
Rule-Assisted Prefetching in Web-Server Caching �

Bin Lan, Stephane Bressan, Beng Chin Ooi, Kian-Lee Tan
Department of Computer Science, National University of Singapore

3 Science Drive 2, Singapore 117543
flanb,steph,ooibc,tanklg@comp.nus.edu.sg

ABSTRACT
Web servers manage large number of documents of widely
variable sizes. Moreover, the access patterns on the docu-
ments may also c hange over time. While some documents
are highly popular over a prolonged period of time, we ex-
pect newly added documents to increase in popularity while
demand for most older documents decreases. It is therefore
important to design e�ective caching strategy at the web
server. In this paper, we present our approach to the prob-
lem. Our main contribution lies in the design of a novel
prefetching strategy, called RAP. RAP identi�es a set of
association rules from the Web server's access log. Unlike
existing mining strategy, RAP's miner values recently added
log records more than earlier log records. Based on the rules,
RAP predicts and prefetches documents from users initial
requests. We conducted extensive study to evaluate RAP.
The results show that RAP signi�cantly outperforms exist-
ing schemes. We also show that the mining and caching cost
is relatively low.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information storage and
Retrieval|Online Information Services [Web-based services];
I.5.2 [Computing Methodologies]: Pattern Recognition|
Design Methodology [Pattern analysis]

General Terms
Management Performance

Keywords
Web Server, Caching, Prefetching, Pattern Analysis

1. INTRODUCTION
�The full version of the paper can be downloaded from
http://www.comp.nus.edu.sg/vlanb/cikm00.ps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

The research onWeb-caching (caching of Web-documents)
has mainly concentrated on secondary storage caching at the
proxy server side or, more recently at the client side. Cache
management at the server side, i.e. placement (fetching and
prefetching) and replacement policies of documents in the
server's main memory has been relatively neglected. One
argument for this lack of research is that the requirements
are not signi�cantly di�erent from those of traditional �le
systems or even database systems, and therefore standard
techniques can be used. However, Web-server caching has
unique characteristics and requirements.
First, as opposed to the typical access patterns in �le sys-

tems and database systems, from the point of view of the
Web-server, the same user almost never reads the same doc-
ument twice in a short period time (typically one day). This
indeed is due to the availability of caches at the client (and
proxy) side. Multiple requests for the same document only
occur when the remote caches are full or when the user ex-
plicitly requests a refreshed (up-to-date) document. Finally,
because of the proxy server's cache, a fresh request for a doc-
ument may never reach the Web-server. Incidentally, this
suggests (as we will show empirically) that the hyper-link
structure of the HTML document may not be as relevant as
the access log for learning the server's access patterns.
Second, as opposed to traditional database objects, web

documents have a coarser granularity than the page (or
block). Nevertheless, as opposed to general �le systems,
for a speci�c Web-site, although anything but uniform, the
document size distribution can be c haracterized [3] or rela-
tively accurately guessed. Intuitively, it also seems to be the
case that, unlike �les in general, Web-documents being in a
common pool may be accessed with very similar patterns by
most users. Finally, it is clear that main memory caching
on Web-servers cannot be directly compared to client and
proxy's secondary storage caching. The scarcity of the main
memory calls for carefully designed memory management
strategies.
In this paper, we present our approach to the web-caching

problem. We integrated three aspects of web-caching into a
single framework: initial loading of the cache, prefetching of
potentially useful documents and cache replacement policies.
In particular, our main contribution lies in the design of a
novel prefetching strategy, called RAP. RAP identi�es a set
of association rules from the Web server's access log. Unlike
existing mining strategy, RAP's miner values recently added
log records more than earlier log records. Based on the rules,
RAP predicts and prefetches documents from users' initial
requests. We conducted extensive study to evaluate RAP

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

CIKM 2000, McLean, VA USA
© ACM 2000 1-58113-320-0/00/11 . . .$5.00

504

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

(coupled with the initial placement and replacement strate-
gies) on both static and dynamic workloads. The results
show that RAP signi�cantly outperforms existing schemes.
We also show that the mining and caching cost is relatively
low. To our knowledge, this is the �rst of its kind to study
all three aspects in designing a web-caching strategy.

2. RELATED WORK
The access log has been shown to re
ect the actual re-

quests reaching the server behind the clients' and proxies'
caches. Arlitt et al [3] studied six representative access logs;
two of which, the NASA and ClarkNet access log �les are
used in our study. The authors identi�ed ten di�erent invari-
ants, and hypothesized that these invariants exist in most
access logs. In particular, they showed that, in their bench-
marks, the �le size distribution is not uniform and the daily
patterns are representative. Generally, the daily patterns
seem to be a reliable hypothesis. This is con�rmed by the
results of Tatarinov et al [11], who proposed to prefetch doc-
uments that are the most frequently accessed according to
the previous day's access log. We will refer to this latter
method as STATIC.
The granularity of the caching is also an interesting issue.

Traditional cache management considers pages. Web servers
need to fetch entire documents. The impact of the document
size in the placement and replacement policies in the context
of Web-caching has received some attention(e.g., [1]).
The idea of learning access patterns to determine a prefetch-

ing strategy for databases, �le systems or Web caches is quite
natural. For instance FIDO [10] is a database cache \that
learns to fetch". In [7], a predictive approach was proposed
for �le systems caches. Several authors have proposed to use
statistical information for Web prefetching between client
and proxies[6, 5, 4, 9]. In the di�erent context of server to
client and server to proxy pushing (where the cache space is
not a sparse resource but where the bandwidth is), we our-
selves have shown [8] that the use of association rules mined
from the access log can signi�cantly improve the hit rate.
Data mining and association rule[2] have been extensively

studied in the literature. Besides Web-caching, many appli-
cations can bene�t by the mining of access patterns and
discovery of Web usage.

3. A FRAMEWORK FOR WEB-CACHING

3.1 System Architecture

Disk

Admission Controller

Log

Access
Cleaner

Access
Miner

Cache

Pre-
fet

ching

Delivery of Cached

Documents

D
el

iv
er

y
 o

f

 D

oc
um

en
t

Association
Rules

R
eq

ue
st

R
es

po
ns

e

Cache Manager

Figure 1: Bu�er Management Based on RAP

Figure 1 shows the basic architecture for supporting the
RAP strategy. RAP requires components capable of learn-
ing the association rules from the access log: the Access

Cleaner and the Access Miner, as well as a component con-
trolling the placement, prefetching of documents according
to the mined rules, and replacement of documents when
the cache is full: the Cache Manager. The Access Cleaner
cleanses the data and �lters out irrelevant information (such
as dynamically generated documents , \Not Found" docu-
ments, etc.) Then the Access Miner analyses and discovers
access patterns in the form of Association Rules. It forwards
these rules to the Cache Manager. The Cache Manager im-
plements the actual RAP strategy, which we shall describe
in more detail below.
In practice, in addition to the above mentioned compo-

nents, an Admission Controller determines if a request can
be processed or should be queued or rejected according to
the availability of various system resources. In this paper,
we shall assume that all requests are admitted.

3.2 The Access Miner
After Access Cleaner's data cleansing process, the access

log contains a chronological list of entries recording which
document (identi�ed by its URL and characterized by its
size) has been requested by which user (identi�ed by the
IP address of the client machine . We call a transaction

the chronological list of entries for a given user over a �xed
period of time. We shall refer to the �xed period of time
as the transaction's window. The transaction window is a
parameter of the Access Miner. Looking at all the trans-
actions in this time interval, we construct rules of the form
A ! B, where A and B are documents (local URL). The
intuitive interpretation of such rules is that after document
A has been requested by a user, document B is likely to be
soon requested by the same user, since it is usually the case
according to the access log.
Our approach to mining association rules di�ers from the

traditional approach [2] in that only consecutive documents
in the transactions contribute to the rules. Moreover, as a
�rst cut, we only focus on rules whose itemset size is 1, i.e.,
the antecedent and consequent of the rule has only one docu-
ment. These restrictions signi�cantly reduce the complexity
of the mining process.

3.3 The Cache Manager
We have identi�ed three main issues that the cache man-

ager should address. First, at the beginning of the day, the
cache has to be loaded. In this paper, we adopt a day-to-day
cache management strategy. In other words, at the begin-
ning of each day, the cache is initially loaded with popular
documents. Here, it is important to determine the right
set of documents to load. Second, useful documents should
be prefetched based on users' earlier requests. Again, here,
it is important to predict accurately the documents that a
user may want from his/her earlier requests. Third, stale or
unpopular documents have to be identi�ed for replacement.
This is especially the case when the cache is full and the
system attempts to fetch a new document. Thus, a good
replacement policy is needed to select a victim among the
documents in the cache.
Clearly, there can be many di�erent Cache Managers based

on solutions on each of the issues. In fact, each of the issues
has been separately addressed in the literature. We, how-

505

ever, feel that the various aspects interact with one another
and should be integrated into a single framework. Our ap-
proach to these issues are as follows: First,Loading the cache
at the beginning of the day. Second,Prefetch potentially use-
ful documents based on users' requests. Last,Identify stale

documents that should be replaced. In this paper, we will ex-
amine the following policies: LRU,LRU-MIN,LRU-2,LFU-
MIN and OPT.

4. RULE-ASSISTED PREFETCHING

4.1 Mining Prefetching Rules
Our mining algorithm is di�erent from existing algorithms.

First, the proposed algorithm is a near-line algorithm that
incrementally re�nes the rules as transactions are added into
the log. Second, earlier logs can in
uence the choice of the
rules. Third, recently added logs are given greater values
than earlier logs. Finally, the algorithm operates on a win-
dow of logs that stretches for 2 days1. Because the genera-
tion of the rules from the large itemset is straightforward, we
just show how to generate the large itemset in the following.
We �rst give an overview of the approach before discussing
the algorithm in detail.
We shall use the following notation in our discussion. Let

Li denote the large itemset for a database Di. We denote
Lij as the large itemset for Di [Di+1 : : : [Dj . Let Cij

be a set of candidate itemset for Di [Di+1 : : : [Dj . Let
Rij be the rules extracted for Di [Di+1 : : : [Dj . Finally,
we denote supp(ljDi [Di+1 : : : [Dj) as the support of l in
Di[Di+1 : : :[Dj , and supp(ljDi) be the support of l in Di.
The algorithm organizes a day (i.e., 24 hours) into k equal

time segments, [t1; t2); [t2; t3); : : : ; [tk; tk+1) where ti+1 �
ti = ti � ti�1 for k � i > 1. t1 is the beginning of each day,
and tk+1 is the close of the day. At t1, the algorithm gets the
large itemset L0 from the log records of the last 24 hours
. Let this database be denoted as D0. During [ti; ti=1),
new access records are added to the access logs, and we
denote these datasets as Di, i.e., at t2, we will generate the
large itemset L01 from the logs of D1 and L0; at t3, we will
generate the large itemset L02 from the logs of D2 and L01;
and so on till at tk+1, we will generate the large itemset L0k

from the logs of Dk and L0(k�1). These are the 2 days' log
records that are examined during the day from t1 to tk+1.
The next day will begin with D = [ki=1Di, and a whole
new set of logs for that day. This cycle is repeated with the
algorithm looking at 2 days' log only.
Our approach comprises the following steps:

1. At time t1 (which is the beginning of a new day), we
generate L0 (also denoted as L00) from D0.

2. In general, at time ti(i > 1), we will generate the large
itemset L0i from Di and the large itemset L0(i�1).

We are now ready to look at the algorithm of generating
the L0i from Di and L0(i�1). The algorithm proceeds as
follows.

1. Generate a candidate set of items, C. This is done as
follows.

(a) Generate Li from Di.

1We used day as the unit here. The algorithm can be gen-
eralized for other unit of time.

(b) Prune L0(i�1).

Remove items from L0(i�1) when they do not ap-
pear in Di. In fact, such items will only appear
again during the course of the day if they become
large item in any of the access logs. Otherwise,
since they are not frequently accessed, it makes
sense not to prefetch based on them. We denote
the pruned large itemsets as L0

0(i�1).

(c) C = Li [L0

0(i�1)

2. Generate the large itemset L0i

(a) Recompute the support supp(cj [ij=0 Dj for each
c 2 C as follows:

w � supp(cj [i�1j=0 Dj) + (1� w) � supp(ljDi)

where w is a weighting factor that measures the
relative importance of the large itemsets L0(i�1)

in [ij=0Dj .

(b) Generate L0i from C, which includes those items
with supports greater than some predetermined
threshold, minSupport.

It is worth noting that (1)We just need to scan Di(i > 0)
to get L0i instead of scanning [ij=0Dj . In other words, it
costs less and therefore make it practical . (2)We generate
Li from Di using traditional mining algorithms. (3)For sim-
plicity, we have set the minSupport to be the same for the
generation of Li and L0i.

4.2 Prefetching Scheme
We can generate the rules from corresponding large item-

set. Given that we have a set of rules, the prefetching scheme
works as follows.

1. Let the request be for document A.

2. Scan the rule database2 for rules of the form A ! X
for some document X.

3. Order these rules in descending order of their con�-
dence values.

4. Find the �rst rule (in descending order) whose X is
not in the cache. Read X into the cache.

As can be seen, the scheme prefetches at most one document
each time.

5. EXPERIMENTAL STUDY

5.1 Experimental Setup and Performance Met-
rics

We generated synthetic datasets for our experimental study.
To ensure that the datasets are as realistic as possible, we
examine the traces from three publicly available access logs
{ NASA [3], ClarkNet [3], and SF100 (http://www.science.
nus.edu.sg/Academic/SFM/index.html) { and generated our
datasets according to the distribution found in these logs.
It is interesting that all three data sets exhibit similar

characteristics: in terms of reference frequency, between 80%

2The rule database can be organized using some indexing
scheme, e.g., as a hash table.

506

and 95% of the requests are addressed at 10% of the doc-
uments(we call it 10-90 Rule); and repetitive bursty pat-
tern that occurs daily. Because of the bursty daily pat-
tern, we decide to de�ne the transactions' window to be one
day. Moreover, we also noted the following second order
transaction-based characteristics on three workloads. With
respect to the length of the transaction, we found that more
than 90% of users access less than 50 objects on the server in
one transaction. In terms of inter access time in the transac-
tion, (i.e., the average time between the consecutive requests
in the transaction), we found that the distribution follows
the Pareto distribution. Moreover, the inter-user arrival

time (i.e., time between two consecutive users \arrival" at
the server) follows an exponential distribution. Table 1
summarizes the characteristic related to the transaction.
Based on the characteristics of the real workloads, we gen-

erated two synthetic datasets:

� Static data set. The number of Internet users is grow-
ing at an unprecedented rate and Web-servers service
an ever-increasing number of requests to larger and
larger collections of documents. To take into account
this trend, we used the three core data sets to model
much bigger volume of transactions that exhibit simi-
lar access patterns. We arti�cially duplicated the doc-
uments and their structures 128 times as di�erent doc-
uments, and increased the total traces with reference
to these objects by the same magnitude. In these work-
loads, popular documents become unpopular at a very
slow rate. Thus, we shall refer to these workloads as
static workload.

� Dynamic data set. More and more commercial activ-
ities happen on the Web, and they constantly change
the content and
avor to meet the customers require-
ment for fresh things. In addition, many portal sites
even refresh their contents automatically every day.3

For example, Yahoo generates 50 GB data per day.
Table 2 summarizes the settings for the dynamic syn-
thesis workload used in our study.

In order to quantify the dynamic, we assume that 10%
of the \hot" �les in previous day will be \cold" in the
next day. The total entries number in DB is about
6; 550; 000.

The objective of our study is to maximize the rate at
which the Web-server can send the responses to the clients'
requests. The more requested objects found in the cache,
the higher the rate. We do not wish to complicate the man-
agement of our cache by allowing splitting of �les into pages
and the retaining portions of �les. Although �les are trans-
ferred as units to the clients, they are nevertheless of variable
size and are transferred as blocks from the disk into main
memory. The �le hit rate is de�ned as the ratio between
the number of �les requested and found in the cache (hit) to
the total number of requests (hit and miss). The block hit

rate is de�ned as the ratio of the sum of the sizes of the �les
requested and found in the cache to the sum of the sizes of
all the �les requested.

5.2 Experiments on Static Workload
Since the workload is static, the popular objects remain

largely popular. As such, we adopt a simpli�ed version of

3We call these kinds of sites dynamic servers.

RAP where the rules are obtained from the logs the day
before. In other words, we have only one log per day, and
there is no smaller incremental logs.
The default settings for the various parameters are as fol-

lows. The transaction window is one day according to the
invariants observed for the three benchmarks. The mini-
mum support and minimum con�dence thresholds chosen
for each of the three data sets have been respectively set
to 1% and 10% for all three access logs for the sake of uni-
formity. We discuss the tuning of the thresholds in section
5.2.3. For these thresholds, the popular documents and the
mined rules are few compared to the total number of doc-
uments. Consequently few association rules are mined for
each popular document. For all the experiments, we con-
sider a block size of 4096 bytes(4KB).

5.2.1 Comparing the RAP Variants
In this section we compare the di�erent variants of RAP

obtained by integrating RAP and a replacement policies.
We evaluate the schemes for four bu�er sizes, 1, 4, 16 and
64 MB. Figures 2 to 4 report the �le hit rate and block
hit rate for each of the three access logs. As expected, all
strategies improve as the bu�er size increases. Naturally,
the di�erences between the strategies are attenuated as the
bu�er size increases. We also see that no signi�cant dif-
ference in the relative performance and the trend appears
between the �le and block hit rate measurements. This is
due to the skewness of the �le size distribution.
More importantly we see that RAP-LFU-MIN performs

best among all variants. One natural question to ask is
whether the combination of RAP with a replacement strat-
egy is an orthogonal issue to the performance improvement
brought by the association rule-based prefetching. For this
we have tested the performance of each individual replace-
ment policy in the absence of prefetching. In these tests, the
cache behaves as a �le system cache: documents are brought
into the cache when they are requested and are replaced ac-
cording to the replacement policy.
Figure 5 shows the results for the variants of RAP with

a bu�er size of 16 MB as well as the results for the individ-
ual replacement policies. We see that the performance of the
replacement policies and the performance of the correspond-
ing combinations of RAP with the replacement policies are
ordered in the same way. Moreover, we observe that the dif-
ferences between the RAP-based schemes is relatively small
compared to non-RAP-based schemes. This shows RAP's
ability to prefetch documents that are indeed useful, mak-
ing replacement policies less of an issue for a �xed memory
size. Clearly, RAP-OPT performs the best, and provides an
upper bound for the RAP strategies. From the results, we
also note that RAP-LFU-MIN is the best strategy among
the RAP strategies for the implementation of a practical
system. It is the one we use in the sequel unless otherwise
speci�ed.

5.2.2 Comparison with Alternative Pre-fetching Strate-
gies

We now compare RAP with representative alternative strate-
gies. We use two strategies based on the knowledge of
the hyper-structure of the documents. The �rst strategy,
Hyper-link, prefetches all the documents referenced by the
document currently being prefetched. Such a strategy is
known to be very e�ective on the client side (although its

507

transaction length 90% of the transaction has less than 50 objects
inter access time in the transaction Pareto Distribution(� = 1; � = 0:15 � 0:27)

inter transaction time exponential distribution

Table 1: Summary of Characteristics Related to the Transaction

total number of �les 5000
�le size Pareto Distribution with � = 1024; � = 0; 50

transaction length 50
inter access time in the transaction Pareto Distribution(� = 1; � = 0:20)

inter transaction time exponential distribution with � = 20
Day Number 30(one month)

Table 2: Synthetic Dynamic Data Set Setting

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Cache Size(MB)

F
ile

 H
it

 R
at

e

RAP-LRU RAP-LRU-MIN RAP-LRU-2 RAP-LFU-MIN

(a) File Hit Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Cache Size(MB)

B
lo

kc
 H

it
 R

at
e

RAP-LRU RAP-LRU-MIN RAP-LRU-2 RAP-LFU-MIN

(b) Block Hit Rate

Figure 2: File Hit Rate and Block Hit Rate for SF100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Cache Size(MB)

F
ile

 H
it

 R
at

e

RAP-LRU RAP-LRU-MIN RAP-LRU-2 RAP-LFU-MIN

(a) File Hit Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Cache Size(MB)

B
lo

kc
 H

it
 R

at
e

RAP-LRU RAP-LRU-MIN RAP-LRU-2 RAP-LFU-MIN

(b) Block Hit Rate

Figure 3: File Hit Rate and Block Hit Rate for NASA

508

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Cache Size(MB)
F

ile
 H

it
 R

at
e

RAP-LRU RAP-LRU-MIN RAP-LRU-2 RAP-LFU-MIN

(a) File Hit Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Cache Size(MB)

B
lo

kc
 H

it
 R

at
e

RAP-LRU RAP-LRU-MIN RAP-LRU-2 RAP-LFU-MIN

(b) Block Hit Rate

Figure 4: File Hit Rate and Block Hit Rate for ClarkNet

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LRU LRU-MIN LRU-2 LFU-MIN OPT

Policies

F
ile

 H
it

 R
at

e

Replacement without RAP Replacment with RAP

Figure 5: Comparison of Replacement Policies with
and without RAP for SF100 (Cache Size = 16MB)

e�ciency depends on the network's and servers' latency).
The amount of prefetching this strategy incurs may be large
and may trigger series of replacements. A simpli�ed version
of Hyper-link, Hyper-link-Rand, prefetches one of the refer-
enced documents selected randomly. Another strategy we
consider is the STATIC strategy proposed in [11]. The most
popular �les according to the previous day's log are stati-
cally loaded into the cache (as far as the cache size allows
it) at the beginning of the day. No replacement takes place.
Since we analyzed the structure of only a subset of SF100,

the results presented are concerned with much smaller logs
and smaller document sets. We chose chapter 3 of SF100,
which contains 403 distinct �les of total size 645KB. For
these reasons, we have also reduced the cache size. The
performance results for cache sizes 20, 40, 80, and 160KB
are presented in Figure 6. As shown, both hyper-structure-
based schemes do not yield a very good performance, and
prefetching based on hyper-structures does not appear to be
a good idea. While Hyper-link prefetches too many docu-
ments, Hyper-link-Rand prefetches documents that may not
be relevant. The STATIC method is quite e�cient despite
its simplicity. It is obvious that RAP-LFU-MIN remains
the more superior algorithm, demonstrating that prefetch-
ing can be more e�ective than simply loading the cache with
the popular documents of the last 24 hours.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 80 160

Cache Size(KB)

F
ile

 H
it

 R
at

e

Hyper-link-Rand Hyper-link STATIC RAP-LFU-MIN

Figure 6: Comparing Alternative Prefetching
Schemes for Chapter 3 of SF100

5.2.3 Effect of the Support and Confidence Thresholds
Given the simplicity and e�ectiveness of STATIC, we need

to underline that the main advantage of RAP is that it
can be tuned by choosing di�erent support and con�dence
thresholds. These thresholds allow us to control the mining
granularity and therefore the responsiveness of the system
to diluted patterns. The following experiment is using RAP-
LFU-MIN with SF100. We chose 9 di�erent combinations
of the minimum support and minimum con�dence thresh-
olds. Figure 7 shows the performance of RAP-LFU-MIN for
the 9 combinations. Figure 7(a) con�rms that the hit rate
degrades as the number of rules mined decreases. However,
by observing 7(a), it may seem unusual that the hit rate
is not badly a�ected by the drastic decrease in the number
of association rules. The results are logical as accesses to
Web pages are highly skewed. From the access log, one is
able to observe that 10% of all the �les at any particular in-
stance account for 90% of the Web accesses. This property
of the three test-beds used explains the relative success of
STATIC. However, RAP can perform better than STATIC
as well as adapt to di�erent distributions.
Given the actual inter-request rate, we can safely consider

that the I/Os necessary for the prefetching can be inter-
leaved with the normal execution without impacting nega-

509

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Fi
le

 H
it

R
at

e

Combination of Minimum Support and Confidence

RAP-LFU-MIN

(a)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

I/
O

 C
os

t(
nu

m
be

r
of

 I
/O

 o
ve

r
nu

m
be

r
of

 r
eq

ue
st

)

Combination of Minimum Support and Confidence

RAP-LFU-MIN Cost1(Miss)
RAP-LFU-MIN Cost2(Pre-fetch)

RAP-LFU-MIN Total Cost(Cost1+Cost2)

(b)

Figure 7: E�ects of Pre-fetching(SF100, Cache
Size=16MB)(Combination of Minimum Support
and Con�dence is sorted by the descending number
of association rules)

tively on the response time. If the service load grows, it
is always possible to design a system architecture in which
prefetching is done asynchronously thus limiting the nega-
tive interaction between service and prefetching. Neverthe-
less, we study the two di�erent I/O cost for the RAP strat-
egy in order to understand the consequences of the choice
of the thresholds:

� The I/Os caused by the fetching of documents not in
the cache (missed-documents), which is the main cost
from the user's response time point;

� The I/Os caused by the prefetching of documents.

Figure 7(b) shows the percentage of I/Os incurred for the
fetching of documents not in the cache (missed-I/Os), for
the prefetching itself (prefetch-I/Os), and the total number
of I/Os. Naturally, the prefetching cost increases with the
number of association rules generated. This increase domi-
nates the performance gain for the response. It is therefore
important to set the threshold parameters high enough to
allow prefetching to be interleaved with the requests or per-
formed asynchronously.

An important observation from this experiment is that
the total I/O cost
uctuates within a small range, providing
us room to �ne-tune the minimum support and con�dence
levels to yield a higher hit rate while keeping the cost low.

5.3 Experiments on Dynamic Workload
For the dynamic workload, popular documents become

unpopular and unpopular documents become popular at a
much faster rate. Here, we evaluate RAP with four incre-
mental databases, i.e. a day is split into four equal time
periods. As default, we also set the weight, w, to 0.45 to
favor the incremental databases slightly. This is also the
optimal setting for our data set. We compare RAP against
two other schemes:

� Mine the rules from yesterday's log only. This is essen-
tially the RAP strategy used for the static workload.
We shall refer to this as RAP1.

� Mine the rules from all past logs. This method is re-
ferred to as RAPALL.

Before looking at the experimental results, we shall �rst
look at how the algorithms perform in terms of their abilities
to produce good rules. We observe that two consecutive sets
of logs, R1 and R2, can be viewed as follows: the earlier set,
R1, is essentially a training data set used to predict the
rules that may appear in the later set, R2. In other words,
we have two measures:

rightness =
number of rules r where r 2 R1 and r 2 R2

number of rules r where r 2 R1

This re
ects how many rules in R2 are predicted correctly
by mining R1.

wrongness =
number of rule r where r =2 R1 and r 2 R2

number of rule r where r 2 R1

This indicates how many rules may be wrongly predicted.
Clearly, a good algorithm should lead to high rightness

value, and low wrongness value.
In the experiments, we set the minSupport=1%. Because

at this minSupport, we can get the \hot" �les, which ac-
counts for 10% of the DB size, which agrees with the 10-90
rule. We vary the minCon�dence from 1% to 12%.
Figure 8 shows the goodness measures. Clearly, RAP

outperforms the other RAP1 and RAPALL by having the
largest number of rules predicted correctly, and the fewest
number of rules predicted wrongly. RAPALL performs the
worst because it depends on too much historical information.
In particular, because of the dynamic workload, older logs
no longer provide a good indication of the access pattern
and thus introduces noise into the mining strategy.
We also examine the time to mine the rules. It costs

217109,469907 and 21246(millisecond) for RAP1,RAPALL
and RAP ,respectively ,which clearly demonstrates that RAP
is not only e�ective but e�cient as compared to the other
two schemes. Since RAPALL is both ine�ective and ine�-
cient, we shall not study it further.
Figure 9 shows the hit rate result of RAP and RAP1 as

the cache size varies. As expected, RAP is superior by virtue
of the fact that it looks at more recent logs in determining
the prefetching rules.
We also study the e�ect of weights and the number of the

incremental log on the performance RAP and present the
results in the full paper.

510

0
10
20
30
40
50
60
70
80
90

100

1 5 10 11 12

Confidence(%)

R
ig

h
tn

es
s(

%
)

RAP RAP RAP1 ALL

(a) Rightness

0

50

100

150

200

250

300

350

1 5 10 11 12

Confidence(%)

W
ro

n
g

n
es

s(
%

)

RAP RAP RAP1 ALL

(b) Wrongness

Figure 8: Comparison of Goodness Measures

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 16 64 128

Cache Size(MB)

F
ile

 H
it

 R
at

e

RAP RAP 1

Figure 9: RAP vs RAP1

6. CONCLUSION
We have discussed a new approach to prefetch documents

in Web-server caches. The new cache management strategy
we propose, called RAP, is based on simple association rules
mined from the server's access log. We evaluated RAP on
both static and dynamic workloads. Our performance study
shows that RAP coupled with the LFU-MIN replacement
policy performs the best overall. Moreover, RAP-LFU-MIN
outperforms other alternative schemes that have been pro-
posed in the literature. We are currently studying the strat-
egy using theoretical access patterns. At the same time we
are implementing a complete Web-server using RAP-LFU-
MIN. Our implementation uses the extensible Web server
Jigsaw distributed by the World Wide Web Consortium.

Acknowledgment
We like to thank Arlitt and the Computer Center of Na-

tional University of Singapore, for respectively making the
NASA and ClarkNet, and SF100 data sets available to us.

7. REFERENCES
[1] C. Aggarwal et al. Caching on the World Wide Web.

IEEE Transactions on Knowledge and Data

Engineering, 11(1):94{107, Jan. 1999.

[2] R. Agrawal et al. Mining association rules between
sets of items in large databases. In SIGMOD

Conference, pages 207{216, 1993.

[3] M. F. Arlitt et al. Web server workload
characterization:the search for invariants. In
SIGMETRICS, pages 126{137, 1996.

[4] A. Bestavros. Using speculation to reduce server load
and service time on the WWW. In CIKM, 95.

[5] K. M. Curewitz et al. Practical prefetching via data
compression. In SIGMOD Conference, 1993.

[6] L. Fan et al. Web prefetching between low-bandwidth
clients and proxies:potential and performance. In
SIGMETRICS, 1999.

[7] J. Gri�oen et al. Reducing �le system latency using a
predictive approach. In USENIX, 1994.

[8] B. Lan et al. Making Web servers pushier. In
WEBKDD'99, 1999.

[9] V. N. Padmanabhan et al. Using predictive
prefetching to improve World Wide Web latency.
ACM SIGCOMM Computer Communication Review,
26(3):22{36, 1996.

[10] M. Palmer et al. Fido: A cache that learns to fetch. In
VLDB, pages 255{264, 1991.

[11] I. Tatarinov et al. Static caching in Web servers. In
Proceedings of 6th International Conference on

Computer Communication and Networks, 1997.

511

