
Error Propagation in Distributed Databases

O. Haase, A. Henrich

Praktische Informatik, Fachbereich Elektrotechnik und Informatik

Universitat Siegen, D-57068 Siegen, Germany

Email: {haase,henrich} Qinformatik.uni-siegen.de

Abstract

An interesting research area for distributed database sys-
tems is inaccessibility. Even if part of the database is in-
accessible, a query should be evaluated reasonably. This

means, that appropriate rules for propagation and minimiza-
tion of errors induced by inaccessibility are needed. Further-
more, the result of a query in a distributed database system
must be regarded to be potentially vague.

In this paper we present a hybrid representation for vague
sets, that consists of(1) an enumerating part, which contains
the elements we could access during query processing, and

(2) a descriptive part, which describes the relevant elements
we could not access. Further we introduce propagation rules,
which can be used to minimize the vagueness of a query re-

sult represented in this hybrid way. Thereby, we propose
different levels of accuracy for the descriptive part.

As far as we know this is the first approach using a de-
scriptive part to qualify the missing elements of a result.
An example for the usefulness of the descriptive part arises,

if we have to calculate the intersection of two subqueries.

Here, the descriptive part of the first operand can be used
to check for each element of the second operand, whether it
should be part of the first operand, and vice versa.

1 Introduction

One main characteristic of distributed database manage-

ment systems is that due to network or machine failure, the
environment may become partitioned into sub-environments
that cannot communicate with each other. In this case,
the sub-environments should remain operable, in particular
queries to the database should be processed in an appr~

priate way. To this end, inaccessibility hzs to be concerned

during query processing. On the one hand, this means that
an expressive error report has to be sasigned to the com-
puted result in order to clarify the reasons for failure to the

user. On the other hand, adequate error propagation rules
have to be used that keep the error as small as possible
during query processing.

In this paper, we focus on the problem of error propaga-

- ~~ b“
CIKM ’95, ~rc MD USA
O 1995 ACM @89791 -812495i11..$3.~

tion, aiming towards error minimization.
With respect to a query, evaluated on a database with

inaccessible parts, the database cart be logically divided into
three parts: (1) those elements, which surely fulfifl the query,
(2) those which surely do not fulfill the query, and (3) those,
which may or may not fulfill the query, depending on the

inaccessible parts of the database – e.g. because the element
itself is located on the inaccessible parts of the database or
because a condition for an element located on the accessible

parts of the database cannot be evaluated because this would
require access to inaccessible parts of the database.

We can represent these three sets by the ‘egg-yolk’-model

[CG94]. The egg yolk represents the set of surely contained
elements, the egg-white the set of possibly contained ele-
ments, and the outside represents the set of surely not con-
tained elements. This gives a graphical impression of the
vague sets we deal with in this paper.

Obviously in a distributed database taking inaccessibility

into account, not only the final result of a query, but also
all intermediate results must be regarded to be potentially
vague. Hence, we have to define rules to combine vague sets

by extensions of the usual set operators like n, u and \,
and furthermore, we need rules to handle the typical query
language (QL) operators like e.g. selection.

To this end, we will show in section 4 how to propagate
the vagueness expressed by vague sets through the different
operations. We do so using the characteristic function ICV to

describe a vague set V, with ICV (i) = 1 for dl elements i in
the egg yolk, xv(i) = u for all elements i in the egg-white,

and w(i) = O for all elements i outside the egg. If we use
the values 1, 0 and u in the sense of a three valued logic,
this representation is extremely handy in order to state the

propagation rules and relations on vague sets and therefore
useful to define the semantics of a QL takhtg inaccessibility
into account. Furthermore, as we will see in section 5, this

formalism allows to check the relation to the result of a
query for a given element i of the database directly simply
by c~culating ~v (i).

Nevertheless, the characteristic function given above is,
in fact, just another representation for the stated query itself
and when we put a query to a database, we are indeed not
interested in yet another descriptive representation of our

query, rather we look for art enumerating one, which states
~he r&ult explicitly.

A convenient representation of this enumerating result
would e.g. be, to hold a vague set V as a pair of sets, namely
the lower bound VY and the upper bound V=; where Vv con-
tains the elements i with KV (i) = 1, i.e. the yolk in the ‘egg-
yolk’-model, and V, contains the elements i with KV (i) #0, ,

387

i.e. the whole egg.
Unfortunately most elements i with KV (z) = u have wdue

u just because they are inaccessible. In these cases we are
not able to give the complete set V, explicitly. We there-
fore represent V= in a hybrid way: Those elements we can

access are added to the enumerating part ~, of V. and the
others are described by the function 6V which states the re-
lation to the vague set V for all elements of the database

not contained in ~., i.e. we represent V. as a pair (~,, 6V).

The descriptive part (6v) of a vague set V can be used to

further improve ~. during query processing, I.e. to check for

additional elements whether they can be inserted into ~e.
This can, e.g. be done when we combine V with a second

vague set W. Here we can check for each element j of fie,

which is not element of Fe, whether it can be added to ~e.
It has to be mentioned, that KV itself is a possible choice

for 6V, but we are indeed not forced to describe the missing
elements of a vague set V by the function KV itself. Instead,
we can use a less restrictive descriptive function in order

to reduce the effort when applying the descriptive function.

The price we may have to pay is a more vaguel – but nev-
ertheless correct – result.

The paper is organized w follows: Section 2 gives a short
survey of related work. Section 3 introduces the data model
and the query language we use as example environment. In

section 4 we propose the propagation rules for vague sets
by means of the characteristic function K. In section 5 the
techniques to revise vague sets represented in the proposed

hybrid way during query processing are described. Section 6
concludes the paper.

2 Related Work

In the context of relational databases, much work has been
done in order to deal with the problems resulting from null
values. To be able not only to express that a value is not
available, but to distinguish different reasons of being not
available, one has to use different null values. Gessert pro-
poses the use of a four valued logic [Ges90, Ges91] to distin-
guish ‘values not known’ and ‘values not applicable’.

A more sophisticated approach is to describe unknown
values (’values not known’) by fuzzy sets, i.e. a set of values

plus their probability of being the missing one. A survey
of the work related to fuzzy sets and further references can
be found in [DPY93], while the usage of fuzzy sets for the
processing of uncertain queries is collected by Metro in a
comparing article [Mot90].

Lipski [Lip79] distinguishes the internaf and the exter-
nal interpretation of a query. The external one corresponds
to the answer given if the real world would be completely

known. The internal one in turn is the one given if there is
some reformation missing. Missing information always con-
cerns atomic attribute values. An unknown atomic value is
represented by a set of possible values. Hence, results are
internal represented as a set of objects surely fulfilling the
query (the inner limit), and a set of objects possibly fulling
the query (the outer limit); these sets correspond to our ex-

plicit parts U’v and ~,. Because Lipski investigates missing
information at the level of atomic attributes, he does not

need to concern QL operations, like e.g. selection, on the
sets described above. He is only interested in the usual set
operations. Besides, in his context, the upper bound of a

1A formal definition of what IS meant by ‘more vague’ will be given
in section 4.

result set can always be stated explicitly; a fact which is not
true in the case of maccesslbility in distributed systems.

Wong [Won82] extends Lipski’s approach by statistic~

information about the distribution of attribute values. The
result of a query is the set of records, which fulfill it with
an adjustable probability y a. If a tends towards O, Lipski’s

outer limit is computed; if a = 1, Lipski’s inner limit is
computed But as Lipski before, Wong assumes accessibil-

ity of all records, and therefore haa no need for a hybrid
representation.

Morrissey [Mor90] uses, as L]pski before, two sets to rep-
resent the possible result elements. But for the set of possi-
ble elements, he uses fuzzy sets. This means that every pos-
sible element has its value of possibility assigned, what al-
lows a ranking of these elements. But Morrissey too does not
consider incomplete upper bounds, other operations than
the usual set operations, and relations on uncertain sets.

Imieliriski and Lipski [IL84] define conditions that must
be fulfilled by the semantics of a relational algebra, in order

to allow the correct computation of a query involving un-
known values. A query is computed correctly, in this sense,

if all possibilities for the meaning of the unknown values
are contained in the result. Imielkiski and Lipski define so-
called representation systems, that consist of a subset of the
usual relational algebra, the class of allowed unknown val-

ues, and the extension of the used relational operators to
these unknown values. The representation systems in turn
guarantee the correct computation described above. But
this work strictly refers to the relational data model instead
of an object oriented model, and it does not take inaccessi-
bility into account; thus there is no need to use a descriptive
part for the missing items.

Cohn and Gotts use the so-called ‘egg-yolk’-representa-
tion for geographical regions with undetermined boundaries
[CG94]. This corresponds to the graphicaf impression of
vague sets used in this paper. But because of their appli-
cation area Cohn and Gotts neither use a hybrid represen-
tation nor do they consider the QL operators considered in
our paper.

3 Example Environment

Although our considerations neither depend on a speciaf
query language nor on a given data model, we introduce a
concrete environment as a basis, which will be used for the
examples throughout the paper. To this end we refer to the
data model of PCTE, the ISO and ECMA standard for an

open repository [ECM93, WJ93], and to NTT, an algebraic
set-oriented query language for PCTE [Haa95].

PCTE has a semantic data model, baaed on the entity re-
lationship model. An object base consists of objects, which
are connected by links. Objects are typed. The object type

hierarchy builds a directed acyclic graph with one root, the
object type object. In the usual way, an object of a type ot
automatically is also of all types that lie on a path between
object and ot. Object types determine the set of applied

attributes, which are atomic, and the set of applicable link
types.

A link type specifies, among other things, a list of at-
tribute types called key attributes, a set of non-key at-
tribute types, a set of allowed destination object types and
its reverse link type; that is because links normally form
hi-directional relationships by having a reverse link.

Since the PcTE-OMS is designed its a distributed OMS,
objects and links are stored on segments and there is no
guarantee that all segments are accessible at a given time.

388

=

name
len tit

Rwer el
name

PolitUnit

o

‘r”cr”ssed”byb-=r=lI I

Figure 1: Example schema

In figure 1 small part of a PCTE schema is given in the
typicaf PCTE schema diagram style. It consists of three ob-
ject types River, PolitUnit and Country with the at-
tributes name, length and inhabitants. Subtype rela.
tionships between object types are shown by broad shaded
arrows, being directed from the supertype to the subtype.
Additionally a pair of link types runs.through from River
to Country and crossed.by from Country to River is
given. The double arrowheads on the end of the links indi-
cate that the links have cardinaht y many. Both links have

a natural key named nr. The number used as key for a link
of type runs-through should indicate the order in which

the countries are crossed by the river. Hence, the country
aaaociated by the link 1. runs_ through is the country where
the river rises.

The non-navigating tool tongue NTT is an algebraic ap
preach for a set-oriented query language for the PCTE data
model. We use it here to show the effects of our error propa-

gation rules, therefore we describe only those aspects of the
language which are essential for this paper. NTT operates
on vague sets of objects, which in turn are typed.

Two ways to specify a start set for further- query formu-

lation are provided by NTT. One-way are user defined input
sets, which are passed to the API of NTT. The other way is
the operator ext, that computes the extension of an object
type. This extension consists of all objects in the object
base, which are of the given type. E.g. the NTT query Q:
ext (River) ; would compute all rivers in the whole object

base. Both facilities to define start sets are handled homo-
geneously, and need not be distinguished in the following.

Other operators afways get a vague object set as input
and return a vague object set as output. Totally, there
are five such QLi-operators (besides the usual set operations
union, intersection, and difference). In this paper we con-

sider only two of them.

The first one is the select operator. It returns all objects
of the input set, which fulfill a given predicate. Predicates

can be logically combined, they can be quantified, and they
can contain further sub queries. The query ‘R:

select (ext (River) , length > 1000);

would compute all rivers longer than 1000 km.

The second operator is relatives. It allows the set-
oriented navigation from an input object set via a given
regular link name to a result object set. The result contains
all objects that can be reached from at least one input object
via at least one fink that matches the regular link name. A

regular link name is a PCTE link name, which may contain
wild cards for the key attributes. A string key can contain
the wild cards ‘*’ and ‘?’, with the meaning ‘arbitrary many’
and ‘exactly one’ symbol, respectively. A natural key can

be an exact number or an interval, where the upper bound
can be missing. Therefore the query S:

relatives (select (ext (River) , length > 1000) ,
1. rrms_through);

would return all countries, where at least one river longer
than 1000 km rises. And finally, the query 7:

select (relatives (select (ext (River),

length > 1000),
1. runs-through),

inhabitants < 50000000);

computes all countries with more than 50 million inhabi-
tants, where at least one river longer than 1000 km rises.

4 Propagation Rules

When we tafk about ‘set-oriented’ query languages, we ac-
tually mean ‘collection-oriented’. Query languages typically

support three different kinds of collections: sets, rnultisets
and lists. As mentioned above, if we take inaccessibility and
other sources of incorrectness into account, we get vague
collections. Due to space limitations we can only deal with
vague sets here.

4.1 Vague Sets

Obviously, a vague set can be envisaged as a set of sets where
every element is a set, which could be a correct answer to
the computed query.

In the following we write S E Set(T), if S is a set over
the foundation set T.

We describe a vague set V by two sets VV and V. with the

property Vv C V,. If V is a vague set over the foundation

set T, we denote V E =(T). Each A c Set(T), that lies
between VY and V., is contained in V. This is expressed by

the defirution: A E V ~ VY C A ~ V,.
The representation by a lower bound VY and an upper

bound V= is equivalent to the description of a vague set by

its characteristic function ICV. This function defines for each

z c T, if z is in the egg yolk, in the egg-white, or outside:

KV:T’-+{l, O,U}

{

l,if2~VY
xv(i) = O,ififZV=

u , otherwise

(1)

Representing vague sets by their characteristic function
~ enables us to express our error propagation rules on top
of a three valued logic in a short, easy and straightforward
way, aa we will see in the following.

4.2 Base Operations on Vague Sets

Now we adapt the usuaf set operations to vague sets. The
situation is as follows: As input we have some vague sets,
each of them representing a set of possible correct sets. And
we are looking for a vague set as result, which represents the

set of all possible result sets, with the property of the result
vague set to be as strict as possible. A vague set V is stricter
than another vague set W (V < W), iff (1) Ve\Vy c We\ WY

(i.e. if in V the number of uncertain elements is less than in
W) and (2) VV ~ Wy and (3) V, Q W.. A vague set V is
called ezact, iff there is no vague set W, that is stricter than
V (i.e. if V’v = V=).

389

ez ziel I el V3 ez

II

01 0

u 1 u
11 1
Ou u
u u u
lU 1
00 1
u o 1
10 1

el As ez el -3 ez el e93 ez

o 1 I 1
0

0

0

u
u
o

u
1

1
1
u
u
1
0

u
1

u
o

u
u
u
o

u
1

Table 1: Value table for three valued logical junctions

In order to state the characteristic functions for the vague
set operations, we use the three valued logic given in ta-

ble 12.
If 03 E {Us,ns,\s}, and X = V 03 W, the fact, that

tcx describes the strictest vague set containing all sets C for
which there is a set A E Vand a set B c W with C= AoB,

is equivalent to the conjunction of the two conditions:

vi : KX(i)Sl+VAc V, BGW: zEAo B (2)

vi : KX(Z)=O%VAEV,BEW:Z @Ao B (3)

Hence, in the following it will be sufficient to show that
conditions (2) and (3) hold in order to proof that the result
of an operator is aa strict as possible.

4.2.1 Vague Set Union

The characteristic function ~ of the union of two vague sets
can be expressed as the three valued disjunction of the char-
acteristic functions of the two vague input sets:

X=VU3 W-lcx(i) =lcv(i)vslw v(i)

We proof conditions (2) and (3) as follows:

1. condition (2):

fix(z) = 1
e Kv(z) V3 Kw(i) = 1

* Kv(i)=lvlcw(i)=l
+ (VA GV:i GA) V(VBEW:ic B)
~ VA GV, BGW:i GAUB

2. condition (3):
~x(i) S O

+ ~v(i) V3 Kw(i) S O
+ ~v(z)SOAfiw(z)=O

~ (VAe V:i@A)A(VB~W:i @B)
* VA EV, B~W:i~AUB

4.2.2 Vague Set Intersection

(4)

❑

The characteristic function K of the intersection of two vague
sets can be expressed as the three valued conjunction of the
characteristic functions of the two input vague sets:

X = V (lS W + ~x(i) = K.v(i) Aq ~w(i) (5)

Proof of condition (2) and (3): analogous to vague set
union.

21n the following we will use the index ‘3’, whenever we refer to
operations on vague acts or to three valued logical junctions, respec-
tively. If an operator or logical junction is written without index, we
alwaya refer to the exact or two valued case, respectively.

Table 2: Value table for three valued logical quantifiers

4.2.3 Vague Set Difference

The characteristic function ~ of the difference of two vague
sets can be expressed as the following three valued expres-
sion:

X = V \3 W + ~x(i) = ~v(i) Aq ~afiw(i)

Proof of condition (2) and (3): analogous to vague
union.

4.3 Relations on Vague Sets

(6)

set

Query languages often use relations on sets to express some
selection criterion. Therefore, we have to adapt these set
relations to vague set relations.

Because a vague set is actually representing a set of pos-
sible sets, relations on vague sets have to be interpreted in
a three valued manner. If all possible sets in any of the
operands fulfill the given relation, we interpret it as ‘ 1‘. If

all possible sets in any of the operands do not fulfill the
given relation, we interpret it aa ’0’. And if there are some
possible sets that fulfill the relations, while others do not,
we interpret it a3 ‘u’.

4.3.1 Equality of Two Vague Sets

Two vague sets V and W are only equal, if they are both
exact and represent the same set. They are not equal, if
there is an element i that is contained in everv Dossibie set. .
of V (i.e. i ~ Vv), and that is not contained in every possible
set of W (i.e. i @ W=), or vice versa. In all other cases,
value of the equality is unknown.

In order to state the following rules, table 2 gives
evaluation rules for three valued quantified predicates.

The conditions for the equality of two vague sets
expressed by the following logical formula

the

the

are

4.3.2 Subset Relation

A vague set V is a subset of a vague set W, if all elements i,
that are contained in arty possible set of V (i.e. z E V.) are
also contained in every possible set of W (i.e. i 6 WY). V is
no subset of W, if there is an element i, that is contained in
every possible set of V (i.e. i E VV), and that is not contained
in every possible set of W (i.e. i # W,). In all other c~es,
the value of the subset relation is unknown.

(V G3 W) = (V3i : w(i) *3 Kw(i))

390

4.4 Query Language Operations

The usual set operators adapted to vague sets above, are

part of most query languages; nevertheless they are no QL
speciality. Now we focus on typical QL operators. To obtain
a high degree of generality, we keep these operators as ab-
stract as possible, and illustrate them by giving a concrete
example in NTT. We treat two kinds of operators: selection
and a so-called abstract operator.

4.4.1 Selection

When we deal with vagueness and three valued logic, a se-
lection is a mapping

cr. : G(T) x (T+ {l, O, U}) + m(~)

(C73(V, P)), = {i E v,lP(i) = 1},

(C73(V, P)), = {a E KIP(Z) @ o}

A selection uses a vague set V and a predicate P as
input and returns a vague set 03 (V, P) as output. Again,
the corresponding propagation rule can be formulated short

and straightforward in terms of the characteristic function
6:

W = rrs(V, P) * KW(i) = KV(i) A3 P(i) (7)

We do not need to proof the fact, that ICW is the strictest

function describing all possible results of a selection, because
selection can be regarded as a particular abstract operator,
ss we will see in the next SectIon.

4.4.2 Abstract Operator

No other operator is as common as selection; every QL uses
select ion, as a separate operator like the relational algebra
or NTT, or implicit, for example integrated in the irhere-

clause of a query in SQL, the ODMG proposal OQL [Cat93]
or P-OQL [Hen95].

But concerning a lot of existing QL’s, we think there is
one principle behind several important operators: namely
that a set operator actually is defined via its effect on the
single elements of the set, and the result is built as the union
of the results for the single elements.

We exploit this general principle to define an abstmct

opemtor u, containing all these operators as special cases:

The effect on a single element can be represented as a
mapping F : T’l + Set(l?’z), which is used as an input to
the abstract operator. In the case without vagueness, w is

defined as:

w : Set(T’l) x (2”1 + Set(TZ)) + Set(T2)

w(A, F) = {i E T213j c A : i < F(j)}

If we take into account, that both the input set and t?
mapping can be vague, we obtain the abstract operator W3 .

W3 : =x(T’l) x (2’1 + =(2’2)) + 5X(T2)

(u3(V, JZ))v = {i I % C Vy : i 6 (W).}

(w3(V, L))= = {i I qj < V= : i C (L(j)),}

A three vahed abstract operator uses a vague set V and

a mapping L as input and returns a vague set ws (V, L) as
output

3An example for ~ “ague ~aPPing L is the predicate of a selection,

if we envisage selection ss a particular abstract operator, ss will be
done at the end of the section.

The characteristic function rc of the result vague set is:

W = uS(V, L) + ~W(z) = 3aj : Kv(j) A3 ~L(j)(i) (8)

Due to space limitations, we cannot give the proof for
the strictness of the abstract operator, here. In principle, it
can be done analogous to the strictness proofs in section 4.2,
but it is somewhat lengthy. Hence, we refer to [HH95].

Next we give two examples that show the usage of the

abstract operator:
First, we can represent selection m an abstract operator.

In this case, obviously the input foundation set T1 is the
same as the output foundation set T2. Let W = U3 (V, P).

Here, L is given by:

{

P(i), if i = j
~L(~)(i) = O , otherwise

(9)

As given in formula (8), ICW (i) is

ICW(Z) = i13j : fcv(j) A3 ~L(,)(i)

And with the definition in (9) we obtain

~w(i) s ~v(i) As P(i),

which is exactly the characteristic function of the selection,
given in formula (7).

Our second example is the set-oriented navigation oper-
ator of NTT, called relatives, as introduced in section 3.
Let W = relatives(V, RL), where V is a vague object set
and RL is a regular link name. In order to state L for this

example, we need two conventions: (1) The notation j L i
means, that a link with name 1 connecting j and i exists in
the database. (2) We use the regular link name RL as a

synonym for the set consisting of all link names matching
RL itself. Then, L can be given by

KL(3)(i) = 316 RL :j A i

This can be inserted into formula (8), to obtain the charac-
teristic function for the relatives~perator:

~w(i)=3j: ~v(j)A316RL :j~i

4.5 Predicates

When we express selection criteria via first order logic, we
must evaluate them three valued to deal with vagueness.
The value tables of the logical junctions are listed in ta-

ble 1. The rules for the evaluation of three valued quantified
predicates are given in table 2.

5 Hybrid Representation of Vague Sets

In this section we show how the propagation rules stated in
section 4 can be applied to vague sets given in the hybrid

represent ation.
In order to calculate X = V 03 W we propose a three

step approach:

1. We use C5W to test for each element of PC\ @e whether

it should be in W., and vice versa.

391

2. We compute Xv and ~, by means of VV, WY, ~, and
.
‘W;. To this end, we use formula (1) to calculate the

value KV(Z), resp. K,w(z), for each element z E ~. 4,

resp. We. This is permissible although we actually use

PC, resp. ~., instead of V=, resp W,, because we yield

the correct result for the conrdered elements and the
elements in V=\ V=, resp. We\ W., are covered by the de-
scriptive part of the hybrid representation treated un-
der point 3. Thereafter, we apply propagation rule (4),
(5) or (6) respectwely.

3. We compute 6X by means of tiv and 6W, which means

that we apply propagation rule (4), (5) or (6) resp. to

& and 6W.

The three step approach shows the interaction of the two
parts of our hybrid representation.

It remains to mention that applying a QL operator like
e.g. selection or the abstract operator ws to a vague set V,
step 2 and 3 are quite analogous. Step 1 must be dropped,
because there is no other vague set beside V for which the
elements can be checked against rk.

As we have seen in the introduction, one possible choice
for 15v is the characteristic function ICV itself. On the other
hand, the most triviaf choices for the descriptive function

are L5V (i) = O and 6V (i) = u to state that P= is complete,

resp. incomplete. In the remainder of this section we will
show that there is a wide range of possible choices for & in
between. Possible levels of accuracy for 6V will be presented

in section 5.2 and in section 5.3; beforehand the influence of
type information on the quality of the descriptive function

is discussed in section 5.1.

5.1 Typed vs. Type-Free QL

The trivial descriptive function 6v (z) = u not really de-
scribes V, but says, that all elements may be in V. All
elements actually means all elements i c T, where T is

the foundation set of V. The smaller the foundation set
T, the stricter V is described by the descriptive function.

The means to restrict the foundation set is, in the context
of a QL, to use typing. There 1s not only the distinction
between typing and no typing, but one can distinguish dif-

ferent granularities of typing:
If a QL is type free, we know nothing about the missing

elements of an incomplete vague set. They can be atomic or
complex values, or even objects of the database.

On a coarse-grained level, typing distinguishes between
different atomic and complex values and database objects.
An incomplete vague set built over natural values, for ex-
ample, misses some naturaf values, and nothing else.

On a fine-grained level, QL’s type values as above, and
additionally distinguish different types for the database ob-
jects. In this case, if a vague set of objects is incomplete, we

know the missing objects to be of the corresponding object
type.

NTT, for example, knows for each operator an inference
rule to determine the object type for the result vague set,
dependent on the types of the input vague sets. Here, we do
not propose these rules; instead we apply them to our ex-
ample query T, as introduced in section 3, and explain their
meaning. The innermost expression Q = ext(River) has the
object type River. After the selection, the type remains the
same, still River. According to figure 1, navigation via links

of type runs-through reaches objects of type Country;
therefore the subquery S has the type Country. Again,

the type remains the same after selection, what means that
the complete query ‘T has the object type Country; i.e. if
it were computed incomplete, we knew that only objects of
that type could be missing.

Assume, the result of our query aboves would be the
vague set To – note that we use an upper index n to de
note the n-th revision of something – with T; = {Rwanda,

0 = (T$,6$(z) = u),Canada, Mongoha, Switzerland} and T.

i.e. ?.O is incomplete. Further assume, we would like to

build the intersection X of T and a second vague set U,
with UY = {Rwanda, Canada, Austmlza, Portugal, Singa-

pore, Vattcan, China, Alaska}, and U. = (UV, ~u = 0), i.e. U

is an exact set.
If we assume coarse-grasned typing, we only knew from

both T and U to contain objects of the database instead of

vafues. Therefore we must the whole database aas~me to be
T,. This means m Particular, that all elements of U. are also

m ~el. Using our three step approach to apply propagation
rule (5), we obtain the first vague result set XO with X; =

{Rwanda, Canada} and X: = ({Rwanda, Canada, A US-
tralza, Portugal, Singapore, Vat~can, China, Alaska}, & (i) =
o).

If we assume fine-grained typing, we know that T has the
object type Country. Therefore we know that T. can only
contiin objects of type Country, which leads to the new re-

vision T2 with ~e2 = {Rwanda, Canada, Mongoha, Switzer=

land, Austmha, Portugal, Singapore, Vatzcan, China}, bt+
cause Alaska does not have the object type Count ry and
cmnot be contained in T=. TY and 6T remain unchanged.

In this situation, X: and b; are the same as above, but ~~

results to {Rwanda,- Canada, A ustmha, Portugal, Singapore,
Vattcan, China}.

And, indeed, X’ calculated exploiting type information
is stricter than XO.

5.2 Locality Information

Untd now we have only concerned type information to im-
prove the quality of a vague set. Now, we will propose more
sophisticated variants of descriptive functions.

If we know, which segments of the database were not
accessible, when we built a vague set Y, we can derive an

improved descriptive function 6; from arty other descriptive
function 6Y. To this end, we first check an element i against
the locality criterion. If i resides on the accessible part, &
cars be set to O, because if it belongs to the result of the

query, it would already be contained in ~e:

{

6Y (i) , if i resides on an inaccessible segment
&(i) = o

, otherwise

Unfortunately, if a relatives operator is applied to a

vague set W with an incomplete W=, we cannot use this
improvement. The reason is, that we cannot follow links
originating from unknown objects, which in turn could re-
fer to objects residing on accessible segments. On the other
hand, the operator ext, like all operators using no naviga-
tion, allows the application of the locality improvement.

‘In the following we use Latin capital letters to denote the result
of the query with the corresponding calligraphic letter

4Remember that V,, ~ ~,

392

5.3 Back Tracing

The information we used so far to describe a vague set - type

and locality information – was independent of the structure
of the query.

On the other hand, in section 4 we have stated the rules
to compute the characteristic function ~ for a query. These
rules can also be applied to the descriptive function 6 for
the unknown part of the result of an operation. We have
already used propagation rule (5) in this way in the example
given at the beginning of section 5. Hence, the application of
these rules allows US to compute the best possible descriptive

function 66.
Unfortunately the descriptive function 6 computed in

this way can become complicated for nontrivial queries, and
if we take into account, that 6 may be used during query
processing to check for a lot of elements their relation to the
query, it might be interesting to use a less strict descriptive
function 6 which can be checked with less effort. Of course,
the price one has to pay for this, might be a less strict result.

One way to achieve such a less strict – and less expen-

sive to compute - descriptive function 6 is to use the trivial
descriptive function 6(i) = u for some subqueries.

Now let us switch our point of view and take a look at
the query from the top, to check whether an element i is

part of the result of a query. Then applying the descriptive
function derived by our propagation rules implicitly means
to trace back the query topdown operator by operator and
to check whether i could have been in the result. Further-
more using the trivial descriptive function 6(2) = u for a
subquery means to stop back tracing at this subquery.

For the vague set base operations the use of the trivial
descriptive function 6(i) = u for one operand simplifies the
descriptive function of the result vague set. As an example,
we consider the propagation rule for vague set union. If

X = V us W and 6v(i) = u, we obtain

bx(i) = 6v(2) V36w(2) = uV36W(2) =

{

l,if6w=l
u , otherwise

In the following we show how the use of the trivial de-
scriptive function 6(i) = u for the operand of a QL operator
influences the corresponding propagation rules.

5.3,1 Selection

If Z = rr3(Y, F’) and 6y(i) = u, we obtain:

6z(i) = 6Y(i) As P(i) = u As P(i) ~
{

O,if P(i)SO
u , otherwise

This rule has an intuitive interpretation: If we do not

know the vague set used as the operand for the selection,
an element fulfilling the predicate could be in the result; an
element not fulfilling the predicate cannot be in the result,
independent of the fact, whether it was in the operand vague
set or not.

Let us return to our running example: we assume both

vague sets T and U as given above, and we still use type
information.

Because ‘T= c73 (S, P) with P = inhabitants f 50000000,
we get the descriptive function

6~(i) =
{

u , if inhabitants(i) <50000000
0 , otherwise !

6Be~t in this CMe ~eans strictest, and by the strictness Proofs ‘n

section 4 we have shown that the propagation rules yield the strictest
possible function.

if we want to stop back tracing at subquery S.

We can now test those elements z of fit \ ~~ with type

Country, against 6; to see, if i should also be in $:. These
are the elements A ustmlxa, Portugal, .%ngapom, Vatican and
China. Except China, for which 6; s O, all other elements

have the value u, and are therefore in ~~, which results to

?: = {Rwanda, Canada, Mongoiia, Switzerland, Austmlia,
Portuga/, Singapore, Vrahcan}, while TV and 6T remain un-
changed.

The new vague result set is given by X; = {Rwanda,

Canada} and X: = ({Rwanda, Canada, Austmlia, Portugal,

Singapo?v, Vatican}, 6; (i) = O).

5.3.2 Abstract Operator

If W = LOS(V,L) and 6v(i) = u, we obtain

6w(i) = 3sj : 6v(i)A36~(j)(i)

-{

U , If 3j : bf,(j)(~) Z O=
O , otherwise

This means, if there is an element j for which i could be
in L(j), then i could be in the result. We cannot be sure,
because we do not know anything about V.

We demonstrate the back tracing of the abstract operator
by continuing our running example. The subquery S has the
form U3 (7Z, L) with L defined as follows:

{

1 , if 31 E l.runs.through : j ~ i
~L(jJ(i) =

O , otherwise

Stopping back tracing at subquery ‘R, we get the descriptive
function

6~(i) =
{

u, if 3j :31 G l.runs-through : j ~ i

O, otherwise

Insertion of 6} into rule (5) yields a revised test criterion for
T:

{

u , if inhabitants(i) <50000000

6~(i) = A 3j :31 ~ l.runs.through : j ~ i

O , otherwise

Assume, Singapore and Vatican have no incoming link
that matches the regular link name 1. runs. through, be-
cause there is no river rising, which is stored in the object
base, while Austmlia and Portugal do. Further assume the

links incoming in Austmlia would stazt from Murmy and
Oral, and the links incoming in Portugal would start from
Mondego and Zezere.

We test now the elements of ~e \ ~~ with type Country

(jAustmlia, Portugal, Singapow, Vatican, China}) against

6~. Of course, China still fails the test because of the part
inhabitants(i) < 50000000; Singapore and Vatican fail, be-

cause they do not have the desired incoming link. Only A us-
tmlia and Portugal have a test result of u. This leads to the

new revision ~,4 = {Rwanda, Canada, Mongolia, Switzer-
land, Au9tmlaa, Portugal}, whereas Ty and 6T remain un-
changed.

The new revision of the vague result set is given by
X; = {Rwanda, Canada} and X: = ({Rwanda, Canada,

Austmiia, Portugal}, 6; (i) = O).

393

NOW, we can complete back tracing considering the selec-
tion criterion length > 1000, because ’77,= 03(Q, P) wjth

~ = (length > 1000).
Building the descriptive function for R, we could again

stop at subquery Q. But we do not; instead we take the
fact into account, that we can describe Q completely: it is
/CQ(2) = hasType(River, i) – the meaning of the predicate
hae~pe should be evident. Because we do aheady con-
sider type information, this predicate is implicitly covered
by the descriptive function 15~(i) = 1.

These considerations lead to the descriptive function

6R (i) = (length(i) > 1000)

Finally, we achieve a remarkable result: we can describe
Q completely. Hence, the test of an element i can not only

show that i is in ~., but it can even show that i is in Qy.
And inserting this descriptive function into the surrounding
expressions, this remains true for them, too.

The new descriptive function for S results to

{

1, if 3j : length(j) >1000

6~(i) = Agi G 1.runs.through : j ~ i

O, otherwise

Insertion of 6: into rule (5) yields

f 1, if inhabitants(i) <50000000

6~(i) =

\

A3j : length(j) >1000

A3[G l.runs.through : j L i

O , otherwise

Now we test the elements Australia, Portugal, Singaporq
Vatican and China against the new descriptive function:

As before Singapore, Vatican and China fail the test. Be-
cause Murray fulfills the condition length > 1000, A ustmlsa
stands the test, what now means a value of 1; i.e. Austm/ia

c T;. And because Mondego and Zezere both do not fulfill
the condition length > 1000, Portugal fails the test.

The new, and last result of T n~ U is X; = {Rwanda,

Canada, Australia}, and X: = (X;, 6$ (i) = 0) what is
indeed an exact set.

Obviously an exact result set can not always be achieved.
In our example, it can be achieved because the intersection
operator is applied and one input set is exact. Neverthe-
less significant improvements, i.e. stricter results, can be
obtained in many other situations as well.

6 Conclusion

In this paper we have presented an approach to deaf with
vague sets resulting from inaccessibility in distributed data-
bases. We have shown, that in this context a hybrid repre
sentation is needed, that consists of (1) an enumerating part,
which contains the elements we could access during query

processing, and (2) a descriptive part, which describes the
relevant elements we could not access. Further we have in-
troduced propagation rules, which can be used to minimize
the vagueness of a query result represented by the hybrid
representation.

Further research is needed especially with respect to lists,
e.g. resulting from sorting operations. Another topic of in-
terest are aggregation operations. First promising results
suggest that our approach will be adaptable to these areas.

References

[Cat93]

[CG94]

[DPY93]

[ECM93]

[Ges90]

[Ges91]

[Haa95]

[Hen95]

[HH95]

[IL84]

[Lip79]

[Mor90]

[Mot90]

[WJ93]

[Wor182]

R. Catell, editor. The Ob]ect Database Standard:
ODMG-93. Morgan Kaufmann, San Mateo, Ca.lif.,
USA, 1993.

A.G. Cohn and N.M. Gotts. Spatial regions with

undetermined boundaries. In Proc, of the Sec-
ond ACM Workshop on Advances m Geographic
Infomnataon Systems, pages 52–59. ACM Press,
December 1994.

D. Dubois, H. Prade, and R.Y. Yager, editors.
Rendmgs in Fuzzy Sets for Intelligent Systems,

San Mateo, Calif., USA, 1993, Morgan Kaufmann.

European Computer Manufacturers Association,
Geneva. Portable Common Tool Entnronment

- Abstract Spec@atton (Standard ECMA-149),
June 1993.

G .H. Gessert. Four valued logic for rela-
tional database systems. ACM SIGMOD Rewrd,

19(1):29-35, March 1990,

G.H. Gessert. Handling missing data by ri-

sing stored truth vaJues. ACM SIGMOD Reed,
20(3):30-42, September 1991.

0. Haaae. Ntt – a set-oriented algebraic query
language for PCTE. Technical Report 95/5, Uni-
versitat – GHS - Siegen, D-57068 Siegen, 1995.

A. Henrich. P-OQL: an OQL-oriented query lan-
guage for PCTE. In Pruc. of the Seventh Conf. on
Software Engineering Envvvmrnents, pages 48-60,
Netherlands, 1995. IEEE Computer Society Press.

0. Has-se and A. Henrich. Error propagation
in distributed databases – mathematical founda-
tions. Technical Report 95/6, Universitat – GHS
- Siegen, D-57068 Siegen, 1995.

T. Imieli&ki and W. Lipski. Incomplete informa-
tion in relational databases. Journal of the Asso-
ciation for Computmg Machinery, 31(4) :761–791,
October 1984.

W. Lipski. On semantic issues connected with in-
complete information databases. ACM 7hnsac-
tions On Database Systems, 4(3):262–296, 1979.

J.M. Morrissey. Imprecise information and uncer-
tainty in information systems. ACM Z’kansactgons
On Znformat~on Systems, pages 159-180, 1990.

A. Metro. Accommodating imprecision in
database systems: Issues and solutions. ACM
SZGMOD Read, 19(4):69-74, December 1990.

L. Wakeman and J. Jowett. PCTE - The Stan-
dard for Open Repositories. Prentice Hall, Hemel
Hempstead, Hertfordshire, UK, 1993.

E. Wong. A statistical approach to incomplete
information in database systems. ACM Tmnsac-
t%ons on Database Systems, 7(3):470-488, Septem-
ber 1982.

394

