
Efficient Mining of Association Rules in Text Databases

John D. Holt and Soon M. Chung

Department of Computer Science and Engineering
Wright State University

Dayton, Ohio 45435 USA
{jholt, schung}@cs.wright.edu

Abstract

In this paper, we propose two new algorithms for mining as-
sociation rules between words in text databases. The char-
acteristics of text databases are quite different from those of
retail transaction databases, and existing mining algorithms
cannot handle text databases efficiently because of the large
number of itemsets (i.e., words) that need to be counted.
Two well-known mining algorithms, Apriori algorithm and
Direct Hashing and Pruning (DHP) algorithm, are evalu-
ated in the context of mining text databases, and are com-
pared with the new proposed algorithms named Multipass-
Apriori (M-Apriori) and Multipass-DHP (M-DHP). It has
been shown that the proposed algorithms have better per-
formance for large text databases.

1 Introduction

Mining association rules in transaction databases has
been demonstrated to be useful and technically feasible
in several application areas [2, 31, particularly in retail
sales. Let Z = (ir, iz, . . . , im} be a set of items. Let 2)
be a set of transactions, where each transaction T is a
set of items, such that T C Z. An association rule is an
implication of the form X 3 Y, where X c 1, Y c Z,
and X f~ Y = 4. The association rule X 3 Y holds in
the database 2) with confidence c if c% of transactions
in D that contain X also contain Y. The rule X 3 Y
has support s if s% of transactions in V contain X U Y.
Mining association rules is to find all association rules
that have support and confidence greater than or equal
to the user-specified minimum support (called mins~p)
and minimum confidence (called minconfi, respectively
[l]. For example, beer and disposable diapers are items
such that beer 3 diapers is an association rule mined
from the database if the co-occurrence rate of beer and

Permission to make digital or hard copies of all or pert of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advent

-age and that copies bear this notice and the full citation on the first page.

fo copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. -

CIKM ‘99 11199 Kansas City, MO, USA
D 1999 ACM l-581 13-146-1/99/0010...$5.00

disposable diapers (in the same transaction) is not less
than minsup and the occurrence rate of beer in the
transactions containing diapers is not less than mz’nconf.

The first step in the discovery of association rules
is to find each set of items (called itemset) that have
co-occurrence rate above the minimum support. An
itemset with at least the minimum support is called
a large itemset or a frequent itemset. In this paper,
the term frequent itemset will be used. The size of an
itemset represents the the number of items contained
in the itemset, and an itemset containing k items will
be called a k-itemset. For example, {beer, disposable
diapers} can be a frequent 2-itemset. Finding all
frequent itemsets is very resource consuming task .and
has received a considerable amount of research effort in
recent years. The second step of forming the association
rules from the frequent itemsets is straightforward as
described in [l]: F or every frequent itemset f, find
all non-empty subsets of f. For every such subset a,
generate a rule of the form a + (f - a) if the ratio of
support(f - a) to support(a) is at least minconf.

The association rules mined from point-of-sale (POS)
transaction databases can be used to predict the
purchase behavior of customers. In the case of text
databases, there are several uses of mined association
rules. The association rules for text can be used for
building a statistical thesaurus. Consider the case that
we have an association rule, B j C, where B and C
are words. A search for documents containing C can
be expanded by including B. This expansion will allow
for finding documents using C that do not contain C
as a term. A closely related use is Latent Semantic
Indexing, where documents are considered close to each
other if they share a sufficient number of associations
[4]. Latent Semantic Indexing can be used to retrieve
documents that do not have any terms in common with
the original text search expression by adding documents
to the query result set that are close to the documents
in the original query result set.

The word frequency distribution of a text database
can be very different from the item frequency distribu-
tion of a sales transaction database. Additionally, the

234

number of unique words in a text database is signifi-
cantly larger than the number of items in a transaction
database. Finally, the number of unique words in a typ-
ical document is much larger than the number of unique
items in a transaction. These differences make the ex-
isting algorithms, such as the Apriori [l] and Direct
Hashing and Pruning (DHP) [5], ineffective in mining
association rules in the text databases.

Two new algorithms suitable for the mining associ-
ation rules in text databases are proposed in this pa-
per. These algorithms are named Multipass-Apriori (M-
Apriori) and Multipass-DHP (M-DHP), respectively,
and are described in Section 4. The results of the
performance analysis are discussed in Section 5. The
new algorithms demonstrated significantly better per-
formance than Apriori and DHP algorithms for large
text databases.

2 Text Databases

Traditional domains for finding frequent itemsets, and
subsequently the association rules, include retail point-
of-sale (POS) transaction database and catalog order
database [2]. The natural item instances are the sales
transaction items, but other item instances are possible.
For example, individual customer order histories could
be used. An item may have a detailed identity, such
as a particular brand and size, or may be mapped
to a generic identity such as “bread”. The number
of items in a typical POS transaction is well under a
hundred. The mean number of items and distribution
varies considerably depending upon the retail operation.
In the referenced papers that provided experimental
results, the number of items per transaction ranged
from 5 to 20.

235

The word distribution characteristics of text data
present some scale challenges to the algorithms that
are typically used in retail sales mining. A sample
of text documents was drawn from the 1996 TReC [9]
data collection. The sample consisted of the April 1990
Wall Street Journal articles that were in the TReC col-
lection. There were 3,568 articles and 47,189 unique
words. Most of those words occur in only a few of the
documents. Some of the key distribution statistics are:

48.2% of the words occur in only one document;
13.4% of the words occur in only two documents;
7.0% of the words occur in only 3 documents.

The mean number of unique words in a document was
207, with a standard deviation of 174.2 words. In this
sample, only 6.8% of the words occurred in more than
1% of the documents. A single day sample of January
21, 1990 was taken as well. In that sample, there were
9,830 unique words, and 78.3% of the words occurred
in three or fewer documents.

The characteristics of this word distribution have pro-
found implications for the efficiency of association rule
mining algorithms. The most important implications
are: (1) the large number of items and combinations of
items that need to be counted; and (2) the large number
of items in each document in the database.

It is commonly recognized in the information retrieval
community that words that appear uniformly in text
database have little value in differentiating documents,
and further those words occur in a substantial number
of documents [6]. It is reasonable to expect that
frequent itemsets composed of highly frequent words
(typically considered to be words with occurrence rates
above 20%) would also have little value. Therefore,
text database miners will need to work with itemsets
composed of words that are not too frequent, but are
frequent enough. The range of minimum and maximum
support suitable for word association mining is not
known at this time. However, it is clear that word
association mining will require using minimum support
levels that are significantly lower than the ones typically
used for POS transaction databases,

The relatively low minimum support required for text
database mining exacerbate the problems caused by
the word frequency distribution. In text documents,
the preponderance of the words are of moderate or low
frequency and these words are precisely the words of
interest for finding frequent itemsets.

It is not yet clear how low the minimum support
should be for finding effective associations. However,
experimental results suggest that it should be lower
than 0.5% for the April 1990 Wall Street Journal
collections.

In the April 1990 Wall Street Journal articles in the
TReC collection are six groups of four or more very
closely related documents. There should be a significant
number of frequent itemsets that are in common for a
majority of the documents within each group. Using
the frequent itemsets with a minimum support level of
0.5%, only one group had a frequent itemset that was
common for more than 50% of the documents in that
group. Thus, it is clear that the threshold must be
lower than 0.5%. A lower minimum support of 0.1%
was selected, because in the April 1990 collection, that
threshold represents the four documents level and four
documents is the smallest size of any of the six groups.

3 Existing Algorithms for Mining
Association Rules

Algorithms for finding frequent itemsets make multiple
passes over the data. In the first pass, the support of
individual items are counted and frequent 1-itemsets
are determined. Then the frequent l-items are used
to generate the potentially frequent 2-itemsets, called
candidate 2-itemsets. In the second pass, we count

the support of the candidate 2-itemsets, so that we
can determine the frequent 2-items. Frequent 2-
itemsets are used to generate the candidate 3-itemsets,
and so on. This process is repeated until there is
no new frequent itemset. There are both sequential
and parallel algorithms that have been developed for
finding frequent itemsets in transaction databases.
The four algorithms described below have both a
sequential’and a parallel implementation. The parallel
implementation is a trivial change from the base
sequential implementation.

These algorithms are all implemented as a process
which interacts with a local data collection. In the
parallel versions, the data collection is partitioned into
a set of sub-collections each of which is local to a
particular processor. In a later section, there is a
brief review of alternative strategies that require all
or a substantial portion of the data to be moved
from the local environment to other environments for
parallel processing. These methods were not pursued
because of the substantial amount of data movements
and replication required. A text collection local to a
processor could be multiple gigabytes in size, thus it
is not suitable for transmission and replication among
tens or hundreds of processors.

3.1 Apriori Algorithm

The Apriori algorithm proposed by Agrawal and Srikant
[l] for finding frequent, itemsets where the input data
consists of transactions is as follows:

1) D&abase = set of transactions;
2) Items = set of items;

3) transaction = (TID, {E 12 E Items});
4) Comment: Fl is a set of frequent 1-itemsets
5) Fl = 4;
6) Comment: Read the transactions and count,

the occurrences of each item
7) foreach transaction t E Daxtake do begin

8) foreach item 2 in t do

9) x.count + +;
10) end
11) Comment: Form the set, of frequent 1-itemsets
12) foreach item i E Items do

13) if i.count/lDatabasel 2 minsup

14) then FI = Fl U i;

15) Comment: Find Fk, the set of frequent k-itemsets,
where k >_ 2

16) for (k := 2; Fk-1 # #J; k + +) do begin

17) Comment: Ck is the set of candidate k-itemsets
18) ck =&
19) Comment:Fk-1 * Fk-1 is a natural join of

Fk-1 and Fk-1 on the first k - 2 items
20) foreach 2 E {Fk-l* Fk-1) do

21) if +ly 1 y = (k - I)-subset of x A y $ Fk-1
22) then ck = ck u Xc;

23) Comment: Scan the transactions to count
candidate k-itemsets

24) foreach transaction t E Database do begin
25) foreach k-itemset z in t do
26) ifXECk

27)
28)
29)

then x.count + +;
end
Comment: Fk is the set of frequent

k-itemsets
30) Fk = 4;

31) foreach 2 E ck do

32) if x.count/lDatabasel 1 nainsup
330 then Fk = Fk U x;

34) end
35) Answer = uk Fk;

The formation of the set of candidate itemsets can
be done effectively when the items in each itemset are
stored in a lexical order, and itemsets are also lexically
ordered. As specified in line 20, candidate k-itemsets,
for k > 2, are obtained by performing the natural join
operation Fk-l* Fk-1 on the first k - 2 items of Fk-1
assuming that the items are Iexically ordered in each
itemset [l]. For example, if F2 includes {A, B} and {A,
C}, then {A, B, C} is a potential candidate 3-itemset.
Then the potential candidate k-itemsets are pruned in
line 21 by using the property that all the (k - 1)-subsets
of a frequent k-itemset should be frequent (k - l)-
itemsets. This property is subset closure property of the
frequent itemset. Thus, for {A, B, C} to be a candidate
3-itemset, {B, C} 1 a so should be a frequent 2-itemset. (I
This pruning step prevents many potential candidate k-
itemsets from being counted in each pass k for finding
frequent, k-itemsets, and results in a major reduction
in memory consumption. To count the occurrences of
the candidate itemsets efficiently as the transactions are
scanned, they can be stored in a hash tree, where the
hash value of each item occupies a level in the tree [l, 51.

The Apriori algorithm can be parallelized in a trivial
manner by simply distributing the transactions to pro-
cessors and sharing the counts of itemsets at the end
of each pass. A large scale text collection is generalIy
distributed for search and retrieval performance. Un-
fortunately, the amount of text that is allocated to a
processor can be still too large and can generate a very
large number of candidate itemsets for the Apriori algo-
rithm. Recall the distribution characteristics of text col-
lections discussed in Section 2. There will be a consider-
able number of candidate itemsets that do not have the
minimum support. In the April 1990 Wall Street Jour-
nal data, there are approximately 15,000 words tha,t
occur more than 0.1% of the documents. With Apriori,
approximately 112 million candidate 2-itemsets would
be generated.

3.2 Direct Hashing and Pruning (DHP)
Algorithm

In Direct Hashing and Pruning (DHP) algorithm,
hashing technique is used to filter out unnecessary
itemsets for the generation of the next set of candidate
itemsets [5]. Each (k + 1)-itemset in transactions
is hashed to a hash value while the occurrences of
the candidate k-itemsets are counted by scanning the
transactions . If the support count of a hash value is
less than the minimum support, then all the (k + l)-
itemsets with that hash value will not be included in
the set of candidate (k + 1)-itemsets in the next pass.
Pruning candidate itemsets based upon the support
counts of their hash values is safe because there may
be false positives (i.e., the retained candidate itemsets
that are not actually frequent) but there will be no false
negatives.

Transaction pruning and transaction trimming meth-
ods are also proposed in DHP [5], so that the size of
database to be scanned to count the occurrences of can-
didate itemsets is reduced at each pass. Transaction
pruning and trimming are based on the subset closure
property of frequent itemsets; that is, any subset of a
frequent itemset must be a frequent itemset by itself.
This property suggests that a transaction may have a
candidate (k-t- 1)-itemset only if it contains (k + 1) can-
didate k-itemsets obtained in the previous pass. Thus,
as a transaction is scanned to count the occurrences
of the candidate k-itemsets, we can determine if this
transaction can be pruned from the database in the
next pass. On the other hand, if a transaction contains
a frequent (k + 1)-itemset, any item contained in this
(k + 1)-itemset should appear in at least k of the can-
didate k-itemsets contained in this transaction. Thus,
by counting how many times each item in a transaction
is involved in the candidate k-itemsets in that transac-
tion, we can decide whether the item can be eliminated
from the transaction in the next pass. A transaction is
trimmed by rewriting it without the items that will not
contribute to forming the frequent itemsets in the next
pass.

To realize Direct Hashing and Pruning (DHP), a hash
table needs to be implemented. In each pass k, a hash
table is created to count the hash values of (k + l)-items
in the transactions. The hash table implemented as an
object has the following methods:

l add(itemset) to increment the count of the occur-
rence of the hash value of an itemset.

l prune(minsup) to remove hash values that lack
sufficient support.

l hasSupport(itemset) to see if the hash value of an
itemset remain in the hash table after pruning.

The DHP algorithm is as follows:

1) Database = set of transactions;
2) Items = set of items;
3) transaction = (TID, {Z 1 2 E Items});
4) Comment: Fr is a set of frequent l-itemsets
5) F1=4;
6) Comment: Hz is the hash table for 2-itemsets
7) Comment: Read the transactions, and count the

occurrences of each item, and generate Wz
8) foreach transaction t E Database do begin

9) foreach item z in t do

10) x.count + +;

11) foreach 2-itemset y in t do

12) &add(y);
13) end
14) Comment: Form the set of frequent 1-itemsets
15) foreach item i E Items do

16) if i.count/(Databasel 2 minsup

17) then Fl = Fl U i;

18) Comment: Remove the hash values without the
minimum support

19) Ha.prune(minsup);
20) Comment: Find Fk, the set of frequent k-itemsets,

where k 2 2
21) foreach (k := 2; Fk-1 # 4; k + +) do begin

22)
23)
24)

25)
26)
27)
28)
29)

30)
31)
32)
33)
34)
35)

36)
37)
38)

39)
40)
41)
42)

Comment: ck is the set of candidate k-itemsets

ck = d;

Comment: Fk-r * Fk-1 is a natural join of
Fk- 1 and Fk-r on the first k - 2 items

Comment: Hk is the hash table for k-itemsets
foreach 1: E {Fk-1 * Fk-1) do

if Hk.h&?Support(x)
then ck = cb U z;

Comment: Scan the transactions to count
candidate k-itemsets and generate Hk+r

foreach transaction t E Database do begin
foreach k-itemset 2 in t do

ifXECk
then xxount + +;

foreach (k + 1)-itemset y in t do
if 1% 1 z = k-subset of y A

yHk.hasSupport(z)
then Hk+l .add(y);

end
Comment: Fk is the set of frequent

k-itemsets

Fk = 4;
foreach x E ck do

if x.count/lDatabasel > minsup
then Fk = Fk U ;c;

43) Comment: Remove the hash values without the
minimum support from Hk+r

44) Hk+l .prune(minsup);
45) end
46) Answer = uk Fk;

237

There are few changes made to the Apriori algorithm
to convert it to the DHP algorithm. In the initial pass,
to count the occurrences of the hash values of 2-itemsets
in each transaction, a&() function is added at line 12.
Pruning the hash table using the prune0 function in
preparation for the next pass is performed in lines 19
and 44. Candidate itemsets are removed if their hash
values don’t have the minimum support, as shown in
lines 26-28. A (k + I)-itemset in a transaction is added
to the hash table Hk+i if the hash values of all the k-
subsets of the (k-t 1)-itemset have the minimum support
in Hk, as shown in lines 34-36.

How much the DHP can reduce the number of candi-
date itemsets depends on the number of false positives.
The false positives are generated when the hash values
are identical for a group of candidate itemsets (the hash
synonyms) whose individual frequency is less than min-
imum support count, but whose hash value frequency is
not less than the threshold. The number of candidate
itemsets that have the same hash value is directly re-
lated to the size of the hash table. Unfortunately, this
table is in competition for memory space with the hash
tree used to hold the counts for the itemsets.

The DHP algorithm is not suitable for finding the
frequent itemsets in the April 1990 Wall Street Journal
articles (see Section 2 for details on the collection)
with the required minimumsupport level of 0.1%. The
reason is that there are 47,000 unique words, so that
the number of 2-itemsets to be hashed is about 2.2
billion. This is because the hashing of the 2-itemsets
is performed before the pruning of the single items.
With a minimum support count of four occurrences
(0.1% minimum support), if every 2-itemset actually
occurred in a document, the hash table would have to
accommodate more than 500 million entries to avoid
counting every 2-itemset, because the expected number
of itemsets with the same hash value would be slightly
more than four. For this collection of text data, a hash
table of 10 million entries resulted in no pruning of 2-
itemsets when the minimum support is 0.1%. There
was not enough memory available to try a significantly
larger hash table.

3.3 Partition Algorithm

The advantage of holding the database in memory
and thereby avoiding disk I/O operations motivated
Savasere, Omiecinski, and Navathe [7] to propose the
algorithm Partition.

In both Apriori and DHP (see Section 3.1 and
Section 3.2, respectively), there are repeated passes of
the database to find frequent itemsets of different sizes.
The upper bound on the passes may be the maximum
size of the frequent itemsets desired, or when there is no
candidate itemset for a pass. Recall that there can be
no frequent (k + l)- t i emset without all of its k-subsets

230

being frequent. In contrast, Partition algorithm passes
the database only two times.

The database is partitioned into as many partitions
as are required so that all of the transactions in each
partition fit in the main memory. In the first pass,
each partition is mined independently to find all the
frequent itemsets in the partition. Then the frequent
itemsets of all the partitions are merged to generate a
set of all candidate itemsets. In the second pass, all the
partitions are processed against the candidate itemsets
found in the first pass, and their exact occurrence
counts are tabulated.

Assume that there are m partitions. If the minimum
support count for itemsets in the database is s, then
the minimum support count of itemsets in a partition is
s/m. It is clear that in order for an itemset to have the
support count s, it should have the support count not
less than s/m in at least one of the m partitions. Notice
that the subset closure property of frequent itemsets is
quite helpful. If an itemset doesn’t have the partition
level support, then all of its extensions will not have the
partition level support, so that none of those itemsets
need be counted within the partition.

The second pass is required to weed out the false
positives. Once the first pass is complete, all the
partitions have been processed, and there is a single
set of candidate itemsets. Some of these candidate
itemsets may be false positives, but there is no false
negative. In the second pass, the occurrence counts for
each candidate itemsets are tabulated. Those itemsets
whose occurrence counts are not less than the minimum
support count are retained, but the others are false
positives and discarded.

The first pass of the Partition algorithm can be easily
parallelized because each partition can be processed
independently. The second pass also can be paralIelized
by simply exchange the counting information before the
beginning and at end of the second pass.

For each item in a partition, we maintain a list
of transaction identifiers (TIDs) of the transactions
containing the item. The lists of TIDs are used to
determine how many transactions have a particular
itemset. For example, let A and B be two items, each
with a list of TIDs. Then the support count for {A, B}
is simply the number of TIDs that are common in both
lists.

This partition approach is not particularly suitable
for a text collection. Consider the distribution of words
in the TReC collection of April 1990 Wall Street Journal
articles. To apply a minimum support of l%, which
is corresponding to appearing in 36 documents, the
number of partitions should be much less than 36.
Otherwise, we cannot distinguish a word that occurs
in only one document from the one that occurs in 1%
of the documents, i.e. 36 documents. When the number

of partitions is small, the size of each partition becomes
large and a partition may not fit into the main memory.
Anyway, since nearly 70% of the words occur in three or
fewer documents, there will be a considerable number
of false positives.

3.4 Sampling Algorithm

The idea of Sampling algorithm is to pick a small sample
of the database and find all the itemsets in the sample
that are potentially frequent in the whole database
[S]. Then, the whole database is scanned to actually
count those itemsets. Thus, compared to other mining
algorithms, we can reduce the number of passes on the
database. The Sampling algorithm proceeds as follows:

1.

2.

3.

4.

5.

6.

7.

A sample of a size appropriate to the task is drawn
from the database. For an itemset, its support in
the whole database can be different from its support
in the sample. If we consider this difference as an
error, the sample size can be determined based on
the maximum probability that this error is greater
than certain value. (see [8] for more details.)

The sample is processed to discover the itemsets
whose support in the sample is not less than a
threshold value. This threshold value is chosen to
be smaller than mins~p, so that we can discover
most of the potentially frequent itemsets.

For the set S of frequent itemsets discovered from
the sample, determine the negative border of S,
denoted by NB(S). The negative border is the set
of minimal itemsets in the database that are not in
S. Thus, each itemset in NB(S) is not in S, whereas
all of its proper subsets are in S.

Read the database and count the occurrences of
each itemset in S U NB(S). Then, include only the
itemsets whose support is not less than minsup into
the set F.

If all the itemsets in F are also in S, then F
includes all the frequent itemsets, and the algorithm
is complete. However, if some itemset in F is
in NB(S), we may have some missing frequent
itemsets. In this case, proceed to the next step.

repeat
compute F = F U NB(F)

until F does not grow;

Read the database to count the occurrences of each
itemset in F, and keep only the itemsets whose
support is not less than minsup. Now F includes
all the frequent itemsets of the database.

Like the Partition algorithm, Sampling algorithm
also has difficulties in mining text databases due to

the frequency distribution of words. In the Partition
algorithm the difficulty is too many false positives or
too few partitions. In Sampling, the problem is too
many false negatives, that is, too many single items
in the negative border that must be counted both
individually and extended with themselves as well as
with the frequent itemsets.

3.5 Other Methods

A clear alternative to partitioning the documents or
transactions is the partitioning of the itemsets to be
counted. For a parallel implementation, each partition
of itemsets is allocated to a processing node and the
database is replicated at each node. However, the repli-
cation need not be complete. Zaki et al. [lo] proposed
to transmit to each node only those transactions that
contain the items that are members of the itemsets as-
signed to the node. Further, the itemsets can be clus-
tered so that the number of replicated transactions is
minimized.

These methods were not pursued because they all re-
quire data movement and at least some data replication.
With the size of commercial text coilections in the range
of hundreds to thousands of gigabytes, replication and
data movement are not viable options.

3.6 Motivation for New Mining Algorithms

Each of the existing algorithms discussed above was
shown to be unsuitable for the task of mining frequent
itemsets from text databases. The unsuitability was a
consequence of not being capable of handling the large
number of potential frequent itemsets in an effective
manner. The requirement of mining frequent itemsets
from a database with a large number of candidate
itemsets motivates the development of new mining
algorithms

4 Multipass-Apriori and
Multipass-DHP Algorithms

The Multipass-Apriori (M-Apriori) and the Multipass-
DHP (M-DHP) algorithms for mining association rules
are direct descendent of the Apriori and DHP algo-
rithms discussed in Section 3.1 and Section 3.2, respec-
tively. Both Apriori and DHP are not suitable for min-
ing frequent itemsets in text databases because of the
high memory space requirement for counting the occur-
rences of large number of potential frequent itemsets.
The Multipass approach directly reduces the required
memory space by partitioning the frequent 1-itemsets,
and processes each partition separately. Each partition
of items contains a fraction of the set of all items in
the database, so that the memory space required for
counting the occurrences of the sets of items within a
partition will be much less than the case of counting the
occurrences of the sets of all the items in the database.

239

The M-Apriori and M-DHP algorithms are described
as follows:

1. Count the occurrences of each item in the database
to find the frequent 1-itemsets.

2. Partition the frequent 1-itemsets into p partitions,
Pl,P2,...,Pp.

3. Use Apriori or DHP algorithm to find all the
frequent itemsets in each partition, in the order of
&dp-l,..., 9, by scanning the database. When
partition Pp is processed, we can find all the frequent
itemsets whose member items are in Pp. When the
next partition Pp-l is processed, we can find all the
frequent itemsets whose member items are in Pp-l
and Pp. This is because, when Pp-l is processed, the
frequent itemsets we found from Pp are extended
with the items in Pp--l and then counted. This
procedure is continued until 9 is processed.

Assume, without loss of generality, that the items
are ordered lexically. The items are partitioned into
p partitions, PI, P2, . . , , Pp, such that for every i < j,
every item a E Pi is less than every item b E Pj. Thus
the itemsets under consideration for some partition Pi
have a particular range of item prefixes. Notice that
if the partitions have the same number of items, the
potential number of itemsets that will be formed by
expanding a lexically lower ordered partition will be
larger than the potential number of itemsets from a
lexically higher ordered partition.

Since the items are ordered lexically, it is important
to process the partitions in sequence from the highest
ordered one to the lowest ordered one. This processing
order is required to support the pruning of candidate
itemsets based on the subset closure property of
frequent itemsets. Figure 1 shows an example of
partitions, where items 0, 1, 2, 3, 4, and 5 are frequent
1-itemsets and are partitioned into 9, P2, and P3.

For example, if an itemset {2,3} is found frequent
as a result of processing the items in partition Pa,
then we may count the itemset {1,2,3} when the
partition P2 is being processed. When the itemset
{1,2,3} is considered for a potential candidate itemset,
the occurrence count of the itemset {2,3) is already
available, because all itemsets beginning with item 2
were counted when partition Pa was processed.

In practice, if the estimated number of candidate
itemsets to be generated is small after processing a
certain number of partitions, then we can merge the
remaining partitions into a single partition, so that we
can reduce the number of database scanning.

6 frequent items in 3 partitions

Itemsets that begin with
2,3, or 4 are processed

7
Itemsets that begin with
0 are processed last

Figure 1: Partitioning a set of 6 frequent items for M-
Apriori and M-DHP

5 Performance Analysis of
M-Apriori and M-DHP

Some performance tests have been done with M-Apriori
and M-DHP. The first objective was to assess the effect
of the hash table on the performance. The second
objective was to assess whether the multipass approach
would improve performance. To meet these objectives,
we studied the performance of four miners, Apriori,
DHP, M-Apriori, and M-DHP. All four of these miners
were derived from the same code base. All of the test
runs were made on a 400 MHz Pentium-II machine
with 384 Mbytes of memory. All of the miners were
written in Java, and the IBM 1.1.7A JVM was used.
The JVM memory for objects was constrained (via the
mx parameter) to 256 Mbytes. The partition size used
for the M-Apriori and M-DHP was 100 items, and the
hash table size for M-DHP and DHP was 50,000 entries.

The performance measurements were taken in differ-
ent data contexts. The contexts varied by the number
of documents in the database and the number of items
with sufficient support. Three databases were used for
the experiments.

A small data collection, one day of the Wall Street
Journal with 182 documents in 596 Kbytes, was used
for the first test case. In this test the minimumsupport
was 5%. There were 9,825 items with 769 of them being
frequent items. Three passes were made against this
data collection, and 5,231 frequent 2-itemsets and 3,521
frequent 3-itemsets were found.

A medium sized data collection, one week of the Wall
Street Journal with 838 documents in 2.7 Mbytes, was
used for the second test case. In this test the minimum
support was 2.5%. There were 22,712 items with

240

1,463 of them being frequent items. Two passes were
made against this data collection and 30,235 frequent
2-itemsets were found.

A large data collection, two weeks of the Wall Street
Journal with 1,738 documents in 5.7 Mbytes, was used
for the third test case. In this case, the minimum
support was also 2.5%. There were 32,541 items with
1,427 of them being frequent items. Three passes were
made against this data collection, and 24,791 frequent
2-itemsets and 22,715 frequent 3-itemsets were found.

In Figure 2, we find that for a small number of
text documents, Apriori strongly outperforms DHP,
and that M-Apriori and M-DHP perform at a similar
level as Apriori. The overhead of the hash table used
in DHP is not offset by the efficiency gained from the
filtering of candidate itemsets. In Apriori, there was a
combined total of 314,067 candidate itemsets counted
in all three passes. DHP and M-DHP counted 314,060
candidate itemsets, which means that the hash table
was not effective. M-Apriori takes almost the same
time as Apriori because the time consumed by reading
the database additional times for different partitions of
items is not offset by the reduction in memory use.

400 600

Time (seconds)

Figure 3: 838 documents and 1,463 frequent items

entries is not large enough to enable significant filtering
of the candidates in this case.

Both Apriori and DHP couldn’t run successfully
against the database of 1,738 documents because they
exceeded the JVM memory limit of 256 Mbytes. The
reason for this is the large number of candidate itemsets
generated. Recall that there are more than 1.9 million
candidate 2-itemsets to be counted in the second pass.
Both Apriori and DHP require all of those candidate
itemsets to be in memory during the pass.

M-Apriori

Time (seconds)

Figure 4: 1,738 documents and 1,427 frequent items
260 360

Time (seconds)

Figure 2: 182 documents and 769 frequent items

In Figure 3, we see that the effect of the hash ta-
ble and performing multiple passes becomes apparent.
In this situation, the overhead of using the hash table
in DHP is completely offset by the savings generated
by counting fewer itemsets. There are enough frequent
itemsets, so that the memory savings generated by per-
forming multiple passes also has a positive impact. No-
tice that M-Apriori performs better than DHP. This
should not be surprising, because the multiple pass ap-
proach has a much better opportunity to reduce mem-
ory consumption than DHP alone.

In Figure 4, we can see that with a much larger
set of documents, M-DHP slightly outperforms M-
Apriori. M-Apriori takes about 15% longer to execute
than M-DHP. M-Apriori counted a combined total
of 1,939,868 candidate itemsets and M-DHP counted
1,919,465 candidate item sets which is about 20,000
fewer candidate itemsets. A hash table of only 50,000

Our performance analyses show that the multipass
approach can be effective even though the amount of
data is not very large. For example, Figure 3 shows the
case of 2.7 Mbytes of data.

The key performance differentiation appears to be
the reduction in the amount of required memory space.
The multipass approach directly reduces the number
of objects in memory, and hence reduce the memory
management overhead. These results suggest that
memory management overhead is one of the dominant
performance factors.

6 Conclusions

The main conclusions that can be drawn from this
study are centered around the nature of the databases
and the use of the mined association rules. The
distribution of words in text document collections and
the number of unique words in a document make
the problem of finding frequent itemsets (i.e., sets
of words) in text databases very different from the
problem of finding frequent itemsets in traditional
point-of-sale transaction databases. The differences

241

in distribution characteristics between text databases
and transaction databases motivate different mining
algorithms to handle the text database. The first
difference is that the candidate itemsets must be
formed in a lazy manner. There are simply too
many combinations of items that do not occur in the
documents, hence the computation of the candidate
itemsets in advance of the counting pass is not a
worthwhile approach. The second difference is that
shear number of potentiai frequent itemsets to be
counted requires that there should be some way to
divide the work of counting such that only a limited
number of itemsets are considered at a time.

The association rules mined from text databases are
used in a quite different manner compared to those
from transaction databases. This difference in usage
necessitates much lower minimum support level for the
association rules in text databases. It can be so low that
the traditional approach of partitioning the database
may not work well. The reason is because, at the
partition level, it is not possible to distinguish between
an item that occurs just once in the complete database
and an item that occurs just once in the partition but
a sufficient number of times in the database.

References

[l] R. Agrawal and R. Srikant, “Fast Algorithms
for Mining Association Rules,” Proc. of the 20th
VLDB CGZlf., 1994, pp. 487-499.

[2] S. Brin, R. Motwani, J. Ullman, and S. Tsur,
“Dynamic Itemset Counting and Impbcation Rules
for Market Basket Data,” Proc of the ACM
SIGMOD Int’l Conf. on Management of Data,
1997, pp. 255-264.

[3] M. S. Chen, J. Han, and P. S. Yu, “Data Mining:
An Overview from a Database Perspective,” IEEE
Trans. on Knowledge and Data Engineering, Vol.
8, No. 6, Dec. 1996, pp. 866-883.

[4] M. Gordon and S. Dumais, “Using Latent Semantic
Indexing for Literature Based Discovery,” Journal
of the Amer. Sot. of Info Science, Vol. 49, No. 8,
June 1998, pp. 674-685.

[5] J. S. Park, M. S. Chen, and P. S. Yu, “Using a
Hash-Based Method with Transaction Trimming
for Mining Association Rules,” IEEE Trans. on
Knowledge and Data Engineering, Vol. 9, No. 5,
Sep/Oct 1997, pp. 813-825.

[6] G. Salton, Automatic Text Processing: the trans-
formation, analysis, and retrieval of information
by computer, Addison-Wesley Publishing, 1988.

[7] A. Savasere, E. Omiecinski, and S. Navathe, “An
Efficient Algorithm for Mining Association Rules in
Large Databases,” Proc. of the 21st VLDB Conf.,
1995, pp. 432-444.

[8] H. Toivonen, “Sampling Large Databases for As-
sociation Rules,” Proc. of the 22nd VLDB Conf.,
1996, pp. 134-145.

[9] E.M. Voorhees and D.K. Harmon (editors), The
Fifth Text Retrieval Conference, National Institute
of Standards and Technology, 1997.

[lo] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W.
Li, “New Algorithms for Fast Discovery of Asso-
ciation Rules,” Technical Report 651, Computer
Science Department, University of Rochester, July
1997.

242

