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Abstract 

In this paper, we propose two new algorithms for mining as- 
sociation rules between words in text databases. The char- 
acteristics of text databases are quite different from those of 
retail transaction databases, and existing mining algorithms 
cannot handle text databases efficiently because of the large 
number of itemsets (i.e., words) that need to be counted. 
Two well-known mining algorithms, Apriori algorithm and 
Direct Hashing and Pruning (DHP) algorithm, are evalu- 
ated in the context of mining text databases, and are com- 
pared with the new proposed algorithms named Multipass- 
Apriori (M-Apriori) and Multipass-DHP (M-DHP). It has 
been shown that the proposed algorithms have better per- 
formance for large text databases. 

1 Introduction 

Mining association rules in transaction databases has 
been demonstrated to be useful and technically feasible 
in several application areas [2, 31, particularly in retail 
sales. Let Z = (ir, iz, . . . , im} be a set of items. Let 2) 
be a set of transactions, where each transaction T is a 
set of items, such that T C Z. An association rule is an 
implication of the form X 3 Y, where X c 1, Y c Z, 
and X f~ Y = 4. The association rule X 3 Y holds in 
the database 2) with confidence c if c% of transactions 
in D that contain X also contain Y. The rule X 3 Y 
has support s if s% of transactions in V contain X U Y. 
Mining association rules is to find all association rules 
that have support and confidence greater than or equal 
to the user-specified minimum support (called mins~p) 
and minimum confidence (called minconfi, respectively 
[l]. For example, beer and disposable diapers are items 
such that beer 3 diapers is an association rule mined 
from the database if the co-occurrence rate of beer and 
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disposable diapers (in the same transaction) is not less 
than minsup and the occurrence rate of beer in the 
transactions containing diapers is not less than mz’nconf. 

The first step in the discovery of association rules 
is to find each set of items (called itemset) that have 
co-occurrence rate above the minimum support. An 
itemset with at least the minimum support is called 
a large itemset or a frequent itemset. In this paper, 
the term frequent itemset will be used. The size of an 
itemset represents the the number of items contained 
in the itemset, and an itemset containing k items will 
be called a k-itemset. For example, {beer, disposable 
diapers} can be a frequent 2-itemset. Finding all 
frequent itemsets is very resource consuming task .and 
has received a considerable amount of research effort in 
recent years. The second step of forming the association 
rules from the frequent itemsets is straightforward as 
described in [l]: F or every frequent itemset f, find 
all non-empty subsets of f. For every such subset a, 
generate a rule of the form a + (f - a) if the ratio of 
support(f - a) to support(a) is at least minconf. 

The association rules mined from point-of-sale (POS) 
transaction databases can be used to predict the 
purchase behavior of customers. In the case of text 
databases, there are several uses of mined association 
rules. The association rules for text can be used for 
building a statistical thesaurus. Consider the case that 
we have an association rule, B j C, where B and C 
are words. A search for documents containing C can 
be expanded by including B. This expansion will allow 
for finding documents using C that do not contain C 
as a term. A closely related use is Latent Semantic 
Indexing, where documents are considered close to each 
other if they share a sufficient number of associations 
[4]. Latent Semantic Indexing can be used to retrieve 
documents that do not have any terms in common with 
the original text search expression by adding documents 
to the query result set that are close to the documents 
in the original query result set. 

The word frequency distribution of a text database 
can be very different from the item frequency distribu- 
tion of a sales transaction database. Additionally, the 
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number of unique words in a text database is signifi- 
cantly larger than the number of items in a transaction 
database. Finally, the number of unique words in a typ- 
ical document is much larger than the number of unique 
items in a transaction. These differences make the ex- 
isting algorithms, such as the Apriori [l] and Direct 
Hashing and Pruning (DHP) [5], ineffective in mining 
association rules in the text databases. 

Two new algorithms suitable for the mining associ- 
ation rules in text databases are proposed in this pa- 
per. These algorithms are named Multipass-Apriori (M- 
Apriori) and Multipass-DHP (M-DHP), respectively, 
and are described in Section 4. The results of the 
performance analysis are discussed in Section 5. The 
new algorithms demonstrated significantly better per- 
formance than Apriori and DHP algorithms for large 
text databases. 

2 Text Databases 

Traditional domains for finding frequent itemsets, and 
subsequently the association rules, include retail point- 
of-sale (POS) transaction database and catalog order 
database [2]. The natural item instances are the sales 
transaction items, but other item instances are possible. 
For example, individual customer order histories could 
be used. An item may have a detailed identity, such 
as a particular brand and size, or may be mapped 
to a generic identity such as “bread”. The number 
of items in a typical POS transaction is well under a 
hundred. The mean number of items and distribution 
varies considerably depending upon the retail operation. 
In the referenced papers that provided experimental 
results, the number of items per transaction ranged 
from 5 to 20. 
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The word distribution characteristics of text data 
present some scale challenges to the algorithms that 
are typically used in retail sales mining. A sample 
of text documents was drawn from the 1996 TReC [9] 
data collection. The sample consisted of the April 1990 
Wall Street Journal articles that were in the TReC col- 
lection. There were 3,568 articles and 47,189 unique 
words. Most of those words occur in only a few of the 
documents. Some of the key distribution statistics are: 

48.2% of the words occur in only one document; 
13.4% of the words occur in only two documents; 
7.0% of the words occur in only 3 documents. 

The mean number of unique words in a document was 
207, with a standard deviation of 174.2 words. In this 
sample, only 6.8% of the words occurred in more than 
1% of the documents. A single day sample of January 
21, 1990 was taken as well. In that sample, there were 
9,830 unique words, and 78.3% of the words occurred 
in three or fewer documents. 

The characteristics of this word distribution have pro- 
found implications for the efficiency of association rule 
mining algorithms. The most important implications 
are: (1) the large number of items and combinations of 
items that need to be counted; and (2) the large number 
of items in each document in the database. 

It is commonly recognized in the information retrieval 
community that words that appear uniformly in text 
database have little value in differentiating documents, 
and further those words occur in a substantial number 
of documents [6]. It is reasonable to expect that 
frequent itemsets composed of highly frequent words 
(typically considered to be words with occurrence rates 
above 20%) would also have little value. Therefore, 
text database miners will need to work with itemsets 
composed of words that are not too frequent, but are 
frequent enough. The range of minimum and maximum 
support suitable for word association mining is not 
known at this time. However, it is clear that word 
association mining will require using minimum support 
levels that are significantly lower than the ones typically 
used for POS transaction databases, 

The relatively low minimum support required for text 
database mining exacerbate the problems caused by 
the word frequency distribution. In text documents, 
the preponderance of the words are of moderate or low 
frequency and these words are precisely the words of 
interest for finding frequent itemsets. 

It is not yet clear how low the minimum support 
should be for finding effective associations. However, 
experimental results suggest that it should be lower 
than 0.5% for the April 1990 Wall Street Journal 
collections. 

In the April 1990 Wall Street Journal articles in the 
TReC collection are six groups of four or more very 
closely related documents. There should be a significant 
number of frequent itemsets that are in common for a 
majority of the documents within each group. Using 
the frequent itemsets with a minimum support level of 
0.5%, only one group had a frequent itemset that was 
common for more than 50% of the documents in that 
group. Thus, it is clear that the threshold must be 
lower than 0.5%. A lower minimum support of 0.1% 
was selected, because in the April 1990 collection, that 
threshold represents the four documents level and four 
documents is the smallest size of any of the six groups. 

3 Existing Algorithms for Mining 
Association Rules 

Algorithms for finding frequent itemsets make multiple 
passes over the data. In the first pass, the support of 
individual items are counted and frequent 1-itemsets 
are determined. Then the frequent l-items are used 
to generate the potentially frequent 2-itemsets, called 
candidate 2-itemsets. In the second pass, we count 



the support of the candidate 2-itemsets, so that we 
can determine the frequent 2-items. Frequent 2- 
itemsets are used to generate the candidate 3-itemsets, 
and so on. This process is repeated until there is 
no new frequent itemset. There are both sequential 
and parallel algorithms that have been developed for 
finding frequent itemsets in transaction databases. 
The four algorithms described below have both a 
sequential’and a parallel implementation. The parallel 
implementation is a trivial change from the base 
sequential implementation. 

These algorithms are all implemented as a process 
which interacts with a local data collection. In the 
parallel versions, the data collection is partitioned into 
a set of sub-collections each of which is local to a 
particular processor. In a later section, there is a 
brief review of alternative strategies that require all 
or a substantial portion of the data to be moved 
from the local environment to other environments for 
parallel processing. These methods were not pursued 
because of the substantial amount of data movements 
and replication required. A text collection local to a 
processor could be multiple gigabytes in size, thus it 
is not suitable for transmission and replication among 
tens or hundreds of processors. 

3.1 Apriori Algorithm 

The Apriori algorithm proposed by Agrawal and Srikant 
[l] for finding frequent, itemsets where the input data 
consists of transactions is as follows: 

1) D&abase = set of transactions; 
2) Items = set of items; 

3) transaction = (TID, {E 12 E Items}); 
4) Comment: Fl is a set of frequent 1-itemsets 
5) Fl = 4; 
6) Comment: Read the transactions and count, 

the occurrences of each item 
7) foreach transaction t E Daxtake do begin 

8) foreach item 2 in t do 

9) x.count + +; 
10) end 
11) Comment: Form the set, of frequent 1-itemsets 
12) foreach item i E Items do 

13) if i.count/lDatabasel 2 minsup 

14) then FI = Fl U i; 

15) Comment: Find Fk, the set of frequent k-itemsets, 
where k >_ 2 

16) for (k := 2; Fk-1 # #J; k + +) do begin 

17) Comment: Ck is the set of candidate k-itemsets 
18) ck =& 
19) Comment:Fk-1 * Fk-1 is a natural join of 

Fk-1 and Fk-1 on the first k - 2 items 
20) foreach 2 E {Fk-l* Fk-1) do 

21) if +ly 1 y = (k - I)-subset of x A y $ Fk-1 
22) then ck = ck u Xc; 

23) Comment: Scan the transactions to count 
candidate k-itemsets 

24) foreach transaction t E Database do begin 
25) foreach k-itemset z in t do 
26) ifXECk 

27) 
28) 
29) 

then x.count + +; 
end 
Comment: Fk is the set of frequent 

k-itemsets 
30) Fk = 4; 

31) foreach 2 E ck do 

32) if x.count/lDatabasel 1 nainsup 
330 then Fk = Fk U x; 

34) end 
35) Answer = uk Fk; 

The formation of the set of candidate itemsets can 
be done effectively when the items in each itemset are 
stored in a lexical order, and itemsets are also lexically 
ordered. As specified in line 20, candidate k-itemsets, 
for k > 2, are obtained by performing the natural join 
operation Fk-l* Fk-1 on the first k - 2 items of Fk-1 
assuming that the items are Iexically ordered in each 
itemset [l]. For example, if F2 includes {A, B} and {A, 
C}, then {A, B, C} is a potential candidate 3-itemset. 
Then the potential candidate k-itemsets are pruned in 
line 21 by using the property that all the (k - 1)-subsets 
of a frequent k-itemset should be frequent (k - l)- 
itemsets. This property is subset closure property of the 
frequent itemset. Thus, for {A, B, C} to be a candidate 
3-itemset, {B, C} 1 a so should be a frequent 2-itemset. (I 
This pruning step prevents many potential candidate k- 
itemsets from being counted in each pass k for finding 
frequent, k-itemsets, and results in a major reduction 
in memory consumption. To count the occurrences of 
the candidate itemsets efficiently as the transactions are 
scanned, they can be stored in a hash tree, where the 
hash value of each item occupies a level in the tree [l, 51. 

The Apriori algorithm can be parallelized in a trivial 
manner by simply distributing the transactions to pro- 
cessors and sharing the counts of itemsets at the end 
of each pass. A large scale text collection is generalIy 
distributed for search and retrieval performance. Un- 
fortunately, the amount of text that is allocated to a 
processor can be still too large and can generate a very 
large number of candidate itemsets for the Apriori algo- 
rithm. Recall the distribution characteristics of text col- 
lections discussed in Section 2. There will be a consider- 
able number of candidate itemsets that do not have the 
minimum support. In the April 1990 Wall Street Jour- 
nal data, there are approximately 15,000 words tha,t 
occur more than 0.1% of the documents. With Apriori, 
approximately 112 million candidate 2-itemsets would 
be generated. 



3.2 Direct Hashing and Pruning (DHP) 
Algorithm 

In Direct Hashing and Pruning (DHP) algorithm, 
hashing technique is used to filter out unnecessary 
itemsets for the generation of the next set of candidate 
itemsets [5]. Each (k + 1)-itemset in transactions 
is hashed to a hash value while the occurrences of 
the candidate k-itemsets are counted by scanning the 
transactions . If the support count of a hash value is 
less than the minimum support, then all the (k + l)- 
itemsets with that hash value will not be included in 
the set of candidate (k + 1)-itemsets in the next pass. 
Pruning candidate itemsets based upon the support 
counts of their hash values is safe because there may 
be false positives (i.e., the retained candidate itemsets 
that are not actually frequent) but there will be no false 
negatives. 

Transaction pruning and transaction trimming meth- 
ods are also proposed in DHP [5], so that the size of 
database to be scanned to count the occurrences of can- 
didate itemsets is reduced at each pass. Transaction 
pruning and trimming are based on the subset closure 
property of frequent itemsets; that is, any subset of a 
frequent itemset must be a frequent itemset by itself. 
This property suggests that a transaction may have a 
candidate (k-t- 1)-itemset only if it contains (k + 1) can- 
didate k-itemsets obtained in the previous pass. Thus, 
as a transaction is scanned to count the occurrences 
of the candidate k-itemsets, we can determine if this 
transaction can be pruned from the database in the 
next pass. On the other hand, if a transaction contains 
a frequent (k + 1)-itemset, any item contained in this 
(k + 1)-itemset should appear in at least k of the can- 
didate k-itemsets contained in this transaction. Thus, 
by counting how many times each item in a transaction 
is involved in the candidate k-itemsets in that transac- 
tion, we can decide whether the item can be eliminated 
from the transaction in the next pass. A transaction is 
trimmed by rewriting it without the items that will not 
contribute to forming the frequent itemsets in the next 
pass. 

To realize Direct Hashing and Pruning (DHP), a hash 
table needs to be implemented. In each pass k, a hash 
table is created to count the hash values of (k + l)-items 
in the transactions. The hash table implemented as an 
object has the following methods: 

l add(itemset) to increment the count of the occur- 
rence of the hash value of an itemset. 

l prune(minsup) to remove hash values that lack 
sufficient support. 

l hasSupport(itemset) to see if the hash value of an 
itemset remain in the hash table after pruning. 

The DHP algorithm is as follows: 

1) Database = set of transactions; 
2) Items = set of items; 
3) transaction = (TID, {Z 1 2 E Items}); 
4) Comment: Fr is a set of frequent l-itemsets 
5) F1=4; 
6) Comment: Hz is the hash table for 2-itemsets 
7) Comment: Read the transactions, and count the 

occurrences of each item, and generate Wz 
8) foreach transaction t E Database do begin 

9) foreach item z in t do 

10) x.count + +; 

11) foreach 2-itemset y in t do 

12) &add(y); 
13) end 
14) Comment: Form the set of frequent 1-itemsets 
15) foreach item i E Items do 

16) if i.count/(Databasel 2 minsup 

17) then Fl = Fl U i; 

18) Comment: Remove the hash values without the 
minimum support 

19) Ha.prune(minsup); 
20) Comment: Find Fk, the set of frequent k-itemsets, 

where k 2 2 
21) foreach (k := 2; Fk-1 # 4; k + +) do begin 

22) 
23) 
24) 

25) 
26) 
27) 
28) 
29) 

30) 
31) 
32) 
33) 
34) 
35) 

36) 
37) 
38) 

39) 
40) 
41) 
42) 

Comment: ck is the set of candidate k-itemsets 

ck = d; 

Comment: Fk-r * Fk-1 is a natural join of 
Fk- 1 and Fk-r on the first k - 2 items 

Comment: Hk is the hash table for k-itemsets 
foreach 1: E {Fk-1 * Fk-1) do 

if Hk.h&?Support(x) 
then ck = cb U z; 

Comment: Scan the transactions to count 
candidate k-itemsets and generate Hk+r 

foreach transaction t E Database do begin 
foreach k-itemset 2 in t do 

ifXECk 
then xxount + +; 

foreach (k + 1)-itemset y in t do 
if 1% 1 z = k-subset of y A 

yHk.hasSupport(z) 
then Hk+l .add(y); 

end 
Comment: Fk is the set of frequent 

k-itemsets 

Fk = 4; 
foreach x E ck do 

if x.count/lDatabasel > minsup 
then Fk = Fk U ;c; 

43) Comment: Remove the hash values without the 
minimum support from Hk+r 

44) Hk+l .prune(minsup); 
45) end 
46) Answer = uk Fk; 
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There are few changes made to the Apriori algorithm 
to convert it to the DHP algorithm. In the initial pass, 
to count the occurrences of the hash values of 2-itemsets 
in each transaction, a&() function is added at line 12. 
Pruning the hash table using the prune0 function in 
preparation for the next pass is performed in lines 19 
and 44. Candidate itemsets are removed if their hash 
values don’t have the minimum support, as shown in 
lines 26-28. A (k + I)-itemset in a transaction is added 
to the hash table Hk+i if the hash values of all the k- 
subsets of the (k-t 1)-itemset have the minimum support 
in Hk, as shown in lines 34-36. 

How much the DHP can reduce the number of candi- 
date itemsets depends on the number of false positives. 
The false positives are generated when the hash values 
are identical for a group of candidate itemsets (the hash 
synonyms) whose individual frequency is less than min- 
imum support count, but whose hash value frequency is 
not less than the threshold. The number of candidate 
itemsets that have the same hash value is directly re- 
lated to the size of the hash table. Unfortunately, this 
table is in competition for memory space with the hash 
tree used to hold the counts for the itemsets. 

The DHP algorithm is not suitable for finding the 
frequent itemsets in the April 1990 Wall Street Journal 
articles (see Section 2 for details on the collection) 
with the required minimumsupport level of 0.1%. The 
reason is that there are 47,000 unique words, so that 
the number of 2-itemsets to be hashed is about 2.2 
billion. This is because the hashing of the 2-itemsets 
is performed before the pruning of the single items. 
With a minimum support count of four occurrences 
(0.1% minimum support), if every 2-itemset actually 
occurred in a document, the hash table would have to 
accommodate more than 500 million entries to avoid 
counting every 2-itemset, because the expected number 
of itemsets with the same hash value would be slightly 
more than four. For this collection of text data, a hash 
table of 10 million entries resulted in no pruning of 2- 
itemsets when the minimum support is 0.1%. There 
was not enough memory available to try a significantly 
larger hash table. 

3.3 Partition Algorithm 

The advantage of holding the database in memory 
and thereby avoiding disk I/O operations motivated 
Savasere, Omiecinski, and Navathe [7] to propose the 
algorithm Partition. 

In both Apriori and DHP (see Section 3.1 and 
Section 3.2, respectively), there are repeated passes of 
the database to find frequent itemsets of different sizes. 
The upper bound on the passes may be the maximum 
size of the frequent itemsets desired, or when there is no 
candidate itemset for a pass. Recall that there can be 
no frequent (k + l)- t i emset without all of its k-subsets 
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being frequent. In contrast, Partition algorithm passes 
the database only two times. 

The database is partitioned into as many partitions 
as are required so that all of the transactions in each 
partition fit in the main memory. In the first pass, 
each partition is mined independently to find all the 
frequent itemsets in the partition. Then the frequent 
itemsets of all the partitions are merged to generate a 
set of all candidate itemsets. In the second pass, all the 
partitions are processed against the candidate itemsets 
found in the first pass, and their exact occurrence 
counts are tabulated. 

Assume that there are m partitions. If the minimum 
support count for itemsets in the database is s, then 
the minimum support count of itemsets in a partition is 
s/m. It is clear that in order for an itemset to have the 
support count s, it should have the support count not 
less than s/m in at least one of the m partitions. Notice 
that the subset closure property of frequent itemsets is 
quite helpful. If an itemset doesn’t have the partition 
level support, then all of its extensions will not have the 
partition level support, so that none of those itemsets 
need be counted within the partition. 

The second pass is required to weed out the false 
positives. Once the first pass is complete, all the 
partitions have been processed, and there is a single 
set of candidate itemsets. Some of these candidate 
itemsets may be false positives, but there is no false 
negative. In the second pass, the occurrence counts for 
each candidate itemsets are tabulated. Those itemsets 
whose occurrence counts are not less than the minimum 
support count are retained, but the others are false 
positives and discarded. 

The first pass of the Partition algorithm can be easily 
parallelized because each partition can be processed 
independently. The second pass also can be paralIelized 
by simply exchange the counting information before the 
beginning and at end of the second pass. 

For each item in a partition, we maintain a list 
of transaction identifiers (TIDs) of the transactions 
containing the item. The lists of TIDs are used to 
determine how many transactions have a particular 
itemset. For example, let A and B be two items, each 
with a list of TIDs. Then the support count for {A, B} 
is simply the number of TIDs that are common in both 
lists. 

This partition approach is not particularly suitable 
for a text collection. Consider the distribution of words 
in the TReC collection of April 1990 Wall Street Journal 
articles. To apply a minimum support of l%, which 
is corresponding to appearing in 36 documents, the 
number of partitions should be much less than 36. 
Otherwise, we cannot distinguish a word that occurs 
in only one document from the one that occurs in 1% 
of the documents, i.e. 36 documents. When the number 



of partitions is small, the size of each partition becomes 
large and a partition may not fit into the main memory. 
Anyway, since nearly 70% of the words occur in three or 
fewer documents, there will be a considerable number 
of false positives. 

3.4 Sampling Algorithm 

The idea of Sampling algorithm is to pick a small sample 
of the database and find all the itemsets in the sample 
that are potentially frequent in the whole database 
[S]. Then, the whole database is scanned to actually 
count those itemsets. Thus, compared to other mining 
algorithms, we can reduce the number of passes on the 
database. The Sampling algorithm proceeds as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

A sample of a size appropriate to the task is drawn 
from the database. For an itemset, its support in 
the whole database can be different from its support 
in the sample. If we consider this difference as an 
error, the sample size can be determined based on 
the maximum probability that this error is greater 
than certain value. (see [8] for more details.) 

The sample is processed to discover the itemsets 
whose support in the sample is not less than a 
threshold value. This threshold value is chosen to 
be smaller than mins~p, so that we can discover 
most of the potentially frequent itemsets. 

For the set S of frequent itemsets discovered from 
the sample, determine the negative border of S, 
denoted by NB(S). The negative border is the set 
of minimal itemsets in the database that are not in 
S. Thus, each itemset in NB(S) is not in S, whereas 
all of its proper subsets are in S. 

Read the database and count the occurrences of 
each itemset in S U NB(S). Then, include only the 
itemsets whose support is not less than minsup into 
the set F. 

If all the itemsets in F are also in S, then F 
includes all the frequent itemsets, and the algorithm 
is complete. However, if some itemset in F is 
in NB(S), we may have some missing frequent 
itemsets. In this case, proceed to the next step. 

repeat 
compute F = F U NB(F) 

until F does not grow; 

Read the database to count the occurrences of each 
itemset in F, and keep only the itemsets whose 
support is not less than minsup. Now F includes 
all the frequent itemsets of the database. 

Like the Partition algorithm, Sampling algorithm 
also has difficulties in mining text databases due to 

the frequency distribution of words. In the Partition 
algorithm the difficulty is too many false positives or 
too few partitions. In Sampling, the problem is too 
many false negatives, that is, too many single items 
in the negative border that must be counted both 
individually and extended with themselves as well as 
with the frequent itemsets. 

3.5 Other Methods 

A clear alternative to partitioning the documents or 
transactions is the partitioning of the itemsets to be 
counted. For a parallel implementation, each partition 
of itemsets is allocated to a processing node and the 
database is replicated at each node. However, the repli- 
cation need not be complete. Zaki et al. [lo] proposed 
to transmit to each node only those transactions that 
contain the items that are members of the itemsets as- 
signed to the node. Further, the itemsets can be clus- 
tered so that the number of replicated transactions is 
minimized. 

These methods were not pursued because they all re- 
quire data movement and at least some data replication. 
With the size of commercial text coilections in the range 
of hundreds to thousands of gigabytes, replication and 
data movement are not viable options. 

3.6 Motivation for New Mining Algorithms 

Each of the existing algorithms discussed above was 
shown to be unsuitable for the task of mining frequent 
itemsets from text databases. The unsuitability was a 
consequence of not being capable of handling the large 
number of potential frequent itemsets in an effective 
manner. The requirement of mining frequent itemsets 
from a database with a large number of candidate 
itemsets motivates the development of new mining 
algorithms 

4 Multipass-Apriori and 
Multipass-DHP Algorithms 

The Multipass-Apriori (M-Apriori) and the Multipass- 
DHP (M-DHP) algorithms for mining association rules 
are direct descendent of the Apriori and DHP algo- 
rithms discussed in Section 3.1 and Section 3.2, respec- 
tively. Both Apriori and DHP are not suitable for min- 
ing frequent itemsets in text databases because of the 
high memory space requirement for counting the occur- 
rences of large number of potential frequent itemsets. 
The Multipass approach directly reduces the required 
memory space by partitioning the frequent 1-itemsets, 
and processes each partition separately. Each partition 
of items contains a fraction of the set of all items in 
the database, so that the memory space required for 
counting the occurrences of the sets of items within a 
partition will be much less than the case of counting the 
occurrences of the sets of all the items in the database. 
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The M-Apriori and M-DHP algorithms are described 
as follows: 

1. Count the occurrences of each item in the database 
to find the frequent 1-itemsets. 

2. Partition the frequent 1-itemsets into p partitions, 
Pl,P2,...,Pp. 

3. Use Apriori or DHP algorithm to find all the 
frequent itemsets in each partition, in the order of 
&dp-l,..., 9, by scanning the database. When 
partition Pp is processed, we can find all the frequent 
itemsets whose member items are in Pp. When the 
next partition Pp-l is processed, we can find all the 
frequent itemsets whose member items are in Pp-l 
and Pp. This is because, when Pp-l is processed, the 
frequent itemsets we found from Pp are extended 
with the items in Pp--l and then counted. This 
procedure is continued until 9 is processed. 

Assume, without loss of generality, that the items 
are ordered lexically. The items are partitioned into 
p partitions, PI, P2, . . , , Pp, such that for every i < j, 
every item a E Pi is less than every item b E Pj. Thus 
the itemsets under consideration for some partition Pi 
have a particular range of item prefixes. Notice that 
if the partitions have the same number of items, the 
potential number of itemsets that will be formed by 
expanding a lexically lower ordered partition will be 
larger than the potential number of itemsets from a 
lexically higher ordered partition. 

Since the items are ordered lexically, it is important 
to process the partitions in sequence from the highest 
ordered one to the lowest ordered one. This processing 
order is required to support the pruning of candidate 
itemsets based on the subset closure property of 
frequent itemsets. Figure 1 shows an example of 
partitions, where items 0, 1, 2, 3, 4, and 5 are frequent 
1-itemsets and are partitioned into 9, P2, and P3. 

For example, if an itemset {2,3} is found frequent 
as a result of processing the items in partition Pa, 
then we may count the itemset {1,2,3} when the 
partition P2 is being processed. When the itemset 
{1,2,3} is considered for a potential candidate itemset, 
the occurrence count of the itemset {2,3) is already 
available, because all itemsets beginning with item 2 
were counted when partition Pa was processed. 

In practice, if the estimated number of candidate 
itemsets to be generated is small after processing a 
certain number of partitions, then we can merge the 
remaining partitions into a single partition, so that we 
can reduce the number of database scanning. 

6 frequent items in 3 partitions 

Itemsets that begin with 
2,3, or 4 are processed 

7 
Itemsets that begin with 
0 are processed last 

Figure 1: Partitioning a set of 6 frequent items for M- 
Apriori and M-DHP 

5 Performance Analysis of 
M-Apriori and M-DHP 

Some performance tests have been done with M-Apriori 
and M-DHP. The first objective was to assess the effect 
of the hash table on the performance. The second 
objective was to assess whether the multipass approach 
would improve performance. To meet these objectives, 
we studied the performance of four miners, Apriori, 
DHP, M-Apriori, and M-DHP. All four of these miners 
were derived from the same code base. All of the test 
runs were made on a 400 MHz Pentium-II machine 
with 384 Mbytes of memory. All of the miners were 
written in Java, and the IBM 1.1.7A JVM was used. 
The JVM memory for objects was constrained (via the 
mx parameter) to 256 Mbytes. The partition size used 
for the M-Apriori and M-DHP was 100 items, and the 
hash table size for M-DHP and DHP was 50,000 entries. 

The performance measurements were taken in differ- 
ent data contexts. The contexts varied by the number 
of documents in the database and the number of items 
with sufficient support. Three databases were used for 
the experiments. 

A small data collection, one day of the Wall Street 
Journal with 182 documents in 596 Kbytes, was used 
for the first test case. In this test the minimumsupport 
was 5%. There were 9,825 items with 769 of them being 
frequent items. Three passes were made against this 
data collection, and 5,231 frequent 2-itemsets and 3,521 
frequent 3-itemsets were found. 

A medium sized data collection, one week of the Wall 
Street Journal with 838 documents in 2.7 Mbytes, was 
used for the second test case. In this test the minimum 
support was 2.5%. There were 22,712 items with 
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1,463 of them being frequent items. Two passes were 
made against this data collection and 30,235 frequent 
2-itemsets were found. 

A large data collection, two weeks of the Wall Street 
Journal with 1,738 documents in 5.7 Mbytes, was used 
for the third test case. In this case, the minimum 
support was also 2.5%. There were 32,541 items with 
1,427 of them being frequent items. Three passes were 
made against this data collection, and 24,791 frequent 
2-itemsets and 22,715 frequent 3-itemsets were found. 

In Figure 2, we find that for a small number of 
text documents, Apriori strongly outperforms DHP, 
and that M-Apriori and M-DHP perform at a similar 
level as Apriori. The overhead of the hash table used 
in DHP is not offset by the efficiency gained from the 
filtering of candidate itemsets. In Apriori, there was a 
combined total of 314,067 candidate itemsets counted 
in all three passes. DHP and M-DHP counted 314,060 
candidate itemsets, which means that the hash table 
was not effective. M-Apriori takes almost the same 
time as Apriori because the time consumed by reading 
the database additional times for different partitions of 
items is not offset by the reduction in memory use. 

400 600 

Time (seconds) 

Figure 3: 838 documents and 1,463 frequent items 

entries is not large enough to enable significant filtering 
of the candidates in this case. 

Both Apriori and DHP couldn’t run successfully 
against the database of 1,738 documents because they 
exceeded the JVM memory limit of 256 Mbytes. The 
reason for this is the large number of candidate itemsets 
generated. Recall that there are more than 1.9 million 
candidate 2-itemsets to be counted in the second pass. 
Both Apriori and DHP require all of those candidate 
itemsets to be in memory during the pass. 

M-Apriori 

Time (seconds) 

Figure 4: 1,738 documents and 1,427 frequent items 
260 360 

Time (seconds) 

Figure 2: 182 documents and 769 frequent items 

In Figure 3, we see that the effect of the hash ta- 
ble and performing multiple passes becomes apparent. 
In this situation, the overhead of using the hash table 
in DHP is completely offset by the savings generated 
by counting fewer itemsets. There are enough frequent 
itemsets, so that the memory savings generated by per- 
forming multiple passes also has a positive impact. No- 
tice that M-Apriori performs better than DHP. This 
should not be surprising, because the multiple pass ap- 
proach has a much better opportunity to reduce mem- 
ory consumption than DHP alone. 

In Figure 4, we can see that with a much larger 
set of documents, M-DHP slightly outperforms M- 
Apriori. M-Apriori takes about 15% longer to execute 
than M-DHP. M-Apriori counted a combined total 
of 1,939,868 candidate itemsets and M-DHP counted 
1,919,465 candidate item sets which is about 20,000 
fewer candidate itemsets. A hash table of only 50,000 

Our performance analyses show that the multipass 
approach can be effective even though the amount of 
data is not very large. For example, Figure 3 shows the 
case of 2.7 Mbytes of data. 

The key performance differentiation appears to be 
the reduction in the amount of required memory space. 
The multipass approach directly reduces the number 
of objects in memory, and hence reduce the memory 
management overhead. These results suggest that 
memory management overhead is one of the dominant 
performance factors. 

6 Conclusions 

The main conclusions that can be drawn from this 
study are centered around the nature of the databases 
and the use of the mined association rules. The 
distribution of words in text document collections and 
the number of unique words in a document make 
the problem of finding frequent itemsets (i.e., sets 
of words) in text databases very different from the 
problem of finding frequent itemsets in traditional 
point-of-sale transaction databases. The differences 
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in distribution characteristics between text databases 
and transaction databases motivate different mining 
algorithms to handle the text database. The first 
difference is that the candidate itemsets must be 
formed in a lazy manner. There are simply too 
many combinations of items that do not occur in the 
documents, hence the computation of the candidate 
itemsets in advance of the counting pass is not a 
worthwhile approach. The second difference is that 
shear number of potentiai frequent itemsets to be 
counted requires that there should be some way to 
divide the work of counting such that only a limited 
number of itemsets are considered at a time. 

The association rules mined from text databases are 
used in a quite different manner compared to those 
from transaction databases. This difference in usage 
necessitates much lower minimum support level for the 
association rules in text databases. It can be so low that 
the traditional approach of partitioning the database 
may not work well. The reason is because, at the 
partition level, it is not possible to distinguish between 
an item that occurs just once in the complete database 
and an item that occurs just once in the partition but 
a sufficient number of times in the database. 
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