
Exposing the Vagueness of Query Results on Partly
Inaccessible Databases

Oliver Haase
Bell Labs Research

Holmdel, NJ 07733-3030, USA

oli@bell-labs.com

ABSTRACT
Query processing on partly inaccessible databases generally
does not yield exact, but vague result sets. A good notion of
vague sets fulfills two aims: It keeps the degree of vagueness
of the query result as small as possible, and it clarifies the
degree of and the reasons for the vagueness to the end user.
The first goal requires a good internal representation, while
the second goal requires a good external representation of
a vague set. In this paper, we present a novel calculus for
expressive vague sets that meets both requirements. This
is the first approach that is well suited for both internal
and external representation of vagueness induced by par-
tial inaccessibility. It consists of a data representation that
is capable of holding all the necessary information. Com-
plementary, we have accordingly adapted the usual query
language operations. These adaptations are independent of
a concrete query language, to make them applicable to most
existing query languages. The adapted operations minimize
the vagueness of the result, propagate the reasons of uncer-
tainty of the individual vague candidates, and compute an
expressive description of the missing elements.

Categories and Subject Descriptors
H.3.3 [Information Storage and Fbtrieval]: Information
Search and Retrieval-Search process, Selection Process; E.l
[Data Structures]: Distributed Data Structures

General Terms
Algorithms

Keywords
Query Processing, Inaccessibility, Vagueness

1. MOTIVATION
There are many application areas, where a distibuted data-

base has to remain operable even if part of the database is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ClKM’Ol, November 5-10,2001, Atlanta, Georgia, USA.
Copyright 2001 ACM l-581 13-436-3/01/0011...$5.00.

Andreas Henrich
Otto-Friedrich University of Bamberg

D-96045 Bamberg, Germany

andreas.henrich@sowi.uni-bamberg.de

inaccessible due to a network or a machine failure; or be-
cause part of the database is stored on a laptop, which is
temporarily disconnected from the network. These situai
tions are even considered normal, e.g., in the distribution
model of PCTE [ll], the IS0 and ECMA standard for an
open repository; related situations may arise in mobile envi-
ronments, as described in [8]. Furthermore, the ever increas-
ing Internet is hosting many distributed databases [6, 71 for
which - due to the unreliable nature of data sources in the
Internet - partial inaccesibility is simply a matter of fact.
Another reason for partial inaccessibility in the Internet is
network congestion; if a server cannot be accessed within a
certain time period, it must be regarded inaccessible.

As a consequence, a distributed database system for envi-
ronments like these has to take into consideration that the
environment may become partitioned into sub-environments
that cannot communicate with each other. Nevertheless,
the sub-environments have to remain operable, in particu-
lar queries to the database have to be processed appropri-
ately. For this purpose, inaccessibility has to be accord-
ingly dealt with during query processing. First, adequate
inference rules have to be used that keep the vagueness as
small as possible during query processing. Second, the ac-
tual vagueness of the query result must be exposed expres-
sively to the user.

In previous papers [3, 5, 41 we have proposed a solution for
the first aspect. This solution is based on hybrid representa-
tions for vague sets, vague multisets, and vague lists, which
address the accessible elements in an enumerating compo-
nent and the inaccessible (or unreachable) elements in a de-
scriptive component. The main benefit of this approach is
that the descriptive component of a vague collection can
be exploited to improve the enumerating component during
query processing. Although these hybrid representations -
which will be summarized in section 2 - are very beneficial
during query processing, they do neither directly state the
reasons for the uncertainty of individual elements, nor do
they characterize the missing elements.

In order to overcome these shortcomings, we have devel-
oped a suitable representation of expressive vague sets, as
well as appropriate adaptations of the usual query opera-
tions. An expressive vague set comprises the following in-
formation:

1. For each uncertain element of a set the reasons for the
uncertainty are maintained in a predicate represent-
ing its uncertain properties, i.e. the properties which
could not be evaluated unambiguously due to partial
inaccessibility of the database.

4 9

2. In addition, a so-called warrant of apprehension is
maintained for an expressive vague set. In contrast
to the descriptive component of a vague set which de-
scribes the properties of all relevant objects including
the explicitly enumerated elements, this warrant of ap-
prehension describes only the missing elements.
The warrant of apprehension informs the user about
the degree of incompleteness of a vague result set -
e.g. if the user is told that all missing elements reside
on a certain server. In addition, it can be used to
search for the missing elements later, when the acces-
sibility situation will have changed.

Since this approach leverages, extends, and complements
the basic ideas of the previously proposed representations of
vague sets, it can best be introduced by shortly summariz-
ing our hybrid representation of vague sets. Hence, we will
sketch the idea of vague sets in section 2 before introducing
expressive vague sets in section 3. Section 4 will consider
related approaches, and section 5 concludes the paper.

2. VAGUE SETS
For a comprehensive calculus for vague sets, we need both

a suitable representation, as well as appropriate operations.

2.1 Representation
From an abstract perspective, a query evaluated on a

partly inaccessible distributed database partitions the data-
base in four types of elements:

1. Accessible elements for which we can decide that they
surely belong to the result set, because all query condi-
tions can be tested completely based on the accessible
parts of the database.

2. Accessible elements for which we can decide that they
surely do not belong to the result set.

3. Accessible elements for which we cannot decide whether
or not they belong to the result set, because the eval-
uation of at least one query condition would require
access to the inaccessible part of the database.

4. Inaccessible elements.

Unfortunately, the situation gets even more complex if we
take procedural query processing into account. Then, we are
faced not only with inaccessible, but also with accessible still
unreachable elements. An element i is unreachable, if query
evaluation would require the traversal of a path via at least
one inaccessible element to get i. Please note, that such sit-
uations are conceivable with object-oriented databases when
following relationships, as well as with relational databases
when evaluating joins.

To deal with this additional source of uncertainty, the
hybrid representation of a vague set V comprises:

l An enumerating component which is made up of an
explicit lower bound p~ and an explicit upper bound cu.
The explicit lower bound contains the accessible and
reachable elements which surely belong to the result,
while the explicit upper bound contains the accessible
and reachable elements for which we cannot be sure
that they do not belong to the result, e.g. because the
evaluation of a condition would require access to the
inaccessible part of the database.

l A descriptive component I&, which defines the prop-
erties of all relevant elements including those we could
not access. To represent the descriptive component,
we use a logical predicate with one free variable, writ-
ten as 6~ E Predl. As a further convention, we use
the notation ‘S,(i)’ to indicate that i is the (only) free
variable in 6~. The descriptive component states for
each element j of the foundation set, if j surely be-
longs to the correct answer (i.e. SV evaluates to t for
j: [&(j)] = t), if it maybe belongs to the correct an-
swer ([&(j)] = u), or if it surely does not belong to
the correct answer ([6v (j)] = f).

As can be seen, due to partial inaccessibility of the
database the descriptive component must be evaluated
three-valued.

This predicate can be used to check for concrete ele-
ments, whether they belong to the result, or not.

Formally, a vague set over the foundation set T can be
defined as follows:

Definition 1 (vague sets). The triple V = (vj,, pU,&(i))
with p~ C T, cV 5 T, SV E Pre& is a vague set over the
foundation set T (V E G(T)), iff

h h
VA c K

A foralljECA:[[6v(j)]=t
A ~oranjE~~\\~:[6v(j)]=u

An exact set S E T is contained in V, iff all elements of c~
are also in S and 6~ evaluates at least to b’for all elements
in S.

To demonstrate the adequacy of this representation, an
example is useful:

Example 1. Assume the distributed database depicted in
figure 1. This might be an object-oriented database with
a link concept, or a hypertext system consisting of HTML
pages or XML documents. Now, consider the query q:

Select all groups of all departments at the univer-
sity in “Barnberg” which have at least one mem-
ber playing golf.

evaluated on this partly inaccessible database. Obviously,
the correct answer to this query would be the set containing
groups 91, 93, and 95.

Since server 3 is inaccessible, we cannot compute this re-
sult. Instead, normal inside-o& evaluation starts with uni-
versity ‘1~1, navigates to the (accessible) departments dl and
d3, and further to their respective groups 91, g2, g5 and gs.
Because 91 has the member ml playing golf, it surely belongs
to the query result; because ms, which is the only member
of 92, has the hobby “fishing”, g2 surely does not belong
to the result; and because g5 and ge both have inaccessible
members, but no accessible members playing golf, we cannot
decide whether or not they belong to the query result. Due to
the inaccessibility of server 3 the link from u1 to d2 cannot be
traversed. As an effect, groups g3 and g4 cannot be reached,
although they are accessible. Moreover, the query processor
cannot know, how many unreachable candidates exist.

S O

q uni�wsifies 0 depame�tS 0 gmupr w memben

Figure 1: An example database

To sum up, the ezplicit lower bound CA of the vogue result
set V comprises only 91, while the ezplicit upper bound %
consists ofg,, 95, andga.

The descriptive component S”(g) of the “ague result V re-
quires (1) that (I candidate g must be of type group, (2) that
it must hove on incoming link from a department d, (3) that
d must have an incoming link from a university U, (4) that
the u&e of the attribute location of 1~ must be “Bomberg”,
(5) that g must have an outgoing link to a member m, and
(6) that the value of the attribute hobby of m must be “golf”.

As will be seen in the following section, the descriptive
component of this hybrid representation can be exploited
during query evaluation to keep the number of accessible,
but unreachable elements as small as possible.

2.2 Query Operations
The adaptations of the usual query operations to vague

sets state the rules for the step-wise computation of the enu-
merating and the descriptive component of a vague result
set. Here, we do not present the individual query opera-
tions; the interested reader is referred to [5]. Instead, we
show by the example of vague set intersection the key tecb-
nique for the minimal propagation of vagueness during query
evaluation. The same principle will be incorporated into the
treatment of ezpressiue vague sets, as will be seen in section
3 .

The computation of the result X of the intersection V “3
W of two vague sets V and W consists of two parts: the
computation of the enumerating component, and the corn-
putation of the descriptive component. Please note that we

use the index “3”, if we refer to operations on vague sets. If
an operator is written without index, we always refer to the
exact, completely accessible case ‘.

Let us start with the descriptive component 6.x. Since
each element of X must be an element of V and an element
of W, 6x is built as the logical conjunction of 6v and 6~:

6x(i) = S”(i) A&v(i)

For the calculation of the enumerating component of X,
the situation is a bit more complicated. If we did not we a
descriptive component in our representation, we would com-
pute the explicit lower bound 2, of X as the intersection
of % and @A, because only elements that are certainly con-
tained in both input sets are also certaiily contained in the
result. For the explicit upper bound X, of X, the follow-
ing consideration is crucial (still assuming we did not use
a descriptive component): Each element of % could be a
(unreachable) candidate of @” - and consequently of r?,
-,_and vic%ersa. Hence, we would have to build the union
of v, and W, to construct X,.

The situation with descriptive components is different:
Here, wzau apply 6~ to each element of the explicit upper
bound W, zf W, to check if the element actually is a can-
didate for V. (or even VA), and vice versa. Thase elements
i with [S”(i)] = f can explicitly be excluded ~ in contraSt
to the situation without descriptive component. Obviously,
a vague set with less wrong candidates is more precise than
one with more wrong candidates.

The above considerations lead to the following rules for
the computation of the enumerating part of X:

2, = (CA “{i E i?” 1 [S”(i)] = t))
- ^

n (WA u {i E v, I [&v(i)] = t))
= {i E 9” ” @” 1 [Lb(i)] = t} A [SW(i)] = t})

X” = (k u {i E W" I [b(i)] # f))
- ^

n (WA U Ii E V, I l&v(i)] # fl)

= {i E i?'Uie" I [b(i)] # f) A [&v(i)] # f})

Example 2. To demonstmte the usefulness of the above def-
inition, let us consider the intersection X E Vn.sW where V
is the vogue result set from ezample 1 with V, = {gl, gs, ge}),
and W is D vague set whose eqplicit upper bound contains
all accessible group objects, i.e. W, = {g,,gz,gs,g+gs,ge}.
Without a descriptive component - knowing only that V is
incomplete ~ we would have to we X, = {gl , ga , 93, ga,
gs, 96). The application of the descriptive component of V
allows us to restrict /?v to {gz , 93, gs, ge}, because gs and ga
do not have a member playing “golf”.

As we have seen in this section, the hybrid representation
of vague sets (together with the adaptations of the usual
query operations) is well suited to minimize the vagueness

‘To avoid unnecessarily complex syntax, we use the index
“3” only to indicate the vague adaptation of a query opera-
tor. Logical junctions are noted without this index, because
their three-valued evaluation should be obvious in the re-
spective context.

5 1

during query processing. On the other hand, this represen-
tation lacks an expressive explanation of the degree of and
the reasons for the vagueness induced by partial inaccessibil-
ity. In order to overcome this shortcoming, the next section
presents our approach for expressive vague sets.

3. EXPRESSIVE VAGUE SETS
The representation of vague sets presented in the previous

section was intended to optimize the quality of the query
result on a partly inaccessible database. However, the end
user should and can be given an expressive explunation of the
induced vagueness. This explanation consists of two parts:

1. For each uncertain candidate in the explicit upper
bound of the expressive vague set, we indicate the rea-
son, why we could not include the candidate in the
explicit lower bound. We call this information the un-
certain properties of a candidate.

To become more concrete, all uncertain c_andidates i
of a (expressive) vague set V (i E V, \ VA) have in
common that due to partial inaccessibility some query
condition could not be evaluated. In terms of vague
sets as presented in section 2, this means that we can-
not decide whether the two-valued evaluation of the
descriptive component for i would yield t or f.

The descriptive component states exactly the proper-
ties a candidate i must fulfill to qualify as an element
of the correct query result. However, in the general
case, not all sub-predicates of the descriptive compc-
nent represent uncertain properties of i; in contrast,
those sub-predicates which are evaluable even in the
case of partial inaccessibility, are for sure. If we re-
place these evaluable sub-predicates of the descriptive
component by their respective truth values and sim-
plify the resulting predicate, we will get a simplified
predicate which states exactly the uncertain proper-
ties of i. Or to phrase it differently: If i fulfills this
new predicate, it belongs to the desired query result.
We will denote these uncertain properties with UPv
in the following.

2. We describe the missing elements. The description of
these elements is called the warrant of apprehension.
In contrast to the descriptive component of a vague
set which describes the properties of all relevant el-
ements including the explicitly enumerated elements,
this warrant of apprehension describes only the miss-
ing elements.

For a concrete query a good description of the char-
acteristics of the missing elements might be something
like “there are some elements missing in the result and
these elements either reside on server sa, or they can
be reached from an element in the set Y via a path
traversing server sr “.

The warrant of apprehension informs the user about
the degree of incompleteness of a vague result set -
e.g. if the user is told that all missing elements reside
on a certain server. In addition, it can be used to
search for the missing elements later, when the acces-
sibility situation will have changed. We will denote
the warrant of apprehension with $V in the following.

While the uncertain properties of the uncertain candidates
can be derived from the descriptive component of a vague set
(though this would be unnecessarily inefficient), the warrant
of apprehension is generally not derivable from a vague set.
This part of the vagueness explanation requires an extended
data representation.

3.1 Representation
In this section we propose the formal representation of

expressive vague sets.
Analogous to a vague set, an expressive vague set con-

tains an explicit lower bound and an explicit upper bound.
The descriptive component is replaced by the warrant of ap-
prehension which describes only the missing elements and
therefore clarifies the degree of incompleteness of the result.
More precisely, the warrant of apprehension is a predicate
which would - in case of complete accessibility - yield t
for an element which belongs to the result but is missing in
the enumerating component. For the elements in the enu-
merating component and for those elements which should
not be in the result it would yield f. Due to inaccessibility,
it can also yield u if a condition cannot be evaluated.

As an additional component, an expressive vague set also
contains one predicate per explicit element i E V,, indicating
its uncertain properties. To keep the technique as simple as
possible, not only the uncertain candidates (i E cV \ PA) but
also the sure elements (i E q,) get such a predicate assigned.
Of course, the uncertain properties of a sure element i E p~
is simply the truth value t.

In order to better distinguish expressive vague sets from
vague sets, we will use caligraphic letters A, . . . , 2 for ex-
pressive vague sets in the following.

Definition 2 (expressive vague sets). The quadruple
v = (Pi, it,, sv, WV) with & C T, p,, g T, $V E Predl,
UPv : qV -+ Predl as an expressive vague set over the foun-
dation set T (V E 6&(T)), in2

n A
vx c v,

A for all i E CA : [UPv (i)] = t
A foralZiE~\&:[[UPv(i)]=u
A for all i E PV : [$v(i)J = f

In this definition, the mapping UPv maps each element
of vV to a predicate representing its uncertain properties.

Now, that we have defined our notion of an expressive
vague set, we have to show how a query on a partly in-
accessible database can be transformed into an equivalent
expressive vague set.

3.2 Query Operations
Before we can discuss the individual query operations, we

have to do some preparatory work:
The computation of the uncertain properties of an un-

certain candidate of an expressive vague set requires the
partial evaluation of a logical predicate. This partial evalu-

2Note that UPv(i yields a predicate with a free variable.
As a consequence, UPv(i)] stands for the evaluation of this
predicate for the element i.

5 2

ation eliminates the evaluable sub-predicates of a complex
predicate. Instead of the complete evaluation of a predicate
which yields one of the truth values ‘t’, ‘f’, or ‘u’, the par-
tial evaluation yields a new, simplified predicate. Informally
speaking, partial evaluation means to insert the respective
truth values t and f for the evaluable sub-predicates, and to
simplify the resulting predicate.

Only the partial evaluation of an existence- or all-quantified
predicate is a bit more complicated, because in our context,
the foundation set V in ‘Sk E V : p(k)’ or ‘VA E V : p(k)’
will itself be an expressive vague set, since V is usually
the vague result of a subquery evaluated on the partly in-
accessible database. Consequently, we have to deal with
a predicate p of the form ‘p(i) = 3k E V : q(k,i)’ or
‘p(i) = Vk E V : q(k,i)’ where V is the result of a vague
subquery and q(k, i) stands for a predicate testing the de-
sired relationship between k and i (e.g. some type of join-
condition).

Let us discuss the consequences for existence-quantified
predicates; for all-quantified predicates, similar considera-
tions hold true:

If the foundation set is an exact set, i.e. V = {ZI, . . . , In},
then partial evaluation of ‘3k E V : q(k, i)’ will mean (1) to
transform the predicate to a disjunction ‘VkEIk,,.,,,k,l q(k, i)‘,
and (2) to partly evaluate this disjunction through insertion
of a different Zi per ki, and final simplification3. Formally,
this will lead to [p(j)lp gf [VI,, q(Z, j)]“.

If the foundation set is a complete expressive vague set
V, i.e. with vague candidates but no missing elements, then
we will have to indicate the circumstances in which the par-
tial evaluation of q for an element Zi is really relevant for
the partial evaluation of the complete quantified predicate;
this is the case if the uncertain properties of the respec-
tive element evaluate to true, i.e. if the candidate really
belongs to V. Consequently, we have to conjoin the indi-
vidual partial evaluations of q with the uncertain properties
of the respective element Zi. This technique “‘weights” the
influence of the individual sub-parts to the complete partial
evaluation. As a consequence, for p(i) = 3k E V : q(k,i)
we can define the partial evaluation for the element j as
MdlP 59 [V& upvw A q(k JIIP.

Finally, if the foundation set is an incomplete expressive
vague set V, we will have to take into consideration the
contribution of the missing elements of V. Therefore, we
have to complete the partial evaluation of p(i) = 3k E V :
q(k, 4 to Mdlp gf [Vi,vu UPv(1) A q(2, j)]” v (3k : $v(k) A
q(k, 9).

This leads to the following formal definition of partial eval-
uation.

Definition 3 (partial evaluation). Let p(i~, . . . , in) be
an wary predicate (p E Pred,); jl, . . . , j, elements of the
foundation set T. Further, let i be the vector (in, . . . , in),
andj thevector(jl,...,j,).

The partial evaluation b(j)]” of p for j is defined induc-
tively over the structure of p:

3Please note, that i and k stand for formal variables, while
j and I stand for the concrete elements for which the partial
evaluation is performed.

. p(i) atomic:

1 t
WH” fZ!

, if b(j)1 = t
f , if b(j)1 = f

P(i) , if [P(j)1 = u
l p(i) = q(i) A r(i):

f, if k7(j)lp = f or [r(j)l” = f
b(j)]" it! W)lp~ if In(j = t

Mdl”, if tr(j)l” = t
[r(j)]” A [q(j)lp, otherwise

l p(i) = q(i) V r(i):

[p(j)lp S!

I

t, if [q(j)lp = t or [r(j)]” = t

[WI”, if W)l” = f
Mdl”, if [+)I” = f
[r(j)]” V [q(j)]“, otherwise

l p(i) = lq(i):

Mj)]” 22
f, if W)l” = t
t, if [n(j)l” = f
-[q(j)]P, otherwise

l p(i)=3kEV:q(k,i):

b(j)]” z[V VPv(Z)Aq(l, j)]“V(3k : $v(k)Aq(k,i))

I&”

l p(i)=Vk~V:q(k,i):

[p(j)]’ 21 A VPv(Z)Aq(l, j)]“A(Vk : $v(k)Aq(k,i))

KcJ

As we will see in the following, we will use the partial
evaluation of certain predicates to compute the uncertain
properties of the vague candidates of an expressive vague
set .

3.2 . 1 Start Sets
Queries in all types of query languages start from one or

several independent initial sets of elements - called start sets
in this paper. In SQL, e.g., these start sets are defined in
the froai-clause of a query. From an abstract point of view,
a start set consists of all elements in the database which
fulfill a certain predicate. In practice, this predicate is often
related to the element’s type, like, e.g., in SQL.

With this understanding in mind, we can define an op-
erator @a which returns a start set computed on a partly
inaccessible database.

Let T denote the (infinite) set comprising all potential
elements for the underlying datamodel, and let 0 denote
the set of all elements actually contained in the database
at the time of query evaluation - including the elements
residing on the inaccessible parts. Then the signature of
the operator @s which receives a database and a predicate
and yields an expressive vague start set would be @a : T x
Predi + 6&(T). However, since the first operand of @s
would always be 0, we omit it in the following and get
@a : Predi + G,(T). A typical instantiation would be

5 3

@a(type(i) = group) denoting that the start set is to include
all elements of the entire database with type group.

Based on these notations, we define the rules for the com-
putation of an expressive vague start set. These rules are not
completely independent of the underlying datamodel and
distribution model. However, we can still formulate helpful,
widely applicable rules. Necessary adaptations to a concrete
datamodel must be made on? case-by-case basis.

The explicit lower bound V,+ of an expressive vague start
set U = @s(p) comprises all accessible elements of the database,
for which the predicate p is evaluable and evaluates to t.
Analogously, the explicit upper bound @, comprises all ac-
cessible elements of the database, for which the predicate
p either evaluates to t, or is not evaluable. In the follow-
ing, let {si,..., sn} denote the set of inaccessible segments.
A segment is intented to be a very abstract concept; in a
real database, this can, e.g., be a particular server, a logical
cluster of servers, or a relational table. Additionally, let the
function lot denote the segment an element is residing on.
Then, c~ and p, can be computed as follows:

VA = {j E 0 1 [lot(j) $z (91,. . . , s?l} A P(j)] = t}

it = {j E 0 1 [lo&) $z (91,. . , Sn} A P(j)] = u}

For type extensions, such as the above example @(type(i) =
group), the lower and the upper explicit bounds typically
both contain the same set of elements. This is true if the as-
sumption holds that whenever au element is accessible also
its type information is accessible. If this is not the case,
zv will additionally contain those elements for which the
type information cannot be accessed. Although this situa-
tion might seem rather academic for type information, it is
more realistic for start sets using other predicates.

This leads us to the definition of the uncertain properties
for the elements in 2; \ ?,,. For an expressive vague start
set V = @s(p), au element i is an uncertain candidate, i.e.
i E ?,, \ Ed, if part of the predicate p cannot be evaluated.
Hence, the uncertain properties are exactly the partial eval-
uation of the predicate p. Please note, that p might be a
complex predicate, only parts of which are unevaluable for
a particular element:

UPv(j) = Ipw
Finally, for the definition of the warrant of apprehension we
can distinguish two cases: (1) The start set has been com-
puted completely, and the query processor is aware of it.
This is the case if either the entire database is accessible,
or the inaccessible part cannot possibly host any relevant
elements. (2) The start set has not been computed com-
pletely, or the query processor cannot be sure if there are
any elements missing.

If some elements are (or could be) missing, they have to
fulfill the predicate p, while they are residing on an inacces-
sible segment:

S,(i) =
f , if V is complete
p(i) A lot(i) E {Sl,. . , sn} , otherwise

It is worth mentioning that especially the inclusion of the
locality information lot(i) E (~1,. . , sn} enhances the ex-
pressiveness of the warrant of apprehension.

In so-called semantic, navigational datamodels, or in highly
distributed, e.g. Web-based databases, queries often start

with one single root object, instead of an entire set of ob-
jects. The rules above also apply to start sets containing
only one particular element, as shows the next example:

Example 3. Assume, we have accessed the object u1 (repre-
senting Bamberg Un~vers~ty) of OUT example database given
in figure 1 by some type of navigational operation, and we
want to formulate a query relative to this object as its start-
ing point. In this case, the start set N of the query would
have the representation i?~ = {ui}; @, = {ui}; UPS =
t; $(i) = f. We will use this start set as the basis for our
running example.

3.2.2 Navigation
The next operation, set-wise navigation, is highly vulner-

able to partial inaccessibility, as the destination elements
can reside on the inaccessible part of the database. We will
spend this operation special consideration.

Navigation is based on the traversal of a link in an object-
oriented database or in a hypertext environment. The op-
eration starts at a given source set, traverses a specified set
of links per source element, and returns the union of all des-
tination elements. It can be considered a special kind of
relational semi-join Ri ~0 Rz, where the join predicate 0
is materialized as links. Semi-join in turn can be expressed
as the concatenation of normal join and projection to the
attributes of Rz.

What is important in our context is, that the join predi-
cate, e.g. equality of the identically named attributes for a
natural semi-join, must be materialized and stored together
with the respective originating elements. Then, in order to
find the peers of the source set, we do not need to scan the
entire set of potential destination elements, but we can just
follow physical links, pointing from a source element 01 to
a destination element 02, denoted as 01 + 02. This is a
crucial feature of most highly distributed datamodels. In
addition, we assume that links are typed (with the link type
corresponding to the semi-join predicate O), and we use the
notation 01 4 02 if a link of type It points from 01 to 02.
As a final syntactical convention, the set of all destination
elements reachable via links of type It that originate at a
certain element o is denoted by (o 3).

In the two-valued, completely accessible case, navigation
x (S, It) gets a source set S and a link type It as input, and
has the semantics x(S, It) = Uies(i 3).

In case of partial inaccessibility, three-valued navigation
X = xs(V, It) gets an expressive vague set V and a link type
It as input, and produces as output an expressive vague set
X, whose computation will be discussed in the following.
For this discussion, it is important to note that the set (i 4)
of destination elements, reachable from i via links of type
It, generally cannot be computed completely, because some
destination elements might reside on the inaccessible part of
the database. Similar to the enumerating component of a
F set, we denote those elements that are accessible with

(i %).
For the computation of the explicit lower bound &, we

compute the set of all accessible destination elements of esch
element of the explicit lower bound of V, and we build the

5 4

union of these sets. The computation of the explicit upper
bound ?&, is done analogously.

wx=u~ ; 2?,= (Jyzj
i& id&

For each uncertain candidate j of X, there are two pos-
sibilities that j really belongs to X: Either (a) one of the
source elements i with i 2 j - that can only be uncer-
tain candidates in V, otherwise j would be in 2’~ - really
belongs to V, or (b) there is an element missing in V that
refers to j.

This consideration leads to the rule for the computation
of the uncertain properties of the elements of X:

Missing elements in X are all those elements for which
there is an origin element in the enumerating component of
V but that reside on the inaccessible part of the database,
or for which all origin elements in V are missing themselves:

$ x (j) = (SiEP:i%jAloc(j)E{si,...,s,})

V(3i : $v(i) A i % j A tlk E % : j @ (k 3))
We illustrate the rules for the computation of vague naviga-
tion by means of an example:

Example 4.
Coming back to our query “Select all groups of all de-

partments at the university in ‘Bamberg’ which have . . .”
from example 1, we can now navigate in two steps frvm the
object ‘1~1 representing the university in “Barnberg” to the
related group objects. As a $rst step we consider the query
0 = ~({ui}, dep), i.e. 13 = ti(N, dep) with respect to ex-
ample 3, searching for all departments which can be reached
from ui. We get:

6~ = {dl,ds}; 6 , = {dl,ds}
UPo(dl) = t; UPo(ds) = t
$0(j) = ~1’3 j A lot(j) = server 3

When we extend our example query further to P = M (M ({ui},
dep), group) we get:

6 = {gl,@rg5,!?6); 6 = {91,92,95,L?6)
UP,(g1) = t ; UPp(g2) = t

vpP(g5) = t; upP(g6) = t

e,(j) = (3 E {dl,ds} : i “?‘j A lot(j) = server 3)

V(3i : ‘111 “3 i A lot(i) = server 3
/\i ‘*Tp j A Vk E ‘{ii, ds} : j @ (k “2”“))

Please note, that $,(j) might not seem to be an eas-
ily readable description of the missing elements. However,
$p(j) contains all conceivable information about the miss-
ing elements, and can be automatically transformed into a
human-readable description such as: “Elements with the foL
lowing properties might be missing: (I) Group objects resid-
ing on server 3 which are related to the department objects dl

or ds. (2) Group objects that can be reached from a depart-
ment object on server 3 which is linked to ui . ” Additionally,
graphical representations of the corresponding relationships
could further illustrate the formal warrant of apprehension.

3.2.3 Selection
Another important query language operator is selection u.

Its adaptation to expressive vague sets maps an expressive
vague input set and a selection predicate to an expressive
vague result set, i.e. os : G,(T) x Predi + G,(T). In
order to name the individual elements of the vague input set
- which are checked against the selection predicate - we
bind them to an element variable. Thus, vague selection is
denoted as X = crs(e : V,p(e)).

The computation of the expressive vague result set X is
straightforward. We start with the enumerating component:

For each explicit element j E & we check p, in order to
decide whether or not j belongs to the result.

-XX = {j E PA I [p(j)] = t)

XJ = {j E E I [P(j)1 # f1
The warrant of apprehension of the result is the logical con-
junction of the warrant of apprehension of the expressive
vague input set and the predicate p, because a missing ele-
ment must obey both conditions.

$x(i) = h(i) Ap(i)

Finally, the uncertain properties of the explicit elements of
X are the partial evaluation of the conjunction of the un-
certain properties of the input and the predicate p.

UPx(j) = [UPv(j) A p(j)lP

Example 5. As an example for selection we reconsider our

example query “Select all groups of all departments at the
university in ‘Bamberg’ which have at least one member
playing golf” :

Q = 4 g : ~(~({ull, dep),grw),
3m E “({g}, member) : hobby(m) = golf)

For the expressive vague result set & we get:

6X = {$?I), 6v = {gl,g5,5?6), u%(gl) =t
UPQ(g5) = 3m : g5 meqber m A lot(m) = servers

Ahobby = gorf

upQ(g6) = 3m : g6 me3ber m A lot(m) = s e r v e r s

Ahobby = go1f
$Q(j) = ((3 E {dl,d3} : i gT?p j A lot(j) = s e r v e r 3)

V(3i : u1 “2 i A lot(i) = serwer 3

Ai gr?P j A Vk E {di, da} : j $ (k “‘9”“)))
A3m : j meqber m A hobby(m) = golf

3.2.4 Binary Set Operations
As one example for a binary set operation, we consider the

expressive Vague Set Intersection X = V fla W. Expressive

5 5

Vague Set Union X = V lJ3 W and expressive Vague Set
Difference X = V \s W can be treated analogously.

The computation of the enumerating component is very
similar to the rules for vague sets, as stated in section 2.2.
The only exception is, that we use the warrant of apprehen-
sion instead of the descriptive component, in order to check
whether an element of the enumerating component of one
input set also belongs to the other one.

XX = (VA u {i E WV 1 [$v(i)] = t})

n (WA u {i E v , I [f&~(i)] = t})
-%I = (vlJ u {i E i?tJ 1 [h(i)] # f})

f-l (WA u {i E KJ I [$w(i)l # f))
Each missing element of X must be both missing in V

and in W, otherwise it is either already in the enumerating
component of X, or it does not belong to X:

$x(i) = $v(i) A SW(i)

The uncertain properties of an element of X is the logical
conjunction of its uncertain properties for V and its uncer-
tain properties for W. This is because the element must
be in both input sets in order to qualify for the result. For
elements that have not been in the enumerating component
of one of the input sets, we compute the uncertain proper-
ties for this input set through the partial evaluation of the
respective warrant of apprehension.

UPx(j) =

i

UPv(j) A UPw(j) , if j E % and j E Fv
UPv(j) A [$w(j)lp , if j E % and j # zv
[$v (j)]” A UPW (j) , if j $ % and j E %u

4. RELATED WORK
The articles [l, 9, 12, 13, lo] are concerned with vague

sets resulting from vague attribute values - sometimes called
rozlgh sets. A rough set approximates an exact set by a lower
bound (containing all elements surely contained in the de-
sired set) and an upper bound (containing all elements po-
tentially contained in the desired set). The most important
difference between these notions of vague sets and our ap-
proach is that all papers mentioned above pre-suppose the
accessibility of all relevant data. Consequently, these repre-
sentations do not need a descriptive component. The work
presented in [2] deals with partial inaccessibility as follows:
A partial answer consists of an incremental query, which ma-
terializes the evaluable sub-queries. This incremental query
cil~l be issued as soon as the inaccessible data become avail-
able. In addition, the user can formulate so-called parachute
queries which extract some information from the partial an-
swer. Our own previous work [3, 5, 41 was focusing on good
internal representations of vague collections, but neglected
to also represent and compute the degree of and the reason
for the vagueness induced by partial inaccessibility.

5. CONCLUSION
In this paper we have presented our notion of expressive

vague sets, which is a significant enhancement of the vague
sets we had proposed in previous papers. While vague sets
are well suited to keep the vagueness of a query result eval-
uated on a partly inaccessible database as small as possible
during query processing, expressive vague sets additionally

compute the reasons for and the degree of the actually in-
duced vagueness. This information explains to the end user
why some result elements must be considered vague candi-
dates, and it describes themissing elements.

After having implemented our concept of vague sets into
an algebraic query language for the PCTE datamodel, we
are now implementing it into XQuery, the WWW Consor-
tium’s proposal for an XML query language. XML based
databases are a promising application domain for two rea-
sons: XML is experiencing more and more acceptance as a
common representation format, and queries on XML docu-
ment bases distributed over the unrelyable Internet are most
likely to benefit from our apporach.

Another interesting open issues for further research is the
transformation of an expressive vague set to a natural lan-
guage like representation.

6.
PI

PI

131

141

151

I61

[71

PI

PI

WI

WI

PI

[I31

REFERENCES
S. Abiteboul, P. Kanellakis, and G. Grahne. On the
representation and querying of sets of possible worlds.
In Proc. IGMOD 1987, San Fhnzisco, CA, 1987.
P. Bonnet and A. Tomssic. Partial answers for
unavailable data sources. In Proc. FQAS’98, LNXTS
1495. Springer, 1998.
0. Haase and A. Henrich. Error propagation in
distributed databases. In Proc. ACM CIKM’95, 1995.
0. Haase and A. Henrich. A closed approach to vague
collections in partly inaccessible distributed databases.
In Proc. ADBIS’99, LNXTS 1691, Maribor, Slovenia,
1999. Springer.
0. Haase and A. Henrich. A hybrid representation of
vague collections for distributed object management
systems. IEEE lPransactions on Knowledge and Data
Engineering, 12(3):448-467, May/June 2000.
0. Haase, A. Schrader, K. Geihs, and R. Janz. Corba
directories for virtual home environments. In Proc.
SoftCOM’99, Split - Rijeka, Croatia, Trieste - Venice,
Italy, 1999.
0. Haase, A. Schrader, K. Geihs, and R. Janz.
Mobility support with corba directories. In Proc.
CNDS’OU, San Diego, USA, 2000.
A. Heuer and A. Lubinski. Database access in mobile
environments. In Proc. ICDE’96, LNiCS 1134, Ziirich,
1996. Springer.
J. Morrissey. Imprecise information and uncertainty in
information systems. ACM fiansactions On
Information Systems, 8(2):159-180, 1990.
Z. Pawlak. Rough Sets. International Journal of
Computer and Information Sciences, 11(5):341-356,
1982.
Portable Common Tool Environment - Abstract
Specification / C Bindings / Ada Bindings. IS0 IS
13719-l/-2/-3, 1994.
E. Wong. A statistical approach to incomplete
information in database systems. ACM !&ansactions
on Database Systems, 7(3):470488, 1982.
L. Y. Yuan and D.-A. Chiang. A sound and complete
query evaluation algorithm for relational databases
with disjunctive information. In Proc. PODS’89,
Philadelphia, Pa., USA, 1989.

5 6

