
A New Parallel Signature File Method for Efficient Information Retrieval

Jeong-Ki Kim and Jae-Woo Chang

Department of Computer Engineering, Chonbuk National university

Chonju, Chonbuk 560-756, Korea

Phone: +82-652-70-2414 (FAX: 70-2263)

E-mail : {dblab,jwchang} .nms.chonbuk.ac.kr

Abstract

The signature file method has been widely advocated as an
efficient index scheme to handle new abdications demand-. .
ing a large volume of textual databases. Moreover, it has
recently been extended to support multimedia data. In or-

der to achieve good performance when handling multime-
dia data, the signature file approach has been required to

support parallel database processing. Therefore, in this pa-
per we propose a horizontally-divided parallel signature file
(HPSF) method using extendible hashing and frame-slicing
techniques. In addition, we also propose a heuristic proces-
sor allocation method so that we may assign a set of signa-
tures to a given number of processors in a uniform way. To

show the efficiency of HPSF, we evaluate the performance of
HPSF in terms of retrieval time, insertion time, and storage
overhead. Finally, we show from the performance results
that HPSF outperforms the conventional parallel signature
file methods regarding retrieval performance and dynamic
operating measures used to combine both retrieval and in-
sertion time.

Keywords: dynamic signature files, parallel databases, ex-
tendible hashing, frame-slicing technique, performance eval-
uation

1 Introduction

The signature file method has widely been advocated as
an efficient access method to deal with many applications
demanding a large volume of textual databases, such as li-
brarv. office information and medical information svstems[l.. . L,

2]. Therefore, the signature file approach has become a
well-known concept for implementing associative retrieval
on data files kept in a stable store. Recently, the use of sig-
nature files has been extended to support multimedia data,
such as images, voice and video[3]. Many recent database
management systems (DBMS) used to support multimedia

Permission to make digitallhard copies of all or pan of thk msterial for
personal or classroom use is granted without fee provided that the copies
are not rnede or distributed for pmtit or commercial advantege, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Iac. To copy otherwise,
to republish, to peat on servers or to redistribute to lists, requires specific
permission andlor fee.
CIKM ’95, Baltimore MD USA
@1995 ACM 0-89791-812-6/95/11.,$3 .50

data require a dynamic storage structure which performs
not only retrieval operations but also insertion, deletion and
update operations in an efficient manner. As a result, sev-
eral dynamic signature file methods have been proposed;
S-tree[4], Quick filter[5], TDSF[6], and HS file[7].

The signature file is an abstraction which acts as a fil-
tering mechanism to reduce the number of block accesses
for a query. A signature is a bit string formed from the

terms which are used to index a record. Indexing using sig-

nature files assigns a signature to every record in the data
file. Signature Iiles typically make use of a superimposed
coding technique to create a record signature[8]. When we
assume that a record consists of n terms, each term is con-
verted into a bit string, called term signature, using a hash
function. The record signature is formed by superimposing
(inclusive ORing) the n term signatures as shown in Figure
1. The number of 1‘s in a signature is called weight. To am-
swer a query, we first examine the signature file rather than
the data file, to immediately discard non-qualifying records.

For this, a set of terms in a query is hashed to form a query
signature in the same way used for the record signature. If
the record signature contains 1‘s in the same positions as the

query signature (i.e. record signature ~ query signature),
the record can be considered as a potential match. However,
there can be a case where the record signature may qualify
as a query signature, but the record itself does not satisfy
the query. This is called a ~ahe drop[8].

H(term) : Hash function Term signatures
H(Comrwter) = 0001 100000001001... -.-. -=—..-,
H(Communication) = 0100000011001000
H(Database) = 1000110000001000

Record signature = 1101 110011001001

Figure 1: Record signature construction

In a database processing environment, the speed of mi-
croprocessors increases rapidly with the development of com-
puter technology, while the performance of disks increases
at a much lower rate. This leads to a major bottleneck. To
solve the problem, parallel database systems using multiple
disks have been developed[9, 10]. A key issue in paralleliza-
tion is: how to create opportunities for parallel accessing
without resorting to redundant storage or declustering data
on disks. When we use parallel signature files in a multi-
processor environment, we can achieve significant increases

66

in speed by means of concurrent access to databases. In
this paper, we propose a horizontally-dw:ded parallel signa-
ture file (HPSF) method using extendible hashing and frame-
slicing techniques, which is appropriate for both parallel and

dynamic database environments. In addition, we propose a
heuristic processor allocation method so that we may as-
sign a set of signatures to a given number of processors in a
uniform way.

The remainder of this paper is organized as follows. In
section 2, we describe an overview of the conventional paraf-
lel signature file methods. In section 3, we propose a new dy-
namic signature file method, called HPSF, using extendible
hashing and frame-slicing techniques. In section 4, in order
to show the efficiency of HPSF, we evaluate the performance
of HPSF in terms of retrieval time, insertion time, and stor-

age overhead. In section 5, we compare the performance of
HPSF with those of the conventional parallel signature file
met hods. Fklly, section 6 offers our conclusions.

problem is that it is unable to predict where the n frames
are located because a frame selection is made at run time.
CAT achieves better retrieval performance than the com-
mon method because CAT needs only one random disk ac-

cess per frame in each section (Figure 3). However, the
CAT method has a disadvantage in that it cannot support

a dynamic database environment.

\) L)

SectionO Sectionl

2 Conventional Parallel Signature File Methods

Figure 3: CAT structure
There are basically three different structures for mr.dtipro-
cessor database computers: Shared Everything (SE), Shared
Disk(SD), and Shared Nothing(SN)[9]. In SE, all disk and
memory modules are shared by processors, and therefore
data is equally accessible from all processors. In SD, each
processor can directly access any disk, but each processor
has its own private memory. in SN, each processor haa its
own private memory and the dedicated disk devices are con-
nected by a high speed network as illustrated in Figure 2.
There has been considerable debate about which structure is
the most suitable for a datab=e computer implementation.
It is generally agreed that SN is outstanding for achieving
good system performance because the problem of a data co-
herency control does not occur. However, since SN is very
sensitive to the distribution of data on disks, it may lead to
considerable performance degradation due to a data skew-
ing. In spite of the data skew problem, SN is the most used
structure for implementing the conventional parallel signa-
ture file methods, i.e., FSF[ll], CAT[12], and PBSSF[13].

Grandi et al. proposed a fragmented signature file (FSF)
which combines a quick filter[5] with the frame-slicing ap-
proach so that they could dynamically manage a large file
with fast responses on user queries (Figure 4). The FSF
method presents a scheme to divide a sin Ie signature into

%several frames, which are computed as n. 2 > p, where p, n,
and 2k represent the number of processors, frames, and par-
titions, respectively. Each frame is assigned to processors
whose number are determined by:

where FS is the frame-slice and k is calculated as [logz (p/n)J,

and 2k-1 < z, < 2k. When we make use of clustered

frames, the retrieval performance of FSF becomes better as
the number of frames is increased. However, when we adopt
uncluttered frames, the retrieval performance is better with
a decrease in the number of frames.

High Speed Network I

MMo I MM3

Figure 2: Parallel architecture (Shared nothing)

Lin proposed a concurrent frame signature file (CAT) aa
an extension of the frame-sliced signature file (FSSF). The
CAT aims at allowing concurrent accesses to a signature file,
and makes use of a clustered frame scheme to construct a
signature. The clustered frame scheme selects only n frames
per term among all the frames in order to create a term sig-

nature from a single term in the record. A common method
used to parallelize FSSF whould be to partition the signa-
ture file horizontally into segments, which are then assigned
into different processors. However, the common method’s

(record signature)

I ,8
F’ol —

HP(FS, k, Zj)

o

HB(FS, h, B.)
P02using prefix using suffix

o
P03

El

Figure 4: FSF structure

67

3 A Horizontally-divided Parallel Signature File Method

Based on extendible hashing and frame-slicing techniques,
we propose a hor~zontally-divaded parallel szgnature jile

(HPSF) method. In addition, we propose a heuristic pro-
cessor allocation method which distributes both descriptor

keys and their frame blocks in a uniform way so that we may
make equivalent keys to be fairly assigned to a given number
of processors. This leads to a better retrieval performance
than conventional methods regarding databme accesses as
welf as efficient utilization of muftiple processors. Here, the
equivalent keys are defined as a set of keys which are searched
to find whether they potentially match the haling key of a
query signature. For example, if a hashing key is determined
to be ‘1010’, equivalent keys can be calculated from ‘1*1*’,
i.e., 1010, 1011, 1110 and 1111. Figure 5(a) shows that
these equivalent keys are uniformly distributed among four
processors by using a heuristic processor allocation method.
Therefore, sixteen descriptor keys are assigned into four pro-
cessors by means of a repeating sequence of $~$ directions.
Four equivalent keys can be accessed by each processor. On
the other hand, F@re 5(b) indicates that the four equiva-
lent keys (1010, 1011, 1110, and 1111) are assigned into only
processors 2 and 3, resufting in the inefficient utilization of
the four processors. Since it is very difficult to find an opti-
mal processor allocation method, it is reasonable to design
an efficient process allocation method based on a heuristic
approach.

o
PO

o
P,

o
P2

o
P3

direction: l? bbt?

(Key allocation of HPSF)

o
PO 00 — * 000 – + 0000 1000

100 – + 0100 1100

0
PI 01 — + 001 – “ 0001 1001

101 – “ 0101 1101

0
P2 10 — + 010 – + 0010 1010

110 – + 0110 1110

0P, 11 011 – “ 0011 loll

111 + 0111 1111

(Key aflocakion of FSF)

Figure 5: Affocation methods

When a collection of frame blocks is split due to the
overflow of record signatures, a newly created key must be
moved into the processor whose number is determined as:

{’ ifb(K, Np, B) = o~({(’N”’N)= gi%p)@(Np - 1) if b(z{, fvp,B) = 1

where K is a key value calculated by an extendible hash func-
tion, NP presents the number of processors, and @ means a

bitwise exclusive-OR operation. Also, B represents a pro-
cessor allocation pattern, which is obtained by 0x96
(=100101 10) in the experiment. Function b() indicates an
allocation direction, which is calculated as

b(A”, Np, B) = [E? > ((l{/Np)%bttsne(B))] & OZO1.

When b(K, fVp, B)=O, a forward direction is presumed; when
b(K, NP, B)=l, a backward direction. For example, when
K=6(=101) and NP=4, then b(6,4,0x96) = 1. This means a
backward direction and po= 1. Therefore, a record signature
with 1i”=6 is assigned into processor 1.

Meanwhile, each processor determines which sequence
its frame blocks shoufd be searched. In general, it is neces-
sary to access frame blocks according to a query signature
weight because query signature frames with high weights

lead to a greater fiftering effect by accessing them first. For
example, the searching order of the query signature in Fig-
ure 6 is decided as FI, F3, and FO, based on the weights of
the four query frames. Meanwhile, when we access frame
blocks according to a searching order, a frame block with
non-qualifying signatures is excluded in the next searching
sequence. The higher a query signature weight, the lower the
probability of potential matching with a record signature. In
addition, when we divide a query signature into several sig-

nature frames, we do not need to access frame blocks which
correspond to zero-weight query frames because they qualify
all the frames in frame blocks. Therefore, the zero-weight
query frame of Fz is removed from the searching order (Fig-
ure 6).

Frame number : FO FI F2 F3
Query signature : 1 1000 I 0111 I 0000 1010

w= 1 w =3 w =0 W=2
I

(W: weight of a signature frame)

~ Searching order of frames : FI, F3, FO

Figure 6: Searching order of query signature frames

For example, we assume to answer a query containing
two terms, “computer” and “fife”, as shown in Figure 7. A
query signature is made from the query. Next, since a hash-
ing key in the query signature is ‘ 1010’, equivalent keys are
‘1010, 1011, 1110, and 1111’. So PO finds one of the equiv-

alent keys (i.e. ‘101 1‘) in the descriptor and accesses the
frame group G11. According to the searching order (Figure
6), PO compares query signature frames with record signa-
ture frames. In this case, we can obtain the first signature

as a qualifying signature and finally access the document by
the Ptr information of the record signature. To construct

the HPSF, insertion, retrieval and deletion algorithms are
as follows:

[Algorithm 1] Insertion Algorithm
Input :

R. : new record

output :
U’ : database structure after Rn is inserted

Variable :
S : signature made from R.
P, : i-th processor, O ~ z < NP

68

(query signature) D searchingorder : FI, F3, FO

1000 0111 0000 1010 Ptl (documents)

0000 G]l

(query)

.. .

\
\

bP3 Elf
w

0011
0100

1000

1111 , I

F@re 7: HPSF structure

T. : blocking factor of a fame block C : set of records retrieved from a query

D : set of descriptor keys, Variables :
{d[i]ld[i] G D, z is the value of descriptor key } Q : query signature

d[i] (Men, cnt, pointer) : key length, number of signature, QF, : i-th frame of query signature,
pointer to frame group O$i<Nf, Q~QF,

FG[i] : group of frame blocks which is indicated by 0[:] : searching order of query frames

d[i].pointer

Process :
Make S from R. and transfer S into every processor P,;
Every processor P, computes a hashing key KEY
from S ;
for(; processor number == p(I(EY, fVP, B);
computer new KEY from S){

if(d[KEY1.cnt == T,) { /’ FG[KEY] is full “/

d[KEY1.klen + +;

NEXT = K13y + 24~cEYl kle.;

/“ NEXT is a new descriptor key value “/
d[NEXTJ.pointer = &(FGINEXTl)
and d[NEXT1.klen = d[KEY1.klen ;
Classify all the frames of FG[KEYJ
into FGIKEYl and FGINEXTl ;
Move d[NEXTl and FGINEXTl
into new p(NEXT, A’P, 1?) processoq }

else {
Divide S into each frame ;

/* d[KEY1.cnt < T. */

Store frames in every frame block of FG[KEY] ;
d[KEYl,cnt ++ ; break; }

~n~ J* for loop ‘/
:

[Algorithm 2] Retrieval Algorithm
Input :

Rq : query
output :

N;’: number of frames
Fll[i, j] : j-th frame block in FG[i], O < i < Nf
K : set of equivalent key, {k, Ik, c K, k, c D}

Process :
Make Q from Rq and transfer Q into every processor P,;
Divide Q into Nf query frames, i.e. QF, ;
Compute O[i], for example, if i-th frame weight is zero,
O[i] = –1;
Every processor P, computes a hashing key KEY from Q;
Every processor P, computes all equivalent keys k, c K
frnm }t’EY:.. . ..
whlle(k, E K exists in a processor whose number is
p(k,, NP, 1?)) {

for(j=O; j< Nf; j++){
if(Oh] == —1) continue;
Read FB[i, Oh]] of F’G[i] which is pointed by k,;
Find record signature frames matched with

QFOM in FB[i, o[j]] ;
if(all frames in FB [i, O[j]] are never matched
with QFOIJ1)

O[j]= –1 ; }

Read C which is pointed by matched signatures;
while((r c C)&(r o R~)) output r ;

En; /“ while loop */
:

[Algorithm 3] Deletion Algorithm
Input :

69

Rd : record to be deleted
output :

U“ : database structure after Rd is deleted
Variables :

.$d : record signature to be deleted

Process :
Make sd from Rd and transfer .$d into every processor P,;

Every processor P, computes a hashing key KEY
frOm Sd ;

Find Sdusing [Algorithm 2];
Delete all frarneSof Sd in FGIKIIYl and its record ;

{

~{Ey + 2d[JCEYl kfen–1

OPI{EY =
ifb(KEY, klen) = O

~<Ey _ ~d[h-EYJ.klen-l

ifb(KEY, klen) = I

for(d[KE~.cnt-- ; d[A’EYl.cnt + d[OPKEY1.cnt s T,;

d[ICEY].klen––) {

if(OPh’EY < KEY) Exchange OPKEY with KEY;
Merge FGIKEYl and FGIOPKEYl into FGIKEYl;
d[KE~.cnt = d[KEYJ.cnt + d[OPI<EY1.cnt;

Delete d[OPKEYl and FGIOPKEYl;
Compute again an opposite key OPKEY from KEY;

}
End:

4 Performance Analysis

In this section, we develop an analytic performance model

of the HPSF method. For this, Table 1 lists the input and
design parameters as well m their meanings. The input pa-

rameters describe the database used in a given application
and the design parameters are chosen by a designer to eval-
uate the performance of HPSF. We first define false drop
probability, Fd, as the probability that a nonqualified signa-
ture is accidentally considered as a qualified one. Therefore,
the false drop probability is computed as follows:

Fd=/%-- .

Here N is the number of signatures, &ff is the number of
false match signatures, and Ma is the number of actuaf
match signatures. When a signature length is relatively

large, Fd can be computed as:

Therefore, we can gain values k and b based on the fact that
the optimal distribution of a signature is achieved when t/b
is 1/2 [8].

4.1 Retrieval Time

To estimate retrieval performance, we assume that a query
contains w terms and a record signature follows a uniform
distribution. The retrieval time is measured by the num-
ber of block accesses when retrieving a query with w terms.
For the analysis, we define e(r, m, n) as a probability that
any one of n blocks includes any one of r records when r is
the number of randomly selected records and m is a block-
ing factor[l 4]. We make use of the foIlowing measures for
searching both signature files and qualifying records.

Table 1: Irmut and desire mrameters

Parameters

b
m
k

Ld
N
G
N,
Nf
Lf

;3
?1)

Meanings

Siaature lemzth
N~mber of di~tinct words in a record
Weight of a word signature

(i.e. bits being set by one word)
Length of a descriptor key
Number of records
Size of a disk page(block)
Number of processors
Number of frames
Frame size
Proportion of page utilization
Blocking factor of a frame block
Number of words in a query

P~(S), P“ (Q) : Weight ratio of record and query signatures
respectively,

l-(l-;)m,l-(l-:)w.

W(S), W(Q) : Record signature weight and query signa-
ture weight,
Pw(S) b, Pw(Q) ~b.

W(S,), W(Q,) : i-th frame weight of record and query sig-
natures respectively,
PW(S) . Lf, Pw(Q) . Lf.

Pwcj (Q, h) : Proportion of h bits with j weight in query
signatures,

{(w:~)~~)(:)l/(w:Q
E(VV(Q, h)) : Expected weight of h bits in query signa-

tures,

{

Pw(Q) . h if W(Q) << b

~~~(h’w(Q)) j ~P~nj(Q, h) otherwise.

K(h) : Number of equivalent keys when a hashing
key has h bits in query signatures,
2’-E[W(Q,’)].

V(K,(3) : Number of equivalent keys in i-th processor,
K(h) . ~. When the equivalent keys are uni-
formly distributed among NP processors, ~
is I/NP.

Pm (Lf, W (S,), W (Q, )) : Probability that one of the signa-
ture frames in i-th frame blocks is matched
with a query signature where i is a search-
ing order,
( v–W(Q, )

I
.

if Lf >> W(Q, ) and ~ = ~

M, : Number of qualifying signature frames in i-
th frame blocks,
M,+l = M,. Pm(Lf, W(S, ), W(Q, )), M, =
V(K, /3) . T, . a.

70



Rf(i) : Number of i-th frame blocks which is ac-
cessed for query signatures,

Rf(a + 1) = e(Mt, T$ a,l?f(i)) x Rf(i),
Rf(l) = V(K,O).

According to these measures, we can calculate the re-
trieval time of HPSF:

RHFSF = A’(h)+ ~~, Rt(i).

4.2 Storage Overhead

In addition, we make use of the following measures for es-
timating storage overhead to maintain signature files in all

processors.

O,f : Storage space for maintaining frame blocks

to store signature frames, ~+~ where

T, = $TP = ~,LP is the length of a

pointer.

Odf : Storage space for maintaining descriptor files

to store descriptor keys, 2h . Ld.

According to these measures, we can calculate the stor-
age overhead of HPSF:

OHPSF = O.f + Odf.

4.3 Insertion Time

For the analysis, we use the following measures for inserting

record signatures.

IHfb : Number of frame block accesses when not
split , Nf

P,p : Probability that frame blocks are split where
I/T, is a proportion that a frame is split
when inserting from the first. signature to
the Ts-th signature,
+(l+(N-T=)~) = ~ -+.

Number of additional frame block accesses
when split, Nf . P,P. These frame blocks
are moved to another processor through the
network.

lHdb : Number of descriptor block accesses, 1+ P.P.

IHf,p :

According to these mezwures, we can calculate the inser-
tion time of HPSF:

IHPSF = IHfb + IHf.p + IHdb + 7,

where 7 is an addh,ional time which is required in a network
to move the split frame blocks.

5 Experimental Performance Results

In order to verify the analytic model to evaluate the per-
formance of our HPSF method, we implemented the three

parallel signature file methods (i.e. CAT, FSF, and HPSF)
and ran experiments on a set of 100 thousand records under

the UNIX/SUN Spare 10 environment. The input and de-
sign parameters for the experiments are presented in Table 2.
In the table, HPSF uses 16 frames and FSF uses 1 frame.
Meanwhile, the records used for experiments were collected
from the library of Chonbuk National University (CNU),
which consist of 12 fields such as title, aut her, school, degree,
date, page, adviser, source, publication, subject, abstract,

and keywords. The average record size is about 2.5 Kbytes
with 87.8 distinct terms. We also used 4,000 conjunctive

queries so as to make a wide range of experiments. For the
experiment, we ~sume that a communication delay is much
shorter than the time for a disk block access because we
make use of a high-speed network among processors[12, 13].

Table 2: Experimental vafues

Parameters

b
m
k

N
G

N,
N,

Values

276 bytes
87.8 -
17
100,000
4096 bytes
32
16 (FSF:l)

According to the parameters and assumptions, Figure 8
presents both the theoretical and the experimental retrieval
performance of HPSF. From the results, we can see that the
analytic and experimental results correlate very well. In ad-
dition, Figure 9 shows the retreval time of the three parallel
signature file methods. The HPSF achieves a considerably
better retrieval performance than FSF and CAT in the en-
tire range. In Figure 9, a cross point between HPSF and

CAT occurs for the following reason: when a query has a
small number of terms, the HPSF basically owns more frame
blocks than CAT because the page utilization of HPSF is
lower than that of CAT. On the other hand, when a query
has a large number of terms, the HPSF can remove many
non-qualifying descriptor keys while CAT must always ac-
cess afl the frames in frame blocks. However, CAT shows
the worst performance on the insertion time aa shown in
Table 3. Therefore, it is difficuft to apply CAT to dynamic
environments where insertion operations occur frequently.
Meanwhile, the fafse-drop probability of clustered frame sig-
natures used in CAT is about 1000 times higher than that
of uncluttered frame signatures used in HPSF (Figure 10).

Table 3: Insertion time and Storage overhead

I I Insertion time I Stora~e overhead 1
I Methods II (second) - (%) I
I CAT II 0.30 I 11.04

FSF 0.03 16.31
HPSF II 0.01 I 15.35

71



‘sec:lL
(jz~

0510152025303540
number of query terms

Figure 8: Retrieval time of HPSF

8

7

6

(sec)~

3

2

1

0

m
0510152025303540

number of query terms

Figure 9: Retrieval time of 3 methods

For a dynamic environment where insertion operations
frequently occur, we define a dynamic operating measure as
C = R +6. I which combines two major output parameters
(i.e. the insertion and retrieval time). In the formula, 6 is
a dynamic degree indicating the relative weight (occurrence
frequency) of data insertion, compared with retrieval. When
J = 1 (i.e. the rate of insertion is the same as that of

retrieval), the HPSF achieves the best performance gains
with regard to the dynamic operating measure, compared
with the CAT and the FSF (Figure 11). Therefore, we can

make use of HPSF as an efficient dynamic storage structure
for a multiprocessor environment.

6 Conclusion

The signature file method has been widely advocated as an
efficient index scheme able to handle many applications de-
manding a large volume of textual databases. In order to
achieve improved performance, the signature tile approach
has recently been required to support parallel database pro-
cessing. In this paper, we proposed a horizontally-divided
parallel signature file (HPSF) method using extendible hash-
ing and frame-slicing techniques. In addition, we designed
a heuristic processor allocation method to assign a set of
signature frames into multiple processors in a uniform way.
To show the efficiency of HPSF, we presented an analytic
model and evaluated the performance of HPSF in terms

le+OO 4

le-01 Clustered frame * z

nclusered frame +

1’-03 F

le-04 r

le-05

le-06 2 ~
~eo~ ~

O 5 10 15 20 25
number of query terms

Figure 10: False-drop probabilities

8

7

6

(see) ~

3

2

1

0
0510152025303540

number of query terms

Figure 11: Dynamic operating measures

of the retrieval time, insertion time, and storage overhead.
From the performance results, we demonstrated that our
HPSF method significantly outperformed FSF on retrieval
time and was better than CAT regarding dynamic operating
measures combining retrieval time and insertion time.

References

[1]

[2]

[3]

[4]

[5]

J. W. Chang, J.H. Lee, and Y.J. Lee. “Multikey Access
Methods Based on Term Discrimination and Signature
Clustering”. In Proc. of l%h Ann Int’1 SIGIR of ACM,
pages 176-185, USA, June 1989.

W.W. Chang and H.J. Schek. “A Signature Access

Method for the Starbust Database System”. In Proc.
of the 15th VLDB Conferencel pages 145-153, Nether-
Iand, Aug 1989.

P.B. Berra et al. “Architecture for Distributed Multi-
media Database Systems”. Computer Communications,
13(4):217-231, May 1990.

U. Deppish. “S-tree: A Dynamic Balanced Signature
Indexed for Office Retrieval”. In Proc. of the ACM
Conj. on RDIR, pages 77-87, Sept 1986.

P. Zezula, F. Rabitti, and P. Tiberio. “Dynamic Par-
titioning of Signature Files”. ACM Trans. on OIS,
9(4):336-369, Ott 1991.

. .



[6] J.K. Kim and J.W. Chang. “A Two-dimentional Dy-
namic Signature File Method”. In Proc.oj Int’1 Symp.
on A DTI, pages 63–70, Nara, Japan, Ott 1994.

[7] J.S. Yoo et al. ‘A Dynamic Signature F51e Method for
Efficient Information Retrieval”. In Proc. of Int’1 Syrnp,
on NGDSTA, pages 108-115, Japan, Sept 1993.

[8] C. Faloutsos and S. Christodoulakis. “Signature Files:
An Access Method for Documents and Its Analyti-
cal Performance Evaluation”. ACM Trans. on 01S,
2(4):267–288, 1984.

[9] K.A. Hua and C. Lee. “Handling Data Skew in Mul-
tiprocessor Database Computers Using Partition Tun-
ing”. In Proc. of the 17th VLDB Conference, pages
525-535, Spain, Sept 1991.

[10] J. Li, J. Srivastava, and D. Rotem. “CMD: A Multi-
dimensional Declustering Method for Parallel Database
Systems”. In Proc. of the 18th VLDB Conference, pages
3-14, Canada, 1992.

[11] F. Grad, P. Tibeno, and P. Zezula. “Frame-Sliced
Partitioned Parallel Signature Files”. In Proc. of 15th
Ann Int’1 SIGIR of ACM, pages 286-297, Denmark,
June 1992.

[12] Z. Lin. “Concurrent Frame Signature Files”. Dis-
tributed and Parallel Databases, 1(3):231-249, July
1993.

[13] G. Panagopoulos and C. Faloutsos. “Bit-Sliced Signa-
ture Fdes for Very Large Text Databases on a Parallel
Machine Architecture”. In Proc, of@ Int’1 Conf. on
EDT, pages 379-392, United Kingdom, 1994.

[14] K. Y. Whang, G. Wlederhold, and D. Sagalowicz. “Es-
timating Block Accesses in Database Organizations -
A Closed Noniterative Formula”. Communication of

A CM, 26(11):940-944, Nov 1983.

73


