
Updates and View Maintenance in Soft Real-Time Database Systems

Ben Kaot K.Y. Lamt Brad Adelbergs Reynold C hengt Tony Leet

t Department of Computer Science, City University of Hong Kong. Email: cskylam@cs.cityu.edu.hk
$ Department of Computer Science, University of Hong Kong. Email: {kao,ckcheng}@cs.hku.hk

SC omputer Science Department, Northwestern University. Email: adelberg@cs.nwu.edu

Abstract

A database system contains base data items which re-
cord and model a physical, real world environment. For
better decision support, base data items are summa-
rized and correlated to derive views. These base data
and views are accessed by application transactions to
generate the ultimate actions taken by the system. As
the environment changes, updates are applied to the
base data, which subsequently trigger view recompu-
tations. There are thus three types of activities: base
data update, view recomputation, and transaction ex-
ecution. In a real-time system, two timing constraints
need to be enforced. We require transactions meet their
deadlines (transaction timeliness) and read fresh data
(data timeliness). In this paper we define the concept
of absolute and relative temporal consistency from the
perspective of transactions. We address the important
issue of transaction scheduling among the three types of
activities such that the two timing requirements can be
met. We also discuss how a real-time database system
should be designed to enforce different levels of tempo-
ral consistency.

keywords: updates, view maintenance, transaction
scheduling, temporal consistency, real-time database.

1 Introduction

A real-time database system (RTDB) is often employed
in a dynamic environment to monitor the status of real-
world objects and to discover the occurrences of “inter-
esting” events [14, 10, 2, 31. As an example, a program
trading application monitors the prices of various stocks
and financial instruments, looking for trading opportu-
nities. A typical transaction might compare the price
of .German Marks in London to the price in New York
Permission to make digital or hard copies of all or pan of fhiS work for’
PSrSOnSl Or Classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first pe9e.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 11199 Kansas City, MO, USA
0 1999 ACM l-58113-146-1/99/0010...$5.OO

Figure 1: A Real Time Database System

and if there is a significant difference, the system will
rapidly perform a trade.

The state of a dynamic environment is often mod-
eled and captured by a set of base data items within the
system. Changes to the environment are represented by
updates to the base data. To better support decision
making, the large numbers of base data items are often
summarized into views. Some example views in a finan-
cial database include composite indices (e.g., S&P 500,
Dow Jones Industrial Average) and theoretical financial
option prices. For better performance, these views are
materialized. When a base data item is updated to re-
flect certain external activity, the related materialized
views need to be updated or recomputed as well.

These base data and views are accessed by applica-
tion transactions to make decisions and generate the
ultimate actions taken by the system.’ For instance,
application transactions may request the purchase of
stock, perform trend analysis, or even trigger the exe-
cution of other transactions. Figure 1 shows the rela-
tionships among the various activities in such an RTDB.

Application transactions can be associated with one
or two types of timing requirements: transaction time-
liness and data timeliness. Transaction timeliness refers
to how “fast” the system responds to a transaction re-
quest. A transaction should be fast enough to com-

‘When we use the term ‘transaction’ alone, we refer to an appli-
cation transaction.

300

plete before its deadline. Data timeliness refers to how
“fresh” the data read is. Stale data is considered less
useful due to the dynamic nature of the data.

Satisfying these two timeliness properties poses a
major challenge to the design of a scheduling algorithm
for such a database system. This is because the tim-
ing requirements pose conflicting demands on the sys-
tem resources. To keep the data fresh, updates on base
data should be applied promptly, and the views which
are derived from the updated base data must be also
recomputed. The computational load of applying up-
dates and recomputations can be extremely high, caus-
ing application transactions to experience long delays.
Consequently, application transactions may have a high
probability of missing their deadlines.

In this paper we study the intricate balance in sche-
duling updates, recomputations and application trans-
actions to satisfy the two timing requirements of data
and transactions. Our goals are: (1) to define temporal
correctness from the perspective of transactions, and
(2) to investigate the performance of various transac-
tion scheduling policies in meeting the two timing re-
quirements of transactions under different correctness
criteria.

The rest of this paper is organized as follows. In
Section 2 we discuss some related works. In Section 3
we discuss the properties of updates, recomputations,
and application transactions which are relevant to the
design of an RTDB. Section 4 proposes two temporal
correctness criteria. In Section 5 we list out the options
of transaction scheduling and concurrency control that
support diierent correctness criteria. In Section 6 we
define a simulation model to evaluate the performance
of the scheduling policies. The results are presented in
Section 7. We conclude the paper in Section 8.

2 Related Works

In [2], the load balancing issues between updates and
transactions in a real-time database system are studied.
The authors point out that the On-Demand strategy,
with which updates are only applied when required by
transactions, gives the best overall performance. In [3],
the balancing problems between derived data (views)2
updates and transactions are studied. The authors pro-
pose the Forced Delay approach which delays the trig-
gering of a recomputation for a short period, so that
recomputations on the same view object can be batched
into a single computation. The study shows that batch-
ing significantly improves the performance of the RTDB.

The two studies reported in [2] and [3] are very close-
ly related; The former studies updates and transac-
tions, while the latter studies recomputation transac-

‘In this paper, we use the terms “views” and “derived items” in-
terchangeably.

tions. However, they do not consider the case when up-
dates, recomputations, and transactions are all present.
Also, the studies report how Zikely temporal consistency
is maintained under different scheduling policies, but do
not discuss how to enforce the consistency constraints.
In this paper we consider various scheduling policies for
enforcing temporal consistency in an RTDB in which
updates, recomputations, and transactions co-exist.

In [12], Song and Liu discuss the multiversion locking
concurrency control algorithm. In this algorithm, two-
phase locking is used to serialize the read/write opera-
tions of update transactions, while timestamps are used
to locate the appropriate versions to be read by read-
only transactions. The use of multiversion techniques
serves the purpose of eliminating the conflicts between
read-only and update transactions. This is because
read-only transactions can always read the committed
versions, without contending resources with write oper-
ations. Hence read-only transactions are never restart-
ed, and the costs of concurrency control and restart can
be significantly reduced.

3 Updates, Recomputations, and Transactions

In this section we take a look at the concept of up-
date locality, high fan-in/fan-out of recomputations, re-
computation batching and the timing requirements of
transactions, which are common in many RTDBs such
as programmed stock trading. These concepts also play
a crucial role in the design of an RTDB.

For many real-time database applications, managing
the data input streams and applying the corresponding
database updates represents a non-trivial load to the
system. For example, to handle the U.S. markets alone,
the system needs to process more than 500 updates per
second [4]. The high volume of updates and their spe-
cial property (write-only) imply that they should not
be executed with full transactional support. If each up-
date is treated as a separate transaction, the number of
transactions will be too large for the system to handle.
As is proposed in [2], a better approach is to apply the
update stream using a single update process. Depending
on the scheduling policy employed, the update process
installs updates in a specific order. It could be linear
in a first-comefirst-served manner, or on-demand upon
application transactions’ requests.

When a base data item is updated, the views which
depend on the base item have to be updated or recom-
puted as well. The system load due to view recomputa-
tions can be even higher than that is required to install
updates. Recomputing a view may require reading a
large number of base data items (high fan-in).3 Also,
an update can trigger multiple recomputations if the

aFor example, the S&P 500 index is derived from a set of 500
stocks; a summary of a stock’s price in an one-hour interval could
involve hundreds of data points.

301

updated base item is used to derive a number of views
(high fun-out).

One way to reduce the heavy load due to updates
and recomputations is to avoid useless work. This can
be achieved by observing that many applications deal-
ing with derived data exhibit a property called update
locality [3]. When a base item which affects a derived
item d, is updated, it is very likely that a related set
of base items, &ecting d, will be updated soon. For
example, changes in a bank’s stock price may indicate
that a certain event (such as an interest rate hike) af-
fecting bank stocks has occurred. It is thus likely that
other banks’ stock prices will change too. Each of these
updates could trigger the same recomputation, say for
the finance sectoral index. Therefore, update locality
implies that recomputations for derived data occur in
bursts. It is too wasteful and time-consuming to re-
compute a view each time its value changes. A better
strategy is to defer recomputations by a certain amount
of time and to batch the same recomputation requests
into a single recomputation. We call this technique re-
computation batching.

Application transactions may read both base data
and derived views. One very important design issue in
the RTDB system is whether to guarantee consistency
between base data and the views. To achieve consis-
tency, recomputations for derived data are folded into
the triggering updates. Unfortunately, running updates
and recomputations as coupled transactions is not de-
sirable in a high performance, real-time environment. It
makes updates run longer, blocking other transactions
that need to access the same data. Thus, we assume
that recomputations are decoupled from updates. We
will discuss how consistency can be maintained in Sec-
tion 5.

Besides consistency constraints, application transac-
tions are associated with deadlines. We assume a firm
real-time system. That is, missing a transaction’s dead-
line makes the transaction useless, but it is not detri-
mental to the system. The most important performance
metric is thus the fraction of deadlines the RTDB meets.
In Section 5 we will study a number of scheduling poli-
cies and in Section 7 we evaluate their performance on
meeting deadlines.

4 Temporal Correctness

One of the requirements in an RTDB is that transac-
tions read fresh and consistent data. Temporal Con-
sistency refers to how well the data maintained by the
RTDB models the actual state of the environment [ll,
12, 6, 7, 8, 131. Temporal consistency consists of two
components: absolute consistency (or external consis-
tency) and relative consistency. A data item is abso-
lutely consistent if it timely reflects the state of an ex-

ternal object that the data item models. A set of data
items are relatively consistent if their values reflect the
states of the external objects at the same time instant.

If a base data item is updated but its associated
views are not recomputed yet, the database is not rel-
atively consistent. It is clear that an absolutely consis-
tent database must also be relatively consistent. How-
ever, the converse is not true. For example, a relatively
consistent database that never installs updates remains
relatively consistent even though its data are all stale.
An ideal system that performs updates and recompu-
tations instantaneously would guarantee both absolute
and relative consistency. However, as we have argued,
to improve performance, updates and recomputations
are decoupled, and recomputations are batched. Hence,
a real system is often in a relatively inconsistent state.
Fortunately, inconsistent data do no harm if no transac-
tions read them. Hence, we need to extend the concept
of temporal consistency from the perspective of trans-
actions. Here, we formally define our notion of transac-
tion temporal consistency. We start with the definition
of an ideal system first, based on which correctness and
consistency of real systems are measured.

Definition 1: instantaneous system (IS) An in-
stantaneous system applies base data updates and per-
forms all necessary recomputations as soon as an update
arrives, taking zerO time to do it.

Definition 2: absolute consistent system (ACS)
In an absolute consistent system, an application trans-
action, with a commit time t and a readset R, is given
the values of all the object9 o E R such that this set of
values can be found in an instantaneous system at t.

The last definition does not state that in an absolute
consistent system data can never be stale or inconsis-
tent. It only states that no transactions can read stale or
inconsistent data. It is clear that transactions are given
a lower execution priority comparing with updates and
recomputations. For example, if an update (or the re-
computations it triggers) conflicts with a transaction on
certain data item, the transaction has to be aborted.
Maintaining an absolute consistent system may thus
compromise transaction timeliness.

We can relax the requirement of data freshness by
allowing transactions to read slightly stale data. Al-
though this is not desirable in respect to the usefulness
of the information read by a transaction, this can im-
prove the probability of meeting transaction deadlines.

Definition 3: relative consistent system (RCS)
In a relative consistent system with a maximum stale-
ness A, an application transaction with a start time t
and a madset R is given the values of all the objects
o E R such that this set of values can be found in an
instantaneous system at time tl, and tl > t - A.

An RCS is similar to an ACS in that transactions in
both systems read relative consistent data. The major

302

difference is that in an RCS, the data that a transaction
reads can be slightly stale, with a maximum staleness
A, while the data read in an ACS must be fresh up
to the point when the transaction commits. The im-
plication is that a transaction needs not be aborted by
later updates which conflict with the data already read
by the transaction. The transaction thus has a bet-
ter chance of finishing before its deadline. Essentially,
an RCS allows some updates and recomputations to be
withheld for the benefit of expediting transaction exe-
cution. Data absolute consistency is compromised but
relative consistency is maintained.

5 Transaction Scheduling and Consistency Enforce-
ment

In this section we discuss different policies to schedule
updates, recomputations, and transactions to meet the
different levels of temporal consistency requirements.
As we have argued, data timeliness can best be main-
tained if updates and recomputations are given higher
priorities than application transactions. We call this
scheduling policy URT (for update first, recomputation
second, transaction last). On the other hand, the On-
Demand (OD) strategy [2], with which updates and re-
computations are executed upon transactions’ requests,
can better protect transaction timeliness. We will there-
fore focus on these two scheduling policies and com-
pare their performance under the different temporal
consistency requirements. Later on, we will discuss how
URT and OD can be combined into the OD-H policy.
In these policies, we assume that the relative priori-
ties among application transactions are set using the
earliest-deadline-first priority assignment.

Scheduling involves “prioritizing” the three activi-
ties with respect to their accesses to the CPU and data.
We assume that data accesses are controlled by a lock
manager employing the HP-2PL protocol (High Priority
Two Phase Locking) [l]. Under HP-2PL, a lock holder
is aborted if it conflicts with a lock requester that has
a higher priority than the holder. We now discuss the
scheduling procedure for each activity under four sce-
narios. These scenarios correspond to the use of the
URT/OD policy in an ACS/RCS.

5.1 Policies for ensuring absolute consistency

As defined in last section, an AC system requires that
all items read by a transaction be fresh and relatively
consistent up to the transaction’s commit time. It is the
toughest consistency requirement for data timeliness.

5.1.1 URT

Ensuring absolute consistency under URT represents
the simpliest case among the four scenarios. Since the

update process and recomputations have higher priori-
ties than application transactions, in general, no trans-
actions can be executed unless all outstanding updates
and recomputations are done. The only exception oc-
curs when a recomputation is forced-delayed (for batch-
ing). In this case the view to be updated by the recom-
putation is temporarily outdated. To ensure that no
transactions read the outdated view, the recomputation
should issue a write lock on the view once it is spawned,
before it goes to sleep. Since transactions are given the
lowest priorities, an HP-2PL lock manager is sufficient
to ensure that a transaction is restarted (and thus can-
not commit) if any data item (base data or view) in the
transaction’s read set is invalidated by the arrival of a
new update or recomputation.

5.1.2 OD

The idea of On-Demand is to defer most of the work on
updates and recomputations so that application trans-
actions get a bigger share of the CPU cycles. To imple-
ment OD, the system needs an On-Demand Manager
(ODM) to keep track of the unapplied updates and re-
computations. Conceptually, the ODM maintains a set
of data items 2 (base or view) for which unapplied up-
dates or recomputations exist (we call thii set the un-
applied set). For each such Z, the ODM associates with
it the unapplied update/recomputation, and an OD bit
signifying whether an OD-update/ODrecom4 on z is
currently executing. There are five types of activities in
an OD system, namely, update arrival, recomputation
arrival, OD-update, OD-recom, and application trans-
action. We list the procedure for handling each type of
event as follows:

l On an update or recomputation arrival. Newly ar-
rived updates and recomputations have the highest
priorities in the system.5 An update/recomputation
P on a base/view item z is first sent to the OD Man-
ager. The ODM checks if z is in the unapplied set. If
not, 2 is added to the set with P associated with it,
and a write lock on 2 is requested6; Otherwise, the
OD bit is checked. If the OD bit is “off”, the ODM
simply associates P with x (essentially replacing the
old unapplied update/recomputation by P); If the
OD bit is “on”, it means that an OD-update/OD-
recom on x is currently executing. The OD Man-
ager aborts the running OD-update/OD-recom and
releases P for execution. In the case of an update
arrival, any view that is based on x will have its cor-
responding recomputation spawned as a new arrival.

40D-update/OD-recom means an update or a recomputation trig-
gered on-demand by an application transaction.

sNewly arrived updates and recomputations are handled in a FCFS
manner.

‘The write lock is set to ensure AC, since any running transaction
that has read (an outdated) a: will be restarted due to lock conflict.

303

l On an application transaction read request. Before
a transaction reads a data item 5, the read request
is first sent to the OD Manager. The ODM checks
if x is in the unapplied set. If so, and if the OD bit
is “on” (i.e., there is an OD-update/OD-recom being
run), the transaction waits; otherwise, the ODM sets
the OD bit “on” and releases the OD-update/OD-
recom associated with z. The OD-update/OD-recom
inherits the priority of the reading transaction.

l On the release of an OD-update/OD-recom. An OD-
update/OD-recom executes ss a usual update or re-
computation transaction. When it finishes, however,
the OD Manager is notif?ed to remove the updated
item from the unapplied set.

5.2 Policies for ensuring relative consistency

The major difliculty in an ACS is that an application
transaction is easily restarted if some update/recom-
putation conflicts with the transaction. An RCS ame-
liorates this difficulty by allowing transactions read s-
lightly outdated (but relatively consistent) data. An
RCS is thus meaningful only if it can maintain multiple
versions of a data item; each version records the data
value that is valid within a window of time (its validity
interval).

For notational convenience, we use a numeric sub-
script to enumerate the versions of a data item. For
example, xi represents the ith version of the data item
x. We define the validity interval of an item version
xi by VI(x;) = [LTB(z~), UTB(xi)], where LTB and
UTB stand for the lower time bound and the upper
time bound of the validity interval respectively. Given
a set of item versions D, we define the validity interval
of D as VI(D) = n{VI(xi)lxi E D}. That is, the set
of values in D is valid throughout the entire interval
VI(D). Also, we denote the arrival time of an update u
by ta(zl). Finally, for a recomputation or an application
transaction T, we define its validity interval VI(T) as
the time interval such that all values read by T must be
valid within VI(T) .

Our RCS needs a Version Manager (VM) to handle
the multiple versions of data items. The function of the
Version Manager is twofold. First, it retrieves, given an
item x and a validity interval 1, a value of a version of
x that is valid within I. Second, the VM keeps track
of the validity intervals of transactions and the data
versions they read. The VM is responsible for changing
a transaction’s validity interval if the validity interval
of a data version read by the transaction changes. We
will discuss the VI management shortly. Finally, we
note that since every write on a base item or a view
generates a new version, no locks need to be set on
item accesses.

5.2.1 URT

Similar to an ACS, there are three types of activities
under URT in an RCS:

On an update arrival. As mentioned, each version
of a data item in an RCS is associated with a va-
lidity interval. When an update u on a data item
version xi arrives, the validity interval VI(xi) is set
to [ta(u), 001. Also, the UTB of the previous ver-
sion xi-1 is set to ta(u), signifying that the previous
version is only valid till the arrival time of the new
update. The Version Manager sees if there is any run-
ning transaction T that has read the version xi-r. If
so, it sets UTB(VI(T)) = min{ UTB(VI(T)), b(u)).

On a recomputation arrival. If an update u spawns
a recomputation r on a view item 4) whose latest ver-
sion is vj, the system first sets the UTB of vj to ts(u).
That is, the version vj is no longer valid from ts(u)
onward. Similar to the case of an update arrival,
the VM updates the validity interval of any running
transaction that has read uj. With batching, the re-
computation T is put to sleep, during which all other
recomputations on v are ignored. A new version vj+r
is not computed until T wakes up. During execution,
r will use the newest versions of the data in its read
set. The validity interval of r (VI(r)) and that of the
new view version (VI(vj+l)) are both equal to the
intersection of all the validity intervals of the data
items read by T.

Running an application transaction. Given a transac-
tion T whose start time is ts(T), we first set its valid-
ity interval to [ts(T) - A, ~xJ].~ If T reads a data item
x, it consults the Version Manager. The VM would
select a version xi for T such that Vl(x@ VI(T) # 0.
That is, the version xi is relatively consistent with the
other data already read by T. VI(T) is then updated
to VI(xi) fl VI(T). If the VM cannot find a consistent
version (i.e., VI(xi) n VI(T) = 0 Vxi), T is aborted.
Note that the wider VI(T) is, the more likely that the
VM is able to find a version of x that is consistent
with what T has already read. Hence, in our study,
we always pick the version xi whose validity interval
has the biggest overlapping with that of T.

5.2.2 OD

Applying on-demand in an RCS requires both an OD
Manager and a Version Manager. The ODM and the
VM serve similar purposes as described previously, with
the following modifications:

l Since multiple versions of data are maintained, the
OD Manager keeps, for each base item x in the un-
applied set, a list of unapplied updates of x.
7RecalI that A is the maximum staleness tolerable with reference

to a transaction’s start time.

304

In an ACS (single version database), an unapplied re-
computation to a view item 21 is recorded in the ODM
so that a transaction that reads v knows that the cur-
rent database version of v is invalid. However, in an
RCS (multi-version database), the validity intervals
of data items already serve the purpose of identifying
the right version. If no such version can be found in
the database, the system knows that an OD-recom
has to be triggered. Therefore, the ODM in an RCS
does not maintain unapplied recomputations.

In an ACS, an. .OD bit of a data item 2 is set if
there is an OD-update/OD-recom currently execut-
ing to update z. The OD bit is used so that a new
update/recomputation arrival will immediately abort
the (useless) OD-update/OD-recom. In an RCS, since
multiple versions of data are kept, it is not necessary
to abort the (old but useful) OD-update/OD-recom.
Hence, the OD bits are not used.

Since different versions of a data item can appear
in the database as well as in the unapplied list, the
Version Manager needs to communicate with the OD
Manager to retrieve a right version either from the
database or by triggering an appropriate OD-update
from the unapplied lists.

5.2.3 A Hybrid Approach

In OD, updates and recomputations are performed only
upon transactions’ requests. If the transaction load
is low, few OD-updates and OD-recoms are executed.
Most of the database is thus stale. Consequently, a
transaction may have to materialize quite a number of
items it intends to read on-demand. This causes severe
delay to the transaction’s execution and thus a missed
deadline. A simple modification to OD is to execute
updates and recomputations whiie the system is idling,
in a way similar to URT, and switch to OD when trans-
actions arrive. We call this hybrid strategy OD-H.

6 Simulation

To study the performance of the scheduling policies,
we simulate an RTDB system with the characteristics
described in Sections 1, 3 and 5. This section describes
the specifics of our simulation model.

In our model, we implemented all the necessary com-
ponents as described in Section 5. We simulate a disk-
based database with Nb base items and Nd derived
items (views). The number of views that a base item de
rives (i.e., fan-out) is uniformly distributed in the range
[Fomin,Fo-maz]. Each derived item is derived from a
random set of base items. We assume the system caches
its database accesses with a cache hit rate pcache~+

Updates are generated as a stream of update bursts.
Burst arrivals are modeled as Poisson processes with

DiskESsstime(ms) tI0 5.0
CPU time per operation (ms) tcpu 1.0
I/O cache hit rate PcocheAit 0.7

A 10.0 maximum st eness set al ()

Table 1: Baseline settings

an arrival rate X,. Each burst consists of burst&e up-
dates. The value burst-size is picked uniformly from the
r=ge [Wk, BS,,,]. To model locality, each update
would have a probability of pe+ of triggering the same
set of recomputations as those triggered by the previous
update. Application transactions are generated as an-
other stream of Poisson processes with an arrival rate
Xt. Each transaction T performs Nap database oper-
ations, and each database object has an equal proba-
bility of being accessed by an operation. T is associ-
ated with a deadline given by the following formula:
dl(T) = ez(T) x slack + ar(T) where m(T) is the ex-
petted execution time of the transactibn8, ar(T) is the
arrival time of T, and slack is the slack factor chosen
uniformly from the range [Sm&Jmaz].

The values of the simulation parameters were chosen
as reasonable values for a typical financial application.
The simulator is written in CSIM 18 [9]. Each simula-
tion run (generating one data point) processed 10,000
update bursts. Table 1 shows the parameter settings of
our baseline experiment.

7 Results

In this section we present selected results obtained from
our simulation experiments. We compare the perfor-
mance of the various scheduling policies in an ACS and
an RCS based on how well they can meet transaction
deadlines. To aid our discussion, we use the notation
MD: to represent the fraction of missed deadlines (or
miss rate) of scheduling policy A when applied to a B
system. For example, MDA,: = 10% means that 10% of
the transactions miss their deadlines when OD is used
in an ACS.

6Calculated by multiplying the number of operations by the
amount of I/O and CPU time taken by each operation.

305

Figure 2: Miss rate vs Xt (MS)

7.1 Absolute Consistent System

Effect of transaction arrival rate In our first exper-
iment, we vary the transaction arrival rate (At) from 0.5
to 5 and compare the performance of the three schedul-
ing policies (URT, OD, and OD-H) in an absolute con-
sistent system. Figure 2 shows the result. From the
figure, we see that, for a large range of Xt (X, > LO),
URT performs the worst among the three, missing 14%
to 26% of the deadlines. Three major factors account
for URT’s high miss rate.

First, since transactions have the lowest priorities,
their executions are often blocked by updates and re-
computations (in terms of both CPU and data accesses).
This causes severe delays and thus high miss rates to
transactions. We call this factor Low Priority. Sec-
ond, under URT with recomputation batching, a recom-
putation is net immediately executed on arrival. It is
forced to sleep for a short while during which it holds
a write lock on the derived item (say, v) it updates.
If a transaction requests item 21, it will experience an
extended delay blocked by the sleeping recomputation.
We call this factor Batching Wait. Third, in an ACS,
a transaction is restarted by an update or a recomputa-
tion whenever a data item that the transaction has read
gets a new value. A restarted transaction loses some of
its slack and risks missing its deadline. We call this
restart factor ltanaaction Restart. From our exper-
iment result, we observe that the average restart rate
of transactions due to lock conflicts is about 2% to 3%.

By using OD, transactions are given its fair share
of CPU cycles and diik services. Hence, OD effectively
eliminates the Low Priority factor. Also, recomputa-
tions are executed on-demand, hence Batching Wait
does not exist. This results in a smaller miss rate. In
our baseline experiment (Figure 2), we see that MD;%
is smaller than MD $& for Xt > 1.0. The improvement
(about 5% for large &) is good but is lower than ex-
pected. After all, we just argued that OD removes two
of the three adverse factors of URT. Moreover, it is in-
teresting to see that when the transaction arrival rate
is small (X, < l.O), reducing transaction workload (i.e.,
reducing X,) actually increases MD;:.

The reason for the anomaly and the lower-than-ex-
pected improvement is that under the pure OD policy,
updates and recomputations are executed only on trans-
action requests. Hence, when Xt is small, the total num-
ber of on-demand requests are small. Many database
items are therefore stale. When a transaction executes,
quite a few items that it reads are outdated and thus
OD-updates/OD-recoms are triggered. The transaction
is blocked waiting for the on-demand requests to finish.
This causes a long response time and thus a high miss
rate. In our experiments, we see that as many as 12
updates and 3.5 recomputations are triggered by (and
blocking) an average transaction under the OD policy.
We call this adverse factor OD Wait

In order to improve OD’s performance, the database
should be kept fresh so that few on-demand requests
are issued. One simple approach is to apply updates
and recomputations (as in URT) when no transactions
are present. When a transaction arrives, however, all
updates/recomputations are suspended, and the system
reverts to on-demand. We call this policy OD-H. Figure
2 shows that OD-H greatly improves the performance
of OD. In particular, the anomaly of a higher miss rate
at a lower transaction arrival rate exhibited in OD van-
ishes in OD-H. The effect of OD Wait is thus relatively
mild. The problem of ZYansaction Restart, however,
still exists when OD-H is applied to an ACS.

7.2 Relative Consistent System

As mentioned in Section 5.2, an RCS uses a multi-
version database. Each update or recomputation cre-
ates a new data item version, and thus does not cause
any writeread conflicts with transactions. A trans-
action therefore never gets restarted because of data
con&t with updates/recomputations. The only cases
of transaction abort due to data accesses occur under
URT, when the version manager could not find a ma-
terialized data version that is consistent with the VI of
a transaction that is requesting an item. From our ex-
periment, we observe that the chances of such aborts
are very small, e.g., only about 0.1% of transactions are
aborted in our baseline experiment under URT. The
on-demand strategies would not perform such aborts,
since any data version can be materialized on-demand.
As a result, an RCS effectively eliminates the problem
of lhasaction Restart occurring in an ACS.

Figure 3 shows the miss rates of the three scheduling
policies in an RCS (dotted lines). For comparison, the
miss rates in an ACS (solid lines) are also shown. From
the figures, we see that fewer deadlines are missed in
an RCS than in an ACS across the board. This is be-
cause the problem of Transaction Restart is eliminated
in an RCS. Among the three policies, URT registers
the biggest improvement. This is because a transac-
tion that reads a derived item can choose an old, but

306

Figure 3: Miss rate vs Xt (ACS & RCS)

materialized version. It thus never has to wait for any
sleeping recomputation to wake up and to calculate a
new version of the item. Batching Wait therefore does
not exist in an RCS. Hence, two of the three detrimen-
tal factors that plague URT are gone, leading to a much
smaller miss rate.

Figure 3 also shows that the performance of OD-
H can be further improved in an RCS by eliminating
Tkansaction Restart. Essentially, by applying OD-H to
an RCS, the system is rid of any of the adverse factors
we discussed. jkfDggsH is close to 0 except when Xt is
big. When the transaction arrival rate is high, missed
deadlines are caused mainly by CPU and disk queuing
delays. From Figure 3 we see that the improvement of
MD z& over MD AC oDsH is very significant. For example,
when Xt = 5.0, about half of the deadlines missed in an
ACS are salvaged in an RCS.

In the course of our study, we also evaluated the
scheduling policies under other scenarios. Due to space
limitations, these results are not reported here. Readers
are referred to [5] for a more complete discussion on
these experiments.

8 Conclusions

In this paper we defined temporal consistency from the
perspective of transactions. In an ACS, a transaction
cannot commit if some data it reads become stale at the
transaction’s commit time. We also defined an RCS as
one with which a transaction reads relatively consistent
data items and that those items are not more than a
certain threshold (A) older than the transaction’s start
time. We argued that a relative consistent system has
a higher potential of meeting transaction deadlines. We
also studied three scheduling policies: URT, OD, and
OD-H. We carried out an extensive simulation study
on the performance of the these policies, under both an
ACS and an RCS. We found that OD-H when applied
to an RCS results in the smallest deadline miss rate.

References

PI

PI

PI

WI

PI I

PI ~

171

PI

PI

PO1

PI

P21

WI

ml

R. Abbott and H. Garcia-Molina. Scheduling real-
time transactions: a performance evaluation. In
Proceedings of the 14th VLDB Conference, 1988.

B. Adelberg, H. Garcia-Molina, and B. Kao. Ap-
plying update streams in a soft real-time database
system. In Proceedings of the 1995 ACM SIGMOD,
pages 245-256,1995.

B. Adelberg, H. Garcia-Molina, and B. Kao.
Database support for efficiently maintaining de-
rived data. In Advances in Database Technology
- EDBT 1996, pages 223-240,1996.

M. Cochinwala and J. Bradley. A multidatabase
system for tracking and retrieval of financial data.
In Proceedings of the 26th VLDB Conference, 1994.

B. Kao et. al. Updates and view maintenance in
soft real-time database systems. Technical Report
TR-99-06, University of Hong Kong, 1999. URL:
http://www.csis.hku.hk/publications.

B. Purimetla et al. Real-time databases: Issues and
applications. In Advances in Real- Time Systems.
PrenticeHall, 1995.

Y.-K. Kim and S. H. Son. Predictability and con-
sistency in real-time database systems. In Aduances
in Real-Time Systems. Prentice-Hall, 1995.

T. W. Kuo and A. K. Mok. SSP: A semantics-
based protocol for real-time data access. In IEEE
Real- Time Systems Symposium, pages 76-86,1993.

Mesquite Software, Inc. GSIM 18 User Guide.
URL: http://www.mesquite.com.

G. Ozsoyoglu and R. Snodgrass. Temporal and
real-time databases: A survey. IEEE lkasactions
on Knowledge and Data Engineering, 7(4):513-532,
1995.

K. Ramamritham. Real-time databases. Dia-
tributed and Parallel Databases, Vol.l(No.2), 1993.

Xiaohui Song and Jane W.S. Liu. Maintaining tem-
poral consistency: Pessimistic vs. optimistic con-
currency control. IEEE Zkansactions on Knowl-
edge and Data Engineering, pages 78?-796,1995.

M. Xiong, R. Sivasankaran, J.A. Stankovic, K. Ra-
mamritham, and D. Towsley. Scheduling transac-
tions with temporal constraints: Exploiting data
semantics. In Proceedings of 1996 Real-Time Sys-
tems Symposium, Washington, Dec. 1996.

P.S. Yu, K.L. Wu, K.J. Lin, and S.H. Son. On real-
time databases: Concurrency control and schedul-
ing. Proceedings of the IEEE, 82(1):140-157,1994.

307

