expand-
ing the dimension of data model for representing the addi-
tional attribute values. Individual object attribute can be
represented as an independent dimension of the IST/OPG
hierarchy. Thus, distributed and parallel processing can be
used to store, update, and retrieve additional attributes of
spatial objects.

3.2 Horizontal Space Decomposition: Object
Point Grid (OPG)

The data distribution, the number of object spaces and
the number of objects in an object space (object space pop-
ulation), are directly related to the spatial database perfor-
mance. If the distribution of objects is skewed, the popu-
lation of some of searching spaces might be huge, requiring
many levels of structure and results in performance degra-
dation of query process. The Grid File method [13, 14,
191 decomposes the object space into an orthogonal grid of
columns and rows. The resulting spaces may have different
shapes and sizes, and each space associates with a bucket,
and a bucket may associate with one or more spaces to store
objects on a disk page. To guarantee less than two disk ac-
cesses for an exact match query, the grid itself need to be
kept in main memory, represented as an array for each di-
mension. Our OPG model is designed followed by the Grid
File method [13, 14, 191. In this paper, we use a term, ob-
ject space (OS), to represent a universe containing spatial
objects. An OPG is constructed by a horizontal decomposi-
tion of an object space and is structured as a grid of 2 and
y coordinates. A cell decomposed from the object space
is called object subspace (OSS). Our criteria for the hori-
zontal decomposition are the number of object spaces (i.e.,
n$) and the object population of an object space (an object
space in a level 1 may have maximum n(j)‘object points).
Each dimension has ntpartitions and a grid has ,a by nt =
n$ subspaces. Figure 3 shows the horizontal decomposition
of an object space with 64 objects, partitioned according to
an object population threshold value of n+. Using the MBR
method, 64 objects are represented as rectangles (Figure 3-
(a)). In this example, the starting points of the rectangles
are used for the horizontal partition (Figure 3-(b)). Af-
ter decomposing the object space, the level 1 of the OPG
has ,($,1-1,1zsubspaces and each subspace has n(a)‘object
points. We denote the ith level OPG as OPGi, and with x
and y indices in the OPGi as Izi and Igi. The subspace is

-

.,.

-.-

.<-

.,.

z

Figure 3: ‘02bjeci Spke Aeco’mpdsitioi: (a) MBR of
Object Space (b) Starting Points of MBR

denoted by OPG[l,i, lyi]. After a complete decomposition
of object space in both vertical and horizontal modes, the
object subspace in the leaf node of an IST/OPG hierarchy
points to a single object.

Now, we describe the properties of the OPG.
l An object space at level 1 in the IST/OPG hierarchy

has n(2)l-l.d subspaces.
l Each object subspace of lth level object space in the

IST/OPG hierarchy has at most n(a)‘object points.
l Each object subspace at leaf nodes in the IST/OPG

hierarchy has either 0 or 1 object point.

LEMMA 3.1. In the IST/OPG hierarchy, an object sub-
space contains at most n(j)’ object points, where 1 is a level.

Proof: Use induction. At 1 = 0, there are n objects. As-
sume at the level k there are n(i)‘elements in the subspace
S. Now S is divided into subspaces (m = n(qjk) and each
subspace contains no more than m8objects. Therefore, there
are at most n(S)L+’ objects in a subspace. n

LEMMA 3.2. An object space at the level 1 in the IST/OPG

hierarchy has VZ(~)‘-~.’ 2 subspaces.
Proof: At the level 0, there is 1 subspace. At the level 1,
there are na * ,a = no subspaces. At the level 1, there are
,(f)*-l.* . n($)‘-‘.l4 = n(s)‘-l.:subspaces. n

3 4 4

LEMMA 3.3. The total space requirement for OPGs is O(n).

Proof: According to Lemma 3.2, there are C,n(f)‘-* 1.0(n)
subspaces. w

Every object space is annotated with data elements, ~0,
N, L> consisting of Object Variables (CJ), Neighbor Vari-
ables (N) and an Object Space Level (L).

l 0 represents object variables: a population counter(p-c)
indicating the number of object(s) in an object space,
and an object pointer(opt) has a pointer to either an
object or the next level IST/OPG space.

. N represents relation variables: four neighbor vari-
ables {z-l, Z-C-T, y-u, y-d} where x-2 is the x index of left
side (adjacent) object space, x-r is the x index of right
side (adjacent) object space, y-u is the y index of up-
per side (adjacent) object space and y-d is the y index
of down side (adjacent) object space. These neigh-
bor variables represent logical neighboring relation-
ships between object spaces because an object space
index is assigned by the inserting order of objects not
by their physical locations. The OPG changes dynam-
ically, so that the indices of the object space may not
be consecutive. The neighbor variables are useful to
find the neighbors in the OPGs.

. ,C represents the level of an object space in the IST/OPG
hierarchy. Since the lower OPGs are smaller than the
higher OPGs, their object population is fewer than the
higher OPG’s.

While the Grid File approach [14] uses disk page to store
object information, our approach stores object points using
the IST/OPG hierarchy in the main memory. The major
difference between our OPG and the Grid File method is
the forming of structure in the main memory, while our
OPG points to the object in secondary storage, the Grid
File points to the disk page which includes more than one
object information .

3.3 Vertical Space Decomposition
The vertical decomposition is to partition the object space

in The level 0 into several disjointed object subspaces at
level 1, these spaces at the level 1 are further partitioned
into subspaces at the level 2, and so on, until each leaf of
the hierarchy points to a single object in secondary storage.
Our criteria for the vertical decomposition is the object pop-
ulation of an object space. As a hierarchy level is increased,
the object population is decreased. This means our object
traversing is through a path of the IST/OPG hierarchy in-
crementally moving down toward to a specific object. The
vertical decompositions incorporate with horizontal decom-
positions to form a multi-layered hierarchy.

LEMMA 3.4. The height of IST/OPG hierarchy is
O(loglogn).
Proof: According to Lemma 3.1, each object space at the
level h has n(fjh 5 lwhich imply h = O(log log n). n

LEMMA 3.5. For a given object space, the path from the
root to the leaf of an IST/OPG hierarchy is unique.

3.4 Index Search Tree (IST)
To speed up the performance of the SAMs (i.e., logn),

we have extended Andersson and Thorup’s integer search-
ing algorithm [4] for our multilevel and multidimensional

object structure. As mentioned previously, our model can
dynamically expand the IST dimension for additional object
attributes. In this paper, as our model is limit to represent
two dimensional attributes of an object (starting point and
ending point), two independent ISTs are used for represent-
ing each dimension: one for x coordinate and another for y
coordinate of object points.

While the Integer Searching algorithm yields 0(dz)
searching speed in integer, we decompose the attribute of
spatial object by each dimension by the order instead of the
value. For existing 2 dimensional objects, each ISTs, ZST,i
and IST,i only deal with its own dimension. The IST,i
only works on the z value of objects, while IST,i represents
the y value of objects. The cell (a cross-section of x and y
slices) in the OPG can be traversed with the indices of z
and y coordinates, I,i and IYi (Figure 2).

An IST is composed of two parts: the top part consists
of an exponential search tree [4] and the bottom part (leaf
nodes) points to the object spaces in the OPG. A cell in the
IST is called “Index Search Space (IS) .” Every Index Space
is annotated with data elements, <K, Z, .C> consisting of
Object Key (Ic), Object Index (2) and Object Space Level
(0

l K: represents object keys specifying attribute values of
object. An IST at the level i in an IST/OPG hierarchy
has n(s)‘keys.

l Z represents an Object Index specifying an object pointer
to an object space in the OPG.

l C represents the level of Index Search Space (1S)in
the IST/OPG hierarchy. The lower IST has smaller
Index Search Space and fewer object population than
the higher IST.

LEMMA 3.6. An IST at the level 1 of an IST/OPG hier-

archy has n(q)’ object points.

Proof: According to the IST/OPG hierarchy definition,
since ISTs represent OPGs indices, the ISTs space require-
ment for representing OPG index are equivalent to the OPGs’.
According to Lemma 3.1, this is true. n

LEMMA 3.7. Accessing the lth level IST takes

O(ii&m+
pLTm=T time.

Proof: According to [4] and Lemma 3.6, this is true. n

LEMMA 3.8. The total space requirement for ISTs is O(n).
Proof: According to the IST/OPG hierarchy definition,
since ISTs represent OPGs indices, the ISTs space require-
ment for representing OPG index are equivalent to the OPGs.
According to Lemma 3.3, this is true. n

4. ANALYSIS OF IST/OPG HIERARCHIES
We have developed a spatial database model, the IST/OPG

hierarchy, to support an efficient mapping between real world
objects and the object information in a large spatial database.
The IST/OPG hierarchy supports (1) an optimal query time,
i.e., O(dE), (2) a construction time requirement, i.e.,
O(n,/a), (3) a space requirement, i.e., O(n), and (4)
a dynamic and flexible data structure for an incremental
update by adding objects, attributes or attribute values.

We have described the decomposition of IST/OPG hierar-
chy in vertical and horizontal modes (Figure 2). In order to

3 4 5

efficiently decompose an object space, we maintain an object
population threshold per each object space in a level 1 , i.e,
n(a)‘. The decomposition is recursively performed accord-
ing to the threshold, n(j)‘. The recursion factor starts from
the object space population n to the object space popula-
tion 0 or 1. We believe that our population-based recursive
decomposition is very effective in handling large spatial ob-
ject databases. We dynamically and incrementally build an
IST/OPG hierarchy.

LEMMA 4.1. An object subspace in a level 1 (I 2 1) of an
IST/OPG hierarchy, has n(z)’ objects.

Proof: According to Lemma 3.1 and 3.6, this is true. w

LEMMA 4.2. The required time to search an object in a

level 1 of the IST/OPG hierarchy is 0(/ml.

Proof: According to Lemma 3.7, this is true. m

THEOREM 4.1. Searching an object in the IST/OPG hi-
erarchy for n object points is 0(,/a) time.

Proof: According to Lemma 4.2, we can access an object in

a level 1 in 0(,/m). Then, searching an object

in any level of IST/OPG hierarchy (1 5 1 5 h, where h is
the height of the IST/OPG hierarchy) can be computed by

C:=,/m= C2:Opl”gn) /s

5 cl/F= q/E).

Therefore, we have 0(,/E) searching time same as
Andersson’s linear space searching time. n

For a given finite set of object points of cardinality n and
partition threshold b = ni, there exists a unique IST/OPG
hierarchy. We now describe the time and space requirements
for a construction of an IST/OPG hierarchy.

THEOREM 4.2. The construction time for an IST/OPG
hierarchy with n objects is O(ndz).

Proof: According to Theorem 4.1, the time for inserting an
object to the IST/OPG hierarchy is 0(,/z). Therefore,
the constructing a IST/OPG hierarchy with n objects takes

C; o(☺i$E)= O(y/E). n

THEOREM 4.3. The space requirement for an IST/OPG
hierarchy with n objects is O(n).

Proof: According to Lemma 3.8, the space requirement for
IST structure in an IST/OPG hierarchy is O(n). According
to Lemma 3.3, the space requirement for OPG structure
in an IST/OPG hierarchy is O(n). Therefore, the space
requirement for an IST/OPG hierarchy with n objects is
O(n). n

5. OPERATIONS FOR IST/OPG HIERAR-
CHIES

Two types of operation, primary operations (Search, In-
sert, and Delete) and supplementary operations (Split and
Merge), are developed for manipulating objects stored in
the IST/OPG hierarchy. The primary operators directly
manage objects stored in the IST/OPG hierarchy. A set

of supplementary operations, Split and Merge, is to main-
tain balanced structure of the IST/OPG hierarchy. As the
IST/OPG hierarchy is dynamically changed by adding new
objects or deleting objects, some object spaces in the hi-
erarchy might be overflowed while others are underflowed.
Splitting overflowed slides is required to maintain the op-
timal access time So that each object space maintains the
number of objects, less than the threshold (n(s)*, where 1 is
a level). Unlike the split operation, the Merge-Spaces algo-
rithm maintains a equally distributed balanced data struc-
ture by merging the adjacent underflowed object spaces into
an object space.

5.1 Primary Operations
Given z and y coordinates of an object, the Search opera-

tion scans down through the IST/OPG hierarchy and finds
an object space pointing to the object information (Oc,,,))
in secondary storage. This operation searches recursively
down through a path of the IST/OPG hierarchy until the
object pointer is found or it reaches a leaf of the hierarchy.

First, we find the indices of starting and ending points
of a given object. At a level, i, of the IST/OPG hierarchy,
the leaf node of IST,, IST,i, indicates the starting point of
x-index, I%i, and y-index, Iyi. Second, we directly access the
subspace in the OPGi with Izi and Iyi. The object space,
OPGo[I,i, Zui], has two types of object variables; (1) a pop-
ulation counter and (2) four neighbor variables. Third, we
check the population counter, (OPGo[I,i, Igi].p-c). Here we
have three possible cases: (1) When the subspace popula-
tion is zero, p-c = 0, which indicates no object in this search
result; (2) When the subspace contains one object point,
p-c = 1, the search processing is completed by returning the
pointer, which points to the real object in secondary storage;
(3) Otherwise, we continue to search down to the IST/OPG
hierarchy with the pointer to lower level of the IST/OPG
hierarchy.

Algorithm Object-Search (ISTi, ur, vy) {
// Find the x and v obiect soace indices
i,i = Find(lST,;,k,);“l,; z Find(ISTyi, v,);
//Case of Pooulation = 0: there is no indicated obiect.
ii (OPG[l,~.~x, Iv;] == 0) return null;
//Case of Population = 1: return object address.
else if (OPG[I,i.p-c,Zy;] == 1)

return OPG[Izi.opt, Zvi];
//Case of Population>l: recursive call to lower level IST/OPG.
else return Object-Search(opt.OPGIZzi,Zr,i], vz, vv);
/IOPG[Izi, Zvi].opt points to lower level of IST/OPG.

)

The Object-Insert Operation is used to update the spatial
database with new object information. This operation in-
serts the real object information (Oc,,,)) into the secondary
storage, and then sets the object pointer (opt) to O(,,,) into
the IST/OPG structure. According to the x and y coordi-
nates of an object, we find their OPG indices [1zi, Ivi] from
a given ISTis. After that, the insert operation checks the
population of OPGi[Izi, lgi]. When its population is 0, Ob-
ject-Insert operation inserts the object into the object space
according the following three steps: First, the population of
the object space is initialized. Second, its object space vari-
ables are updated. Third, its relational variables are set.
When the population of the object space is 1, a new object
is inserted to an existing object space. After increasing local
population variables, a new sub level IST/OPG (ISTjs and

3 4 6

OPGj) is created, and both existing and new objects are
inserted into a new level of the IST/OPG hierarchy. In case
of p-c 1 1, a recursive call is performed with the lower level
IST/OPG, OPG[I,i, &].opt, and SplitSpace operation will
be invoked to maintain the threshold (> m).

Algorithm Object-Insert (ISM,, OC~,~)) {
++n.lSMi;// Increase local population.
//Find the x and y space indices.
-UT = MB%, O(,,,)); q, = MBR(Y, O(z,,));
I , , = Find(lST,,, v5); I , , = Find(lST,i, q,);
//Case of Population = 0
if (OPG[I,i, I+] == null) {

/Jp;r;he object pointer to the address of the object
II, I,,l.opt = &O(*,,);

OPGL, I,,].p-c = 1;
//Initialize and increase pop-counter of x and y spaces.
if (OPG[I,i, 0] == null) OPG(I,;, O].p-c = 0;
if (OPG[O, Iv”] == null) OPG[O, I,,].p-c = 0;
++OPG[L, O].p-c; ++OPG[O, I,,] .p-c;
//Set the neighbor space variables.
OPG[I,i, I,i].s,=OPG[l,i,O].z,;
OPG[l,i, I,i].z,=OPG[I,i, O].Z~;
OPG[I,,, ~,il.~u=OPG[0, I,~].YI;
OPG[I,i, I,i].yd=OPG[O, I,i].yd;

z/c ase of Population = 1
else if (OPG(I,,, I,.].p-c == 1) {

++OPG[L, I,,].p-c;
++OPG[L,, O].p-c; ++OPG(O, I,i].p-c;
,/Creates New IST and OPG structures
temp-opt = MAKE(IST, OPG);
,/Inserts existing and new object into new IST
Object-Insert(temp-opt, OPG[I,i, I,i].opt);
Object-Insert(tempapt, Oc,,,));
OPG[I,i, I,i].opt = temp-opt;

Z/C ase of Population > 1
else if{

Object-Insert (OPG[I,i, I,,].opt, Oc,,,));
++OPG[L, I,i].p-c;
++OPG[I,i, O].p-c; ++OPG[O, I,i].p-c;
Split-Space(*IST, ur, WV);

1
1

The Object-Delete operation deletes a spatial object infor-
mation Oc,,,) from the IST/OPG hierarchy and secondary
storage. The required steps are similar to Object-Search
and ObjectJnsert. After completing the delete operation,
Merge-Spaces operation might be invoked to maintain well
balanced IST/OPG hierarchy. Refer to [7] for the details.

5.2 Supplementary Operations for Balanced
IST/OPG Hierarchies

As the consequence of inserting new object information
to spatial object databases, some object space may be over-

flowed (population > threshold, m). Among the X or
Y object spaces, an object space with a bigger object pop-
ulation is selected for the Split. As the next step, a new
object space is created in OPGi, the smallest unassigned

number is chosen (0 < new space index number < r ml),
and the index number is inserted to ISTi. Next, the object
points are partitioned into two groups. The object points in
a group move to the new object space by deletion and inser-
tion operations, oPG’rZ+‘r4’p-c, which is larger than squire

root of local populatioL (a). The existing and new

object spaces may contain f---;i-mland &&,

Algorithm SplitBpace(*IST, v2, q,) {
- Find(lST,;, v5); I , , = Find(lST,,, uy);

y;1.-x ps ace population is larger than y space population.

if (OPG[I,i, O].p-c > Threshold(IST;)) {
Get the new I,i by searching IST,i;
Find the first object’s x coordinate from IST,i;
while (number-of-traverse < Threshold(IST,)/Z)

Traverse nest-object in IST-; bv x value:
while (i <= OPG(i,;, O].p-c)-f ”

Traverse nest-obiect in IST,;:
Get ~11 and vy value of the O(,,,) to move;
Object-Delete(IST,, v,, q,); ObjectJnsert(IST,, (

i/2. y Ps ace population is larger than x space population.
else if (OPG[I,;,O].p-c > ThreshoZd(IST,)) {

Get the new I,; by searching IST+;
Find the first object’s y coordination from IST,,;
while (number-of-traverse < m + 112)

traverse to next-object in IST,i by y value;
while (0 < OPG[I,,, O].p-c) {

Traverse next-object in IST,;;
Get v, and vy value of the Ocz,ll) to move;
Object-DeZete(IST,, v,, q,); ObjectJnsert(ISTi, OC,,,));

1
)

1

By merging thin object spaces into one, we could have
balanced storage utilization. As the consequence of deleting
object information from spatial object databases, some ob-
ject space may be underflowed (population << threshold,

l/Z). Therefore, two smallest spaces among four neigh-
bor spaces (x-1, x-r, y-u, y-d) are selected to merge.

Algorithm Merge-Spaces (*IST, v,, vy) {
//below function will return the order of minimum values.
k = Min-of-Order(p-c.OPG[Q.OPG[I,~, I,*], 01,

OPG[z,.OPG[I,i, I+], O].p-c,
OPG[O, yi.OPG[~,i, &,ill.p-c,
OPG[O, yd.OPG[l,i, &I].P-c)

switch(k) {
case 0: {//this case we merge x with deft space.

while (OPG[I,;, O].p-c){
Get smallest object in OPG[I,i, 0]
//fallowing deletion-and-insertion will move the object.
Object-Delete(lST,,O~,,,)); Object-Insert(lSTi,O(=,~));

}//end while.
}//end case 0.
case 1: {//this case we merge x-right with x space.

while (OPG[OPG[I,i, I,i].zx, O].p-c){
Get smallest object in OPG[OPG[I,i, Ivi].r-r, 01;
Object-Delete(lSTi,O~,,,)); Object-Insert(lST,,O~~,~));

}//end while.
}//end case 1.
case 2: { //this case we merge y with y-down space.

while (OPG[O, I,i].p-c){
Get smallest object in OPG[O, Iv;];
Object-Delete(lSTi,O~,,,));Object-Insert(lST,,O(,,,));

}//end while.
}//end case 2.
case 3: {//this case we merge y-up with y space.

while (p-c.OPG[O, OPG[I,i, Iyi].y-u]]) {
Get smallest object in OPG[O, OPG(I,i, I,;].y-u]];
Object-Delete (IST., 0~~~~)); Object-Insert (ISTd, Oc,,,));

}//end while.
}//end case 3.

) } / /end switch

We introduce the supplementary operations for dynami-
cally changing IST/OPG structure. The Split-Space splits
over-populated object spaces to maintain the population
threshold. On the other hand, the Merge-Spaces merges
two under-populated spaces. As a result, we can reduce
the operation time in IST and the size of OPG in the main
memory. Using these operations, the data structures can be
maintained in a well distributed form. In addition, since we
can run these supplementary operations in offline process,

347

the degradation of the overall IST/OPG performance can
be minimized.

6. CONCLUSIONS
We introduced the IST/OPG hierarchy for a dynamic

management of spatial objects. The hierarchy is constructed
by combining Minimum Boundary Rectangle (MBR), which
is the most widely used method among SAMs; the population-
based domain slicing, which is modified from the Grid File
[14]; extended optimal Integer Searching algorithm [4]. Us-
ing an efficient and dynamic data structure and manage-
ment, we have overcome some limitations of existing SAMs.
We also developed a number of operations for the IST/OPG
hierarchy. From our comparative analysis with other SAMs
such as R-Tree, Rf-Tree and R*-Tree and QSF-Tree, we
have proved that our approach is better than others in the
construction and query time and space requirements. Specif-
ically, for a given search domain with n objects, our query
operations yield o(,/x)compared to O(log n) of the fast
SAM and an IST/OPG hierarchy containing n objects can
be constructed in O(n,/E)time and O(n) space.

7. REFERENCES

PI

PI

[31

[41

[51

P31

171

PI

PI

PO1

WI

Amir, A., Efrat, A., Indyk, P., and Sam&, H. Eficient
regular data structures and algorithms for location and
proximity problems. manuscript
(www.graphics.stanford.edu/ alon/regdata.html).
Andersson, A. Sublogarithmic searching without
multiplications. In Proc. 36th IEEE Symposium on
Foundations of Computer Science, 1995, pp. 655-663.
Andersson, A. Faster deterministic sorting and searching
in linear space. In Proceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science,
October 1996, pp. 135-141.
Andersson, A., and Thorup, M. Tight(er) worst-case
bounds on dynamic searching and priority queues. In
Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing(STOC ‘00), ACM Press, New
York, 2000, pp. 335-342.
Beakmann. N.. Kriegel, H., Schneider, R., and Seeger, B.
The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles. Proceedings of ACM
SIGMOD International Conference on Management of
Data, Atlantic City, NJ, May 23-25, 1990, pp. 322-331.
Bently J. L. Miltidimensional binary search trees use for
associative searching. Communications of the ACM
M(9), 1975, pp. 509-517.
Cho, K. “A Study on Spatial Access Method Based on
Integer Searching Algorithms, ” M.S. Thesis, Dept. of
CST, University of Missouri Kansas City, December
2000.
Gaede, V., and Gunther, 0. Multi-dimensional Access
Methods. ACM Computing Surveys, 30(2), June 1998,
pp. 170-231.
Boas, V. P., Kaas, R., and Zijlstra, E. Design and
Implementation of an Efficient Priority Queue.
Mathematical Systems Theory 10, Springer-Verlag New
York Inc. 1977, pp. 99-127.
Gunther, O., and Bilmes, J. Tree-based access methods
for spatial databases: implementation and performance
evaluation. IEEE Transactions on Knowledge and Data
Engineering, 3(3), Sept. 1991, pp. 342-356.
Gunther, 0. The Design of the Cell Tree: An
Object-Oriented Index Structure for Geometric
Databases. Proc. 5th International Conference on Data
Engineering, 1989, pp. 508-605.

[12] Guttman, A. R trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD Conference ACM, New York. 1984. PP. 47-57.

P31

1141

P51

1171

P31

1191

1201

WI

WI

[231

1241

[251

WI

1271

P81

Henrich. A.. and Six. H. Ho& to Split &cketsin Spatial
Data St%ures. In Geographic Database Management
&stems Gambosi. G.. Scholl, M., and Six, H.W. eds.,
Springer-Verlag, Berlin, 1991: pp: 212-244.
Hinrichs, K. Implementation of the grid file: Design
Concepts and experience. BIT 25, 1985, pp. 569-592.
Hutflesz, A., Six, H. W., and Widmayer, P. The r-file:
an efficient access structure for proximity queries.
Proceedings of 6th IEEE International Conference on
Data Engineering, 1990, pp. 372-379.
Kamel, I., and Faloutsos, C. Hilbert R-Tree: An
Improved R-Tree Using Fractals. Proc. 20th
International Conference on Very Large Data Bases,
1994. pp. 500-509.
Kriegel, H.- P., Horn, H., and Schiwietz, M. The
performance of object decomposition techniques for
spatial query processing. In Proc. 2nd Symposium on
iarge Spatial Databases, Lecture Notes in &‘omputer
Science, 525, 1991, pp. 257-276.
Kuan, J., and Lewis,.P. A study on data point search for
HG-trees. SIGMOD Record, 28(l), March 1999, pp.
90-96.
Nievergelt, J., Hinterberger, H., and Sevcik, K.C. The
grid file: an adaptable, symmetric multikey file structure.
ACM Trans. on database systems 9(l), 1984, pp. 38-71.
Oosterom, P. “Reactive Data Structures for Geographic
Information Systems,” Ph.D. Thesis, Dept. of CS,
Leiden University, December 1990.
Orenstein, J. A., and Merrett, T. A class of data
structures for associative searching. In Proceedings of
SIGART-SIGMOD 3rd Symposium on Principles of
Database Systems, Waterloo, Canada, 1984, pp. 181-190.
Orlandic, R. A High-Precision Spatial Access Method
Based on a New Linear Representation of Quadtrees.
Proceedings of 1st Conference on Information and
Knowledge Management CIKM-92, Baltimore, MD,
1992, pp. 499-50s.
Papadias, D., Theodoridis, Y., Sellis, T., and Egenhofer,
M. J. Topological Relations in the World of Minimum
Bounding Rectangles: A Study with R-Trees, Proce.
ACM SIGMOD Int. Conj. On Management of Data,
1995, pp. 92-103.
Sellis. T.. Rousso~oulos. N.. and Faloutsos, C. The
R-t-‘&eel A Dynamic Index For Multi-Dimensional
Obiects. Proceedinos of the 13th VLDB Conference,
Brighton 1987, pp. 507-518.
Six, H., and Widmayer, P. Spatial searching in geometric
databases. Proceedings of the 4th International
Conference on Data Engineering, Los Angeles, 1988, pp.
496-503.
Wang, W, Yang J., and Muntz R. PK-Tree: A Spatial
Index Structure for High Dimensional Point Data, In
Proceeding of 5th International Conference on
Foundation of Data Organization (FODO98), Japan,
November, 1998.
White, D. A., and Jain, R. Similarity indexing with the
ss-tree, Proceedings of the f%th ICDE, Feb. 1996. pp.
516-523.
Yu, B., Orlandic, R. and Evens, M. Simple QSF-?kees:
An Efficient and Scalable Spatial Access Method.
CKIM ‘99, Kansas City, MO, Nov. 1999, pp. 5-14.

348

