
3
_i -.A

-.. --___-

A Uniform Approach to Global Concurrency Control and
Recovery in Multidatabase Environment

SangKeun Lee Chong-Sun Hwaug
Dept. of Computer Sci. and Eng. Dept. of Computer Sci. and Eng.

Korea University Korea University

lsk@disys.korea.ac.kr hwang&lisys.korea.ac.kr

WonGye Lee
Dept. of Computer Science Education

Korea University
lee@comedu.korea.ac.kr

Abstract
In this paper, we provide a uniform approach to global con-’
currency control and recovery in multidatabase environment.
Instead of considering global serializability and global atom-
icity as two orthogonal concepts, we simply adopt global
serializability as the only correctness criterion and require
global serializability to be maintained even in a failure-prone
multidatabase environment. We first propose rigid conflict
serializability (R-CSR) as a sufficient condition for the global
transaction manager to ensure global serializability in an
autonomous: heterogeneous, and failure-free multidatabase
environment. Following this, we show that the combination
of cascadeless R-CSR of global transactions and a wntezt-
setlJitiue and lute redo recovery leads to the achievement of
global serializability in a failure-prone multidatabase envi-
ronment.

1 Introduction

A A4uZtidatabas.e System (MDBS) [18] is a facility that
supports global applications accessing data stored in dif-
ferent databases. It is assumed that access to these
databases is controlled by autonomous and heteroge-
neous LocuI Database Systems (LDBSs). The MDBS
permits local transactions and global transactions to
coexist. Local transactions are submitted to a sin-
gle LDBS outside of the MDBS control,. while global
(sub)transactions interact with both the MDBS and the
LDBSs for purposes of local concurrency control and
recovery. The Globs2 Frunsaction Manger (GTM) in
the MDBS supports the execution of global transac-
tions spanning multiple local databases in the federa-
tion. Transaction management mechanisms in MDBSs
must ensure serializability and atomicity, while properly
coping with autonomy and heterogeneity of the partici-
pating LDBSs.

I+nl,isci‘)I~ 1‘) ,llakc digil;)lhKl copict 0l’;dl or p:lll ol’llk mawrkl br
p~rso,lill ,,r rlrSroonl ,,= is p~wd willlo kc prwidcd JllaJ Jlx LwpiLy
Bw ,,,,I ,ll~ldc I,r distfilt,& lbr prolit or conunrrci:d nd\Falll%c- 111~ ‘WY
rid11 nolicc, 11,~ title &llr: phlication md its dale appr. aad xloticc is
&Em tllnt q)yri&t is hy pc:nnission Ol‘tll~ ACM. 1°C. ‘I‘0 a!T oflyvi=-
lo r,spul~liaJl, to posl 01) .wnus or to rrdistrihule lo IISLS. rq~:!r~ WCdc
per&&J and/or lk
CIKhj 97 Lff.dG?gm Nevndo mY
copyris~ll ,997 ~ch.1 ~J-x9791-971J-sr)7/1 I . ..S.U~J

Local autonomy is the most fundamental assump
tion of the MDBS concept and is usually classified into
design autonomy, ezecution autonomy: and communi-
cation autonomy [21]. Since autonomy of the partic- ,,
ipating LDBSs distinguishes MDBSs from traditional ’
distributed database systems, the overriding issue for
enforcing global serializability and global atomicity in
multidatabase environment has been the preservation
of local autonomy.

Local heterogeneity is another important assumption
of the MDBS concept. We identify the important het-
erogeneities to transaction management as dissimilari-
ties in :
l Concurrency control mechanisms used by the LDBSs;
l Commitment protocols used by the LDBSs; and
l Recovery mechanisms used by the LDBSs.

Compared to local autonomy, there has been rela-
tively not much work on the impacts of local heterogene-
ity on global serializability. Although many approaches
[10:11:26] to global serializability have successfully led
to the maintenance of global serializability without vi-
olation of local autonomy, the impacts of heterogeneity
in the participating LDBSs on these approaches have
not been analyzed, as we will show in Section 3. Inde-
pendently of ensuring global serializability, the problem
of ensuring global atomicity in an MDBS has also been
widely studied in [8,9:15:19:25]. However: global serial-
izabiity and global atomicity have been considered as
two orthogonal concepts, and as a result, the combina-
tion of ensuring global serializability and global atom-
icity has become a difficult and complex work.

In this paper, we simply adopt global serializability
as the only correctness criterion, instead of considering
global serializability and global atomicity as two orthog-
onal concepts, and require global serializability to be
maintained even in a failure-prone multidatabase envi-
ronment. We first propose rigid con..ict serializability
(R-CSR) as a sufficient condition for the GTM to ensure
global serializability in an autonomous, heterogeneous,
and a failure-free multidatabase environment. Subse-
quently: we derive several conditions for maintaining
global serializability in presence of failures. The prin-

51

-y.:

.

,

h

.

,

.’

:, ~‘*i
, ? ‘: ‘, ,

.,

i, .L
:’ _*

. ,, -_: ~1
, ”

_,,, ‘;.,
.:

1 ;*
:]

,, ,.. ;;
i’:. .,,’ ,

.‘_l .,I ,I

~ :r, ._ I
,i .‘,

_.

I,_ I . 1
.I,

1.. : I/
, : ,,I

.
,‘; <

.I

; _ ,! I’
+I . . t-; ‘,C

I .’ ,.,I , . . ;’
” . ,, >,;. ‘a,

‘0 ,. ‘: ’ *
; ;. i
I,.‘.
‘._ :

,i ‘.‘. ,1; I
J. ‘,.I

‘1. I (,, -2
, .Y’.F<

‘*,+” ‘-B I
1 -- i.>.
1,, .”

,i : .i ;, $ r
‘.“

,’ : ,_, ,P,,. I
‘. .,

I,’ .i
.- .:,,.:

:::
t, .; -,, II

~ .,;
I. *.:A i. I

,, ‘:

*

-.j

I-_’ 5

_
I ‘,

. . ;

~ ,:
I

;; ‘I
., 1

-b,

.,

_ .’
. .

I

.i

fl
4

. ,’
,: 1

8 i

‘I .c I
.A i ,. ,’

ciple is to ensure cascadeless R-CSR of global transac-
tions, which is combined with a contezt-sensitive and
lute redo global recovery scheme.

The organization of this paper is as follows. Section
2 presents the system model, notation, and terminology
used throughout the paper. Section 3 characterizeslocal
heterogeneity as aZmorma2 direct conJicts among global‘
transactions and analyze their impacts on the previous
approaches [7JOJ1:26] to global serializability. Section
4 proposes R-CSR as a sufficient condition for the GTM
to ensure global serializability in an autonomous, het-
erogeneous, and failure-free multidatabase environment.
In Section 5: we present the ways of ensuring global
serializability in a failure-prone multidatabase environ-
ment. Conclusion is in Section 6.

2 The System Model, Notation, and
Terminology

An MDBS consists of a number of pre-existing LDBSs,
located at sites ~1: ~2:. . . : sn (n 2 2): where each
imssj (1 5 i 5 n) is a local database management
system. An MDBS supports local transactions and
global transactions. Local transactions access data
managed by only a single LDBS and are executed
under the LDBS. Global transactions are executed
under MDBS control. A global transaction consists
of a set of global subtransactions, each of which is an
ordinary local transaction from the point of view of
an LDBS where the subtransaction is executed. We
assume that each global transaction generated by the
MDBS has at most one subtransaction at each LDBS.
We also presumes that concurrency control mechanisms
of LDBSs ensure local seria2izabiZity (SR) [5]: and each
LDBS is responsible for ensuring local atomicity 151.

The MDBS software that executes on top of the pre-
existing LDBSs consists of a GTM and a set of servers:
one associated with each LDBS. Each global transaction
submits its operations to the GTM. For each submitted
operation, the GTM determines whether to submit the
operation to local sites, or to delay it: or to abort the
transaction. If the operation is to be submitted, the
GTM selects a local site [or a set of sites) where the
operation should be executed. The GTM submits global
transaction operations to the LDBSs through the server
which acts as the liaison between the GTM and the
LDBS. Operations belonging to a global subtransaction
are submitted to the LDBS by the server as a single
transaction. We assume that each LDBS acknowledges
to the server (and, in turn: to the GTM) the execution
of operations submitted to it. In particular, we do not
consider failures or aborts throughout Section 3 and 4.

For a transaction Til there are four basic operations:
TV: We: ci: and ai: where c; and ei are commit and
abort termination operations, and pi and wi are read
and write operations accessing data item z in an LDBS.

A transaction T, that refers to either a local or global
transaction, is a partial order of read, write, commit,
abort operations which contain exactly one termination
operation that is the last element in the partial order.
A local transaction Lk is a transaction that acccsscs
data items at a single site Sk. A global transaction Gi
consists of a set of global subtransactions G;b (15 k 5
n): where Gik is a global subtransaction accessing an
LDB&. The local schedule at site Sk: denoted by Sk,
is a sequence of local and global transactions operations
resulting from their execution at site sk. We dcnotc
0; <Sk Oj if operation oi is executed before operation
oj in schedule Sk: and denote Ti 3 Tj if transaction
T; is serialized before transaction !l”. We say that
transactions Ti and Tj are in direct confiici in schcdulc

Sk: if and only if schedule SI, contains operations Oi{X)
followed by operation oj(z): where Q(Z) or oj(z> are
a write operation and Ti does not abort before oj{Z)
is executed. We say that Ti and Tj are in indirect
conflict in schedule Sk if and only if there is a sequence
of transaction Tl: Tz:. . . :Tm (m 2 1) such that T; is in
direct con%ict with Tl: Tl is in direct conflict with Tz,
.‘.F and finallyZ T, is in direct con3ict with Tjs

A set G = (&:G2:. . . :Gm) contains those global
transactions that are submitted to the MDBS, and Gk
denotes the set of global subtransactions of G at local
site sk- A global schedule S is the combination of
all local schedules, and a global subschedule So is S
restricted to the set G of global transactions in S. A
global schedule S is globally serializub2e if and only if
there is a total order defined over committed global
transactions that is consistent with the serialization
order of committed global transactions at each LDBS
PI*

3 Abnormal Direct Conflicts and Their
Impacts on Global Serializability

It is examined in early work [10,11,26] that the main-
tenance of global serializability can be reduced to syn-
chronizing the relative serialization orders of global sub-
transactions of each global transaction at all LDBSS,
and local indirect con%ict is the major cause of difii-
culty of achieving global serializability. It is difficult,
however: to resolve local indirect conflicts at the gtobal
level without violation of local autonomy, because the
behavior or even the existence of local transactions is
not known to the MDBS [lO,ll]. The previous discus-
sions on resolving local indirect conflicts indicate that
the GTM can determine the serialization order of global
subtransactions at each LDBS without violation of lo-
cal autonomy only by forcing direct conflicting opcrn-
tions between global transactions through ticket mcth-
ods [lO,llj or eztra operation methods [26].

In this section, we will analyze the impacts of local
heterogeneity on these methods. We first characterize

local heterogeneity as abnormal direct conj%cts between
global transactions, which may not guarantee that the
execution order of direct conflicting transactions is
identical to the serialization order at some LDBS.

Definition 1. Two transactions Ti and Tj are in
abnormal direct conflict in schedule Sk if either
of the following two conditions is satisfied:
l Ti and Tj are in direct conflict in schedule Sk such
that Sk contains operations We followed by rj(z);
and Ti does not commit before Tj(X) is executed
l T; and Tj are in direct conflict in schedule Sk such
that SI; contains operations Wi(X) followed by Wj(Z):
and Tj has been submitted to Sk before Tie IJ

We now analyze the impacts of abnormal direct con-
flicts on the previous approaches [7:10:11:26] to global
serializability.

3.1 Impacts on Chain-Conflicting
Serializability

Chain-conjZicting serializability [26] provides a sufficient
condition for the GTM to synchronize the relative
serialization orders of global subtransactions of each
global transaction at all LDBSs without violation
of local autonomy. This criterion is based on the
property of chain-conflicting transactions [26]. In
an effort to enfoce it: extra operation method is
suggested: where the GTM appends direct conflicting
operations and controls the execution order of direct
conflicting operations of global transactions identically
at every LDBS. This is based on the analogy in
the execution order of direct conflicting operations
and the serialization order of corresponding global
subtransactions at every LDBS. However, the analogy
may not be guaranteed in the environment where

. abnormal direct conilicts exist: as illustrated in the
following example.

Example 1. Consider an MDBS consisting of two
LDBSs: where dataitem x is in LDB&, and dataitem y
is in LDBS2. Let Gr and G2 be two global transactions
defined as foilows:

G : WGl(x) TGl(Y) G2 : TG2(X) wG2(Y)

Let Sr and Sz be the global subschedule generated at
LDB& and LDBS2: respectively:

& : wG11(2$ ‘-G21(2) s2 : ‘-Gl2(y) wG22(y)

Chain-conflicting serializability implies that global seri-
alizability is always maintained as long as the execution
order of direct conflicting operations of global subtrans-
actions are controlled identically at both LDBSs. Let
us assume that an LDB& employs an intentions Zist [5]
mechanism for local recovery: where the changed state

53

by a transaction is reflected on the database only af-
ter the transaction commits. Intentions lists are simi-
lar to shadow page techniques used for recovery in Sys-
tem R [12] and to the private wo&space techniques in
many optimistic concurrency control algorithms (e.g.:
[IS]). The concurrency control at LDB& is possibly
constructed such that an issued Ti(X) is always serial-
ized before active Wj(z), instead of blocking Ti(X) even
though wj(z) <sr Ti(X)a This kind of concurrency con-
trol is possible if the concurrency control at LDBSl uses
recovembiZity [4]: invaEdation [3J4]: or preservation 1171
as the basis for determining conflicts: and the serial-
ization order is flexibly determined (e.g., the history
abstraction model [3:20]). Under this situation, chain-
conflicting serializability does not guarantee global se-
rializabiity anymore. Although the execution orders
of abnormal direct conflicting operations of global sub-
transactions are forced to be identical at both LDBSs
such as :

WGll(x) <Sl ‘-G2l(x) TG12(Y) <S2 wG22(Y)

the serialization order of global transactions at LDBSl
can be G2 + G1, wMe GI t G-J at LDBS2. 0

3.2 Impacts on Sharing Serializability
The fundamental concern in sharing serializability [26]
is to seek alternative properties of global transactions
other than conflicts such that the MDBS can indirectly
determine the serialization order of global subtransac-
tions at each LDBS without violation of local autonomy.
This criterion on based on the property of faZZy-sharing
transactions [26]. Fully-sharing relationship of transac-
tions is defined with respect to rdl data accessed by those
transactions, irrespective of types of operations. It is ar-
gued that the execution order of sharing operations of
transactions can also determine the serializaion order of
the transactions. Example 1: however: illustrates the
fact that the execution order of sharing operations of
global transactions that is identical to the order of fully
sharing property of global subtransactions may not be
identical to the serialization order in some LDBS where
abnormal direct conflicts exist. Let us consider the fol-
lowing additional example.

Example 2. Consider an MDBS consisting of two
LDBSs, where data item x is in LDBSl: and data items
y and z are in LDBS2. Let us assume an LDBS2 uses
timestamp ordering mechanism for local concurrency
control that applies Thomas White Rule (TWR) [5]
with respect to write-write direct conflicts. Let Gr and
Gz be two global transactions defined as follows:
Gl : wGl(x) wG1 (2) CGl
G2 : wG2(4 TG&) 2062(z) CG~
Let Sr and Sz be the global subschedule generated at
LDBSl and LDB.92: respectively:
sl : wGll(x) CGll wG21(4 ‘%21

s-j : %322(y) wG12(4 cG12 wG22(4 cG22

.i

I

.

,

h

.

l

8, I i

.,“I

I’ ., , i

‘II ;
;, .

1
~ : -” ’ i

. _,!

! .’ i ,i

;, ,’

1, ‘.‘, -,
>

I
,’ ,‘, .‘I

,I ,. i’ I

,’ r’
I:, I $

The scenario at LDBS;! is as follows. First: G22 has
a smaller timestamp than G12 since G22 has been
submitted before G12. Following this, when a TWR
write-write synchronizer receives the w~zz(z) that has
arrived too late insofar as the timestamp ordering rule is
concerned, it simply ignores (i.e., does not send it to the
data manager 153) but reports its successful completion
to the server being responsible for the execution of G22.
As a result, although the execution orders of abnormal
direct conflicting operations of global subtransactions
are forced to be identical at both LDBSs such as:

=‘Gll(z) +I wG21(4 ?-“G12(z) <.SZ WG22(4

the serialization order of global transactions at IJIBS
can be G2 + Gl: while Gl+ G2 at LDB$. q

3.3 Impacts on Rigorous Transaction
Scheduling Approaches

It has been argued that in [7] that global serializabii-
ity is assured in a muitidatabase system if each global
transaction is commit-deferred [7] and every LDI3S gen-
erates only a rigorous [7] schedule. Assuming rigorous-
ness of the participating LDBSs, it has also been ar-
gued that 1mpZicit Ticket Methud (ITM) [lO,ll] achieves
global serializabiity by controlling the commitment or-
der of global subtransactions. However: rigorous time-
tamping ordering that applies TWR with respect to the
write-write abnormal died conflicts may not guarantee
that the relative serialization order of each subtransac-
tion is determined by its commitment order. Consider
Example 2 again. Although Sl and S2 are rigorous, Gr
and G2 are commit-deferred, and commitment order is
controlled such that cGr <s CGz: the serialization order
at LDB& can be Gz -+ G1: while Gr --, Gz at LDBSr.

3.4 Impacts on Optimization of Ticket
Operations

The Optimtistic Ticket Method (OTM) [lO,ll] and
the Conssrvat~ve Ticket Method (CTM) [ll] force
direct conflicts among global transactions by ticket
operations. The OTM uses the ticket value as the
relative serialization order of a global subtransaction in
a 1ocaI site without vidation of local autonomy. The
ticket values read by ticket operations at one local site
can elegantly determine the relative serialization order
of corresponding global subtransactions at a local site
even when abnormal direct conflicts exist. A possible
optimization [lOJl] has also been suggested, saying that
there is no need for global transactions to take tickets
at a local site if ali global transactions confiict directly
at the local site. It is not snfficient: however: to observe
the order to determine their relative serialization order
at the local site, as illustrated in Example 1 and 2.

54

4 Rigid Conflict Serializability
We have showed in Section 3 that chain-conflicting se-
riaiizabiiity and sharing serializability may not guarnn-
tee global serializability in multidatabase environment
mainly due to the existence of abnormal direct conflicts.
In thii section, we first identify rigid direct conflicts.
Then, we provide rigid conflict setial~zzaiifity (R-CSR),
which is used for the GTM to enforce global scrializabil-
ity in an autonomous, heterogeneous, and failure-free
MDBS environment.

4.1 Rigid Direct Conflicts
Based on the principles of weaker conflict relations
[3,4,13,14,17,24] and a variety of concurrency control
and recovery implementations [1,2,5,12,17,23], we idcn-
tify tigid direct con~%cts between global transactions,
which guarantee that the execution order of involved
transactions is necessarily identical to the serialization
order of them, with tolerance of Iocai heterogeneity as
well as without violation of local autonomy.

Definition 2. Two transactions T; and Tj are in rigid
direct conflict in schedule Sk if either of the
following three conditions is satisfied:
l [Read-Write) T’i and Tp are in direct conflict in
schedule Sk such that Sk contains operations T;(I)
followed by q(z): i.e.: Ti(z> <Sk q(z);
l (Write-Read) Ti and Tj are in direct conflict in
schedule Sk such that & contains operations W;(Z)
followed by Tj(z); and Ti commits before rj is
executed: i.e.: W;(Z) <Sk Ci <sk Tj(Z);

l (Write-Write) T; and Tj are in direct conflict
in schedule si, such that Sk contains operations
We followed by W&C): and Ti completes its first
operation in Sk before the submission of Tj’s first
operation. n

The basic rationale of rigid direct conflicts is that no
schedule generated by any combination of weaker con-
flict relations and a variety of concurrency control im-
plementations aiiows the situation where the execution
order of two rigid direct conflicting transactions is diffcr-
ent from the seriaiization order of the two transactions.

4.2 Rigid Conflict Serializability
Rigid conflict serializability (R-CSR), which is mod-
ified from chain-conflicting seriaiizability[26], requires
that every global transaction accessing more than two
LDBSs be in rigid direct conflicts at the accessed LDBSs
in order for the GTM to determine the relative scrial-
ization order at the LDBSs.

We first define rigid conflict transactions in the
following Definition 3.

Definition 3. A set of transactions, T = (!f’r ,Tz, . . .1
Tm): is rigid conflicting if there is a total order

Tl + T2 + . . . --t T,,, on T such that Tl is in
rigid direct conflict with Tz: T2 is in rigid direct
conilict with Tat.. .: and finally: T,-l is in rigid
direct conflict with T,,,. A set of global transactions:
G=(G1:G2:...:G,,J: is rigid conflicting if there is
a total order 0 on G such that for all Sk (15 k < n):
Gk is rigid conflict in an order consistent with 0. 0

Definition 4. A gobal subschedule SC is rigid con-
flict serializable if and only if the set G of com-
mitted transaction in SG is rigid conflicting in a total
order 0 on G: and SG is serializable in 0. D

R-CSR provides a sufficient condition for global se-
rializability: which is used for the GTM to maintain
global serializability in an autonomous, heterogeneous,
and failure-free multidatabase environment. Note that
R-CSR guarantees global serializability only provided
that every LDBS generates locally serializable execu-
tion, This is shown in the following Theorem 1. We do
not provide the proof due to the page limit.

Theorem 1. Let S be a global schedule and G be the
set of global transactions in S. If SC is rigid conflict
serializable and every Sk at LDBSk (1 5 k 5 n) is
locally serializable, then S is globally serializable. 0

In order to enforce R-CSR, we suggest a rigid
method where the GTM forces rigid direct conflicts on
the ii&t data item located in each local site when
each global subtransaction begins its execution in a
conservative manner that the relative serialization order
of global subtransactions is the same in all participating
LDBSs. Determining R-CSR order at the beginning
of each global subtransaction has a desirable feature
with respect to an effecive global recovery, as will be
described in the following section.

5 Rigid Conflict Serializability in
Failure-Prone MDBSs

In MDBS environment, a global transaction at a local
site can be aborted as a result of normal database
management systems operations (such as aborts caused
by a local deadlock detection procedure), while the same
transaction can be committed at some other local sites.
Multidatabase recovery procedures should ensure that
the GTM can recover from these aborts and failures
alike. In this paper: we consider such situations as gIobai
transaclion failures and any global transaction failure is
reported to the GTM. If a global transaction fails before
it commits, then any of its local subtransactions must be
undone by the appropriate LDBSs. As a consequence:
global database consistency is also preserved since the
transaction did not make changes in any of its local
databases. Thus, the MDBS does not need to use
the undo operation to restore a multidatabase to a
consistent database state. The situation becomes more

55

complicated if a failure occurs during the processing
of a commit operation of a global transaction. The
diiculty in achieving atomicity of global transactions
is caused by the fact that many pre-existing LDBSs
do not support preps-red states for implementing atomic
commitment protocoki such as two-phase commit (2PC)
protocol [5].

In this section: we show how database consistency can
be preserved by forcing R-CSR in presence of global
transaction aborts and several types of failures. In
particular, we suggest a conted-sensitive and late redo
global recovery scheme which effectively relaxes the
strictness requirement of global transactions imposed
by many redo approaches [6,8:9J5J9,25] to global
atomic&

5.1 The Recovery Model and Restrictions
To achieve atomic commitment protocol, an MDBS
uses the 2PC protocol where the GTM acts as the
coordinator and the associated servers at local sites
act as the participants. Since we assume that LDBSs
do not support a prepared-to-commit state: the global
transaction may be aborted at some local site at any
time: even after the server has voted to commit the
transaction. In particular, a global subtransaction
is said to be unilaterally aborted [15] if an LDBS
aborts the subtransaction that the GTM has decided to
commit. For the sake of simplicity, we also say that the
global transaction containing at lease one unilaterally
abortedsubtransactin is unilaterally aborted. If a global
subtransaction is unilaterally aborted, the GTM must
take redo recovery actions to ensure its updates are
rellected on the database. The GTM achieves this
by resubmitting a redo transaction for the unilaterally
aborted subtransaction until it is committed at the local
site. To construct such a redo transaction, the server
must maintain a server log in which it logs the updates
of global subtransactions. In case of failure of the redo
transaction, it is repeatedly resubmitted by the server
until it commits.

The previous approaches [8J5:19] have required the
following conditions in order to achieve the atomic&y of
global transactions :

a &&&ions imposed on the execution of local tmns-
actions : the schedule produced by each participat-
ing LDBS is cascadeless ‘;

l Restrictions imposed on the data items accessed by
tnznsactions : the data set is partitioned into globally
updateable and locally updateable subsets*, and a
global update subtransaction is disallowed to read
any locally updateable data.

‘This restriction is identified as M-rec~~enrbiZity in [19]
*Globally updateable data items are those that can only be

modified by global transactions. and locally updateable data items
are those that can only be modified by local transactions [S]

. *

,

h

,

I

_’

We assume that the execution of local transactions the commitment order is consistent with the R-CSR
and the data items accessed by transactions are re- order for any site at which both transactions were
stricted as above in the remainder of this paper. Ad- executing.
ditionally, it is assumed that the GTM forces R-
CSR among global transactions by applying the rigid The above criterion on scheduling of global commit

method. operations enables the GTM to enforce R-CSR by
aborting all other global subtransactions succeeding the

5.2 Scheduling of Global Commit Operations unilaterally aborted one in the R-CSR order before

Under the recovery model and restrictions presented in
performing a redo transaction. After the abort step, the

section 5.1, the task of ensuring global serializability in
GTM applies the rigid method to each redo transaction.

presence of failures can reduce to preventing the sit-
Example 3. {Revisited) Consider again the sub-

uations where R-CSR between a unilaterally aborted
schedule Sl where now the GTM fohows the criterion on

global transaction and other global transactions is vio-
scheduling global commit operations: aborts Gzl, and

lated by executing a redo transaction of the unilaterally
applies the rigid method tD T3.

aborted global transaction. 4 : TGll(h) TGl&) wGll(?!) wG2l(h) TG21(4 wG21(4

Note that R-CSR between any two global transac- ‘UaGlI (1621 TT3(fl) wT3(Y) cZ’3 %1(z) %1(2i) CL1

tions G; and Gj necessarily involves one of three types s2 : wG12(1) 20012(u) cG12 TG22(t2) w322(v) (1622

of rigid direct conflicts at each local site accessed by the
which maintains global database consistency. 0

both transactions : Read-Write, Write-Read: or Write-
Although many previous approaches [6,8,15,19,25] to

Write rigid direct conihct. If R-CSR between Gi and redo techniques have required strictness [5] Of schedules

Gj involves Write-Read rigid direct cont3ict at all lo-
at global level in order to preserve global database

cal sites accessed by the two transactions, R-CSR can
consistency, the strictness requirement is relaxed at the

be maintained even if any transaction of the two ones
expense of aborting concurrent global transactions.

would be unilaterally aborted. That% because Write-
The basic advantage of aborting concurrent global

Read rigid direct conflict requires read operation to be
transactions with the criterion on global commitment

executed only after write operation successfully com-
is that it relaxes the strictness imposed on the global

mits at global level. In contrast, care must be taken if
execution of global transactions. Its main disadvantage

R-CSR between Gi and Gj involves at least one Read-
is that global transactions suffer frequently from global

Write or Write-Write rigid direct conflict at any local
restarts caused by the abortion step. In the following

site: as illustrated in the following Example 3.
section we suggest a novel recovery that addresses the

Example 3. Consider the global subschedule Sr
issue.

and 5’2 generated at LDBSl and LDB& respectively, 5.3 A Context-Sensitive and Late Redo
where data item CC: y: and L in LDBSr are globally Recovery
updateable and a data item v in LDBSZ are also
globally updateable (ata is used to denote a unilateral

In this section we suggest a novel global recovery, called

abort step, Lr is a local transaction at LDB&: and T3
a context-sensitive and late redo recovery. The suggested

is a redo transaction for G&
recovery scheme can2 to some extent, abbreviate the

sl : TGll(t1) TGlI(z) WGll(Y) wG21@1) TG2&) wG21(4

abortion step necessary to maintain global serializability

UaGll cG21 %1(Z) TL&/) CL1 wT3(!/) CT3
in presence of failures.

f32 : WGlZ(t2) wGl2(4 cG12 TG22(t2) wG22(4 cG22
A global recovery for a unilaterally aborted w;(Z) is

*
Although the GTM keeps R-CSR between two global

performed in a context-sensitive manner such that :

transactions Gr and Gz in the order Gr + Gz at both l Context-Sensitive Recovery Rule (in case of udat-

sites through Read-Write and Write-Read rigid direct end aborts) : A global redo for w;(z) is a null Dp
conflicts: the unilateral abortion of Gr1 and its redo eration, denoted by A;(Z): if there exists some write
transaction Ts cause the serialization order to be G2 + operation wj(x) satisfying W;(Z) <SC Wj(X)a Oth-
Gr at Sr: thus resulting in a globally nonserializable erwise: it is Wi(Z)*

schedule. D
The above situation demonstrates that the GTM The semantics of the context-sensitive redo recovery

should use some criterion on scheduling global commit for We is based on the resulting schedule stored

operations in order to ensure global serializability in in a server log up to the time a unilateral abort

presence of failures. We present below a crieterion on happens. Note that the context-sensitive recovery rule

scheduling of global commit operations. utilizes both the local atomicity property in all the
participating LDBSs and the R-CSR order determined

l Criterion on Global Commitment : The GTM sched- at the beginning of each global subtransaction.
ules the global commit operations of any two global If a redo transaction of a unilaterally aborted global
transactions, including redo transactions, such that subtransaction is composed of a set of nd operations

56

!
~. - -7 -:+., < . j -,.y .,.-\.:..>-I ,‘, ,I ~,.‘~~~.:.I,.~.~:~.,-~~?~, ‘“FL. ‘_ ‘..,.~~Ts.‘~‘.‘~,~.~~~~~..~ ;,.,. ‘,~:y.‘;!.p. -1 ,, .“” .

.:$,.,? ~ _ -a’; ::
----1 ‘YF--

. - ,, I-, _’ ‘. ,.: >:: .;.: y,..? r,..,. :“- _. .I.
.‘/, ‘,D - , p _. -. : * .,% . -.f, :~- ::. -,JX <s-L-‘.‘.,>. < ,- .*.+ ~~~~~~~~.~~~~~-~~h”=:.? p * c:,r.->t-,; ‘8<,-,3?s*i*T: , %,- ;.: ; ;’ ,I3 2:’ *; : ’ ” ‘,

1.

only, the GTM can safely assume that it is successfully
completed, and if not: the GTM aborts all the concur-
rent global subtransactions and performs a redo trans-
action for a unilaterally aborted one. To demonstate
the effects of the context-sensitive redo recovery: con-
sider the following schedule Sr (data item z and y are
globally updateable) :

: TGll(h) ~Gll(~) wG2l(h) TG21(!/) wG21(4 UQGll

f%ij Gil 2 cG21

which maintains global database consistency without
performing the step to abort Gzr.

The semantics of the context-sensitive recovery, how-
ever, may violate the global database consistency if an
active wj(z) succeeding wi(z) is nonuniZuteruZ2y aborted
at the local site after the context-sensitive recovery has
been performed. Consider the following schedule Sr :
sl : rGll(h) wGll(z) wG2l(tl) TG21(Y) wG&) UaGll

IXGLL(Z)I (1021

which violates global database consistency since the
value of x written by cornmS;tied Grr is not reflected
on the database. This shows that the semantics of the
contest-sensitive redo recovery alone is not sufficient
to maintain global database consistency. To maintain
global database consistency a global lute Ted0 recovery
for a unilaterally aborted wi(x) should be employed to-
gether with the context-sensitive one in such a manner
that :

l Late Redo Recovery Rule (in case of nonunilateral
aborts) : A global late redo for wi(z) is We if
there does not exist some active wj(z) satisfying
wi(x) <SG Wj(X) when a global subtransaction con-
taining wk(z) is nonunilaterally aborted. Otherwise,
it is Ai(

Consider again the above schedule Sl (Ts is a redo
transaction for Gr) where now the late redo recovery
rule is applied:
4 : T~ii(ti) WGII(X) W?.zl(tl) TG21(?/) W~21(2) UQGH

p&ij aG21 TT3@1) w2-3(x) CT3

which maintains global database consistency: possibly
by aborting all the concurrent global subtransactions at
$1.

5.4 Enforcing Rigid Conflict Serializability
Although the strictness requirement imposed on the
global execution of global transactions in the literature
is effectively relaxed through the criterion on global
commitment and the context-sensitive and late redo
recovery: it is necessary that the global execution
of global transactions be cascadeless if no additional
mechanism is employed at global level. Consider the
following globally noncascadeless schedule Sr where a
data item x is globally updateable :
& : TGn(tl) wGll(x) UaGll wG2l(tl) TG21(2) 2uc21(4

57

which violates the global database consistency since the
value of x written by committed Grr is not reflected on
Gzr. Mote that TGzr(x) can be executed at cascadeless
LDBSl since Gr1 is aborted from the view of LDBSl:
and G11 is assumed to be successfully completed from
the GTM viewpoint by the context-sensitive recovery
rule. This undesirable situation can be avoided if the
GTM controls the global exection of global transactions
such that it generates only cascadeless schedule at global
level.

The following Theorem 2 shows global database
consistency can be preserved in presence of failures. We
do not provide the proof due to the page limit.

Theorem 2, A global schedule S is globally serializ-
able in presence of failures if the following conditions
are satisfied :

1. The GTM controls the execution of global trans-
actins, including redo transactions, such that it
generates cascadeless and rigid conflict serializable
schedules by the rigid method

2. The GTM schedules global commit operations
according to the criterion on global commitment;

3. A global redo procedure follows the context-
sensitive and late redo recovery rules;

4. Each Sk at LDBSk (1 < k 5 n) is locally
cascadeless and serializable;

5. Each LDBSk (1 5 k 5 n) is responsible for
ensuring local atomicity;

6. The data set is partitioned into globally update-
able and locally updateable subsets, and a global
update subtransaction is disallowed to read any
locally updateable data. 0

6 Conclusion
We have provided a uniform approach to global concur-
rency control and recovery in multidatabase environ-
ment. For the end: we have simply adopted global se-
rializability as the only correctness criterion and have
required global serializability to be maintained in a
failure-prone environment.

With respect to global serializabiity in a failure-
free multidatabase environment, we have identified
abnormal direct conflicts among global transactions and
have shown that r&id conflict serializability proposed in
this paper notably resolves abnormal direct conflicts.
With respect to global serializability in a failure-
prone multidatabase environment, we have presented a
criterion on global commitment and a context-sensitive
and late redo recovery scheme. In particulartr: the
context-sensitve and late redo recovery relaxes the
strictness restriction imposed on global execution of
global transactions in an effective manner.

,, br,,.sp
I:$:;: ,-,,+j

:J ,gy$$

~ ;.
I .,:4,.:($

‘. il. ,~.‘j
.;;F :. : :
,(:‘?.‘, ,’ ., .;
I‘.., . ’ ’ : : i; :
,., -i ‘,-‘% ,; It’. j . . I ‘.. . :
8. . :

‘.
/:, ;,”
I- 1.. ‘:,
i, ’ T : ;
I I.-/, I,..,
/ . ,’ ,, <
,.I _- ‘=:
,..’ r~** ,.’ I ,I>, :.
~, ., ,* :,”

~ :: f;:;..
f.... .;

I i L,“::.,
_ r, . . I I-
) : ,p :.t ‘.,>,‘,
i --y;, ; ;A::;?. ;

-, ‘,.*.. < ,.;_:
1 ;*LJ”;f I:<.{
,,‘\, ,: .; ,.;, i
~ ‘. i _,+ 1

.,- J:;!
:;, r;’ , -;g :

. :.> r, ‘,‘-
1 ,: .’ ,I I ,:. T 1

~ ;’ ,,. -,. i I i ,‘..‘- j

~p::j

I,, , .,I.!

~ 1, 1.”
i ’ .A,’ ,_

-,.*
1,. ::;
4;: ‘.- .’ ,;.i

_ ,,, ,
-. : ?_ -,* :,’ I!

. . ‘i, ,,/
. a, * .‘I, : 1 ;

’ .’ .,_ .j;‘i,‘-::
-:I,,’ ,<:

$::‘: .:.*. ‘.&A
-;>+;q, ‘I’< .:., d,>.!‘y+ r.;*,. y.4 *zw * ._ Eye&&‘ ‘+i

14 ,f $.?>d’ , . ,.<.f& A
:;,; -$$+2j
/;gJ;. I&
if- ,.i,*g ,: -, Ji..dC,;, -“7r y;‘3&$
..>,: -$ p$

d 1 .$,a’$.:,;a.< 1. ,< T.%,‘-;i i .,<.. j .f;-.yg:y
,*.>.> ‘5: . 5’ .+ ;,,- 1 ‘j
,..I_ ,.;. ‘.!
, ,,*,. ‘it

,. ;’
,LI ;.

, C’.

.’

I
.I I,

‘.I
;;*

:.,

i ,
’

I !

References
Pl

Pl

131

Agrawal, D.: and Abbadi, A. “Locks with Constrained
Sharing,‘: Pmceedings of the 9th ACM Symposium on
Pr-incipIes of Database Sysi;ems, 1990

Alonso, G.: Vingralek, R.: Agrawal, D.: Breitbart, Y.:
Abbadi, A.: Schek, H.: and Weikum, G. “A Unified
Approach to Concurrency Control and Transaction
Recovery: Information Systems, Vo1.19, No.1, 1994

Anastassopoulos, P.: and Jean Dollimore. “A Unified
Approach to Distributed Concurrency Control,” In
Dihibdd Computing Systems. Thomas IL.: &savant,
and Mukesh Singha& IEEE Computer Society Press,
CaEfonia, 1994

I41 Badrinath, B.: and Ramamritham, K. “Semantics-
Based Concurrency Control : Beyond Commutativity,”
ACM !Eanaactions on Database Systems, Vol.1’7: No.&
1992

[51

@I

171

Bernstein: P. A.: Hadzilacos, V.: and Goodman,
N. Concu~ncy Control and Recovery in Database
Systems: Addison-Wesley, Reading, Mass., 1987

Breitbart, Y.: Garcia-MoIina, H., and Silberschatz,
A. t: Overview of M&database Transaction Managem-
nent,” VLDB Joul7La1, Vol.1, No.2, 1992

Breitbart, Y., Georgakopordos: D.: Rnsinkiewicz, M.:
and Silberschatz: A. “On Rigorous Transaction
ScheduIing,” IEEE nansactions on Softvare Engineer-
ing, Vo1.17, No.9, 1991

181

PI

WI

Ill1

WI

1131

Breitbart, Y.: Silberschatz, A.: and Thompson, G.
“Transaction Management Issues in a Failure-Prone
Multidatabase System Environment,c VLDB .7oumaZ,
Vol.1, No.& 1992

Georgakopoulos: D. “Multidatabase Recoverability
and Recovery: Proceedings of the 1st International
Workshop on Interoperaf&ty Multidatabase Systems:
1991

Georgakopoulos, D.: Rusinkiewicz, M.; and Sheth,
A. ‘%n Serializability of Multidatabase Transactions
through Forced Local Conflicts:‘: Proceedings of the 7th
International Conference on Data Engineering, 1991

Georgakopoulos, D.: Rusinkiewicz, M.: and Sheth:
A. “Using Tickets to Enforce the Serializability of
Multidatabase Transactions:‘: IEEE !lYunsuctions on
Knowledge and Data Engineering, Vo1.6, No.& 1994

Gray, J.: Lorie: R.: Putzulo, A.: and Traiger: J.
“The Recovery Manager of the System R Database
Manager,): ACM Compzcting Sw-ueys: Vo1.13, No.2,
1981 ,

Guemi, M., Ferric, J.: and Pans: J. “Concurrency
Control and Recovery for Typed Objects using a
New Commutativity Relation,” Deductive and Object-
Oriented Databases. Lecture Notes in Computer Science
1013. Ling, T. W. et al., 1995

[14] Heriihy, M. x Apologizing versus Asking Permission:
Optimistic Concurrency Control for Abstract Data
Types,” ACM Transactions on Database Systems,
vo1.15, No.1, 1990

58

I151

P61

t171

Kang, 1.: and Keefe, T. nSupporfing Reliable nnd
Atomic Transaction Management in Multidatabnsc Sys-
tems:): Proceedings of the 19th lnternaional ConJerence
on Distributed Computing Systems, 1993

Kung, H.: and Robinson, J. “On Optimistic Methods
for Concurrency Controls’ ACM !Frunsactiona on
Database Systems, VoI.6, No.2, 1981

Lee: S.: Jung, S: and Hwang, C. “A New Conflict Rcln-
tion for Concurrency Control and Recovery in Object-
Based Databases,‘: Proceedings of the 5th Intetnaiional
Conference on Information and Knouriedge Manage-
ment: 1996

P81

I191

PO1

Litwin, W. ‘From Database Systems to Multidatnbasc
Systems: Why and How,): British National ConJerence
on Databases, Cambridge Press, 1988

Mehrotra, S.: Rastogi, R.: Breitbart, Y., Korth, II,, and
Silberschatz, A. “Ensuring Transaction Atomicity in
Multidatabase Systems: Proceedings of the Iith ACM
Symposium on Principles of Database Systems, 1992

Ng, T. ‘Using Histories to Implement Atomic Objects,”
ACM Transactions on Computer Systems, Vo1.17, No.4,
1989

w

I221

Veijalainen, J. Tramacfion Concepts in Autonomous
Databases Envimnments, R. QIdenbourg Verlag, 1990

Veijalainen, J.: and Wolski, A. I’Prepared and Com-
mit Certification for Decentralized Transaction Man-
agement in Rigorous Heterogeneous Multidatnbases,”
Pmceedings of&e 8th 1nRternaiionai Conference on Data
Engineering, 1992

[231

[241

I251

Vingralek, R.: Ye, H.: Breitbart, Y., and Schek,
H. “Unified Transaction Model for Semantically Rich
Operations:‘: Proceedings of fhe 5th Intemafional
Conference on Database Theory, 1995

we&I, w. “Commutativity-Based Concurrency Con-
trol for Abstract Data Types: IEEE Transactions on
Computer Systems: Vo1.37, No.12: 1988

Wolski, A.: and Veijalainen, J. “2PC Agent Method:
Achieving Serializability in Presence of Failures in
a Heterogeneous Multidatabase,‘: Pmeeedings of ihe
PARBASE- Conference, 1990

Zhang, A.; and Elmagarmid, A. “A Theory of
Global Concurrency Control in Multidatabase Sys-
terns,‘: VLDB JoumaI: Vo1.2, No.3, 1993

