
3 
_i -.A 

-.. --___- 

A Uniform Approach to Global Concurrency Control and 
Recovery in Multidatabase Environment 

SangKeun Lee Chong-Sun Hwaug 
Dept. of Computer Sci. and Eng. Dept. of Computer Sci. and Eng. 

Korea University Korea University 

lsk@disys.korea.ac.kr hwang&lisys.korea.ac.kr 

WonGye Lee 
Dept. of Computer Science Education 

Korea University 
lee@comedu.korea.ac.kr 

Abstract 
In this paper, we provide a uniform approach to global con-’ 
currency control and recovery in multidatabase environment. 
Instead of considering global serializability and global atom- 
icity as two orthogonal concepts, we simply adopt global 
serializability as the only correctness criterion and require 
global serializability to be maintained even in a failure-prone 
multidatabase environment. We first propose rigid conflict 
serializability (R-CSR) as a sufficient condition for the global 
transaction manager to ensure global serializability in an 
autonomous: heterogeneous, and failure-free multidatabase 
environment. Following this, we show that the combination 
of cascadeless R-CSR of global transactions and a wntezt- 
setlJitiue and lute redo recovery leads to the achievement of 
global serializability in a failure-prone multidatabase envi- 
ronment. 

1 Introduction 

A A4uZtidatabas.e System (MDBS) [18] is a facility that 
supports global applications accessing data stored in dif- 
ferent databases. It is assumed that access to these 
databases is controlled by autonomous and heteroge- 
neous LocuI Database Systems (LDBSs). The MDBS 
permits local transactions and global transactions to 
coexist. Local transactions are submitted to a sin- 
gle LDBS outside of the MDBS control,. while global 
(sub)transactions interact with both the MDBS and the 
LDBSs for purposes of local concurrency control and 
recovery. The Globs2 Frunsaction Manger (GTM) in 
the MDBS supports the execution of global transac- 
tions spanning multiple local databases in the federa- 
tion. Transaction management mechanisms in MDBSs 
must ensure serializability and atomicity, while properly 
coping with autonomy and heterogeneity of the partici- 
pating LDBSs. 
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Local autonomy is the most fundamental assump 
tion of the MDBS concept and is usually classified into 
design autonomy, ezecution autonomy: and communi- 
cation autonomy [21]. Since autonomy of the partic- ,, 
ipating LDBSs distinguishes MDBSs from traditional ’ 
distributed database systems, the overriding issue for 
enforcing global serializability and global atomicity in 
multidatabase environment has been the preservation 
of local autonomy. 

Local heterogeneity is another important assumption 
of the MDBS concept. We identify the important het- 
erogeneities to transaction management as dissimilari- 
ties in : 
l Concurrency control mechanisms used by the LDBSs; 
l Commitment protocols used by the LDBSs; and 
l Recovery mechanisms used by the LDBSs. 

Compared to local autonomy, there has been rela- 
tively not much work on the impacts of local heterogene- 
ity on global serializability. Although many approaches 
[10:11:26] to global serializability have successfully led 
to the maintenance of global serializability without vi- 
olation of local autonomy, the impacts of heterogeneity 
in the participating LDBSs on these approaches have 
not been analyzed, as we will show in Section 3. Inde- 
pendently of ensuring global serializability, the problem 
of ensuring global atomicity in an MDBS has also been 
widely studied in [8,9:15:19:25]. However: global serial- 
izabiity and global atomicity have been considered as 
two orthogonal concepts, and as a result, the combina- 
tion of ensuring global serializability and global atom- 
icity has become a difficult and complex work. 

In this paper, we simply adopt global serializability 
as the only correctness criterion, instead of considering 
global serializability and global atomicity as two orthog- 
onal concepts, and require global serializability to be 
maintained even in a failure-prone multidatabase envi- 
ronment. We first propose rigid con..ict serializability 
(R-CSR) as a sufficient condition for the GTM to ensure 
global serializability in an autonomous, heterogeneous, 
and a failure-free multidatabase environment. Subse- 
quently: we derive several conditions for maintaining 
global serializability in presence of failures. The prin- 
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ciple is to ensure cascadeless R-CSR of global transac- 
tions, which is combined with a contezt-sensitive and 
lute redo global recovery scheme. 

The organization of this paper is as follows. Section 
2 presents the system model, notation, and terminology 
used throughout the paper. Section 3 characterizeslocal 
heterogeneity as aZmorma2 direct conJicts among global‘ 
transactions and analyze their impacts on the previous 
approaches [7JOJ1:26] to global serializability. Section 
4 proposes R-CSR as a sufficient condition for the GTM 
to ensure global serializability in an autonomous, het- 
erogeneous, and failure-free multidatabase environment. 
In Section 5: we present the ways of ensuring global 
serializability in a failure-prone multidatabase environ- 
ment. Conclusion is in Section 6. 

2 The System Model, Notation, and 
Terminology 

An MDBS consists of a number of pre-existing LDBSs, 
located at sites ~1: ~2:. . . : sn (n 2 2): where each 
imssj (1 5 i 5 n) is a local database management 
system. An MDBS supports local transactions and 
global transactions. Local transactions access data 
managed by only a single LDBS and are executed 
under the LDBS. Global transactions are executed 
under MDBS control. A global transaction consists 
of a set of global subtransactions, each of which is an 
ordinary local transaction from the point of view of 
an LDBS where the subtransaction is executed. We 
assume that each global transaction generated by the 
MDBS has at most one subtransaction at each LDBS. 
We also presumes that concurrency control mechanisms 
of LDBSs ensure local seria2izabiZity (SR) [5]: and each 
LDBS is responsible for ensuring local atomicity 151. 

The MDBS software that executes on top of the pre- 
existing LDBSs consists of a GTM and a set of servers: 
one associated with each LDBS. Each global transaction 
submits its operations to the GTM. For each submitted 
operation, the GTM determines whether to submit the 
operation to local sites, or to delay it: or to abort the 
transaction. If the operation is to be submitted, the 
GTM selects a local site [or a set of sites) where the 
operation should be executed. The GTM submits global 
transaction operations to the LDBSs through the server 
which acts as the liaison between the GTM and the 
LDBS. Operations belonging to a global subtransaction 
are submitted to the LDBS by the server as a single 
transaction. We assume that each LDBS acknowledges 
to the server (and, in turn: to the GTM) the execution 
of operations submitted to it. In particular, we do not 
consider failures or aborts throughout Section 3 and 4. 

For a transaction Til there are four basic operations: 
TV: We: ci: and ai: where c; and ei are commit and 
abort termination operations, and pi and wi are read 
and write operations accessing data item z in an LDBS. 

A transaction T, that refers to either a local or global 
transaction, is a partial order of read, write, commit, 
abort operations which contain exactly one termination 
operation that is the last element in the partial order. 
A local transaction Lk is a transaction that acccsscs 
data items at a single site Sk. A global transaction Gi 
consists of a set of global subtransactions G;b (15 k 5 
n): where Gik is a global subtransaction accessing an 
LDB&. The local schedule at site Sk: denoted by Sk, 
is a sequence of local and global transactions operations 
resulting from their execution at site sk. We dcnotc 
0; <Sk Oj if operation oi is executed before operation 
oj in schedule Sk: and denote Ti 3 Tj if transaction 
T; is serialized before transaction !l”. We say that 
transactions Ti and Tj are in direct confiici in schcdulc 

Sk: if and only if schedule SI, contains operations Oi{X) 
followed by operation oj(z): where Q(Z) or oj(z> are 
a write operation and Ti does not abort before oj{Z) 
is executed. We say that Ti and Tj are in indirect 
conflict in schedule Sk if and only if there is a sequence 
of transaction Tl: Tz:. . . :Tm (m 2 1) such that T; is in 
direct con%ict with Tl: Tl is in direct conflict with Tz, 
.‘.F and finallyZ T, is in direct con3ict with Tjs 

A set G = (&:G2:. . . :Gm) contains those global 
transactions that are submitted to the MDBS, and Gk 
denotes the set of global subtransactions of G at local 
site sk- A global schedule S is the combination of 
all local schedules, and a global subschedule So is S 
restricted to the set G of global transactions in S. A 
global schedule S is globally serializub2e if and only if 
there is a total order defined over committed global 
transactions that is consistent with the serialization 
order of committed global transactions at each LDBS 
PI* 

3 Abnormal Direct Conflicts and Their 
Impacts on Global Serializability 

It is examined in early work [10,11,26] that the main- 
tenance of global serializability can be reduced to syn- 
chronizing the relative serialization orders of global sub- 
transactions of each global transaction at all LDBSS, 
and local indirect con%ict is the major cause of difii- 
culty of achieving global serializability. It is difficult, 
however: to resolve local indirect conflicts at the gtobal 
level without violation of local autonomy, because the 
behavior or even the existence of local transactions is 
not known to the MDBS [lO,ll]. The previous discus- 
sions on resolving local indirect conflicts indicate that 
the GTM can determine the serialization order of global 
subtransactions at each LDBS without violation of lo- 
cal autonomy only by forcing direct conflicting opcrn- 
tions between global transactions through ticket mcth- 
ods [lO,llj or eztra operation methods [26]. 

In this section, we will analyze the impacts of local 
heterogeneity on these methods. We first characterize 



local heterogeneity as abnormal direct conj%cts between 
global transactions, which may not guarantee that the 
execution order of direct conflicting transactions is 
identical to the serialization order at some LDBS. 

Definition 1. Two transactions Ti and Tj are in 
abnormal direct conflict in schedule Sk if either 
of the following two conditions is satisfied: 
l Ti and Tj are in direct conflict in schedule Sk such 
that Sk contains operations We followed by rj(z); 
and Ti does not commit before Tj(X) is executed 
l T; and Tj are in direct conflict in schedule Sk such 
that SI; contains operations Wi(X) followed by Wj(Z): 
and Tj has been submitted to Sk before Tie IJ 

We now analyze the impacts of abnormal direct con- 
flicts on the previous approaches [7:10:11:26] to global 
serializability. 

3.1 Impacts on Chain-Conflicting 
Serializability 

Chain-conjZicting serializability [26] provides a sufficient 
condition for the GTM to synchronize the relative 
serialization orders of global subtransactions of each 
global transaction at all LDBSs without violation 
of local autonomy. This criterion is based on the 
property of chain-conflicting transactions [26]. In 
an effort to enfoce it: extra operation method is 
suggested: where the GTM appends direct conflicting 
operations and controls the execution order of direct 
conflicting operations of global transactions identically 
at every LDBS. This is based on the analogy in 
the execution order of direct conflicting operations 
and the serialization order of corresponding global 
subtransactions at every LDBS. However, the analogy 
may not be guaranteed in the environment where 

. abnormal direct conilicts exist: as illustrated in the 
following example. 

Example 1. Consider an MDBS consisting of two 
LDBSs: where dataitem x is in LDB&, and dataitem y 
is in LDBS2. Let Gr and G2 be two global transactions 
defined as foilows: 

G : WGl(x) TGl(Y) G2 : TG2(X) wG2(Y) 

Let Sr and Sz be the global subschedule generated at 
LDB& and LDBS2: respectively: 

& : wG11(2$ ‘-G21(2) s2 : ‘-Gl2(y) wG22(y) 

Chain-conflicting serializability implies that global seri- 
alizability is always maintained as long as the execution 
order of direct conflicting operations of global subtrans- 
actions are controlled identically at both LDBSs. Let 
us assume that an LDB& employs an intentions Zist [5] 
mechanism for local recovery: where the changed state 
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by a transaction is reflected on the database only af- 
ter the transaction commits. Intentions lists are simi- 
lar to shadow page techniques used for recovery in Sys- 
tem R [12] and to the private wo&space techniques in 
many optimistic concurrency control algorithms (e.g.: 
[IS]). The concurrency control at LDB& is possibly 
constructed such that an issued Ti(X) is always serial- 
ized before active Wj(z), instead of blocking Ti(X) even 
though wj(z) <sr Ti(X)a This kind of concurrency con- 
trol is possible if the concurrency control at LDBSl uses 
recovembiZity [4]: invaEdation [3J4]: or preservation 1171 
as the basis for determining conflicts: and the serial- 
ization order is flexibly determined (e.g., the history 
abstraction model [3:20]). Under this situation, chain- 
conflicting serializability does not guarantee global se- 
rializabiity anymore. Although the execution orders 
of abnormal direct conflicting operations of global sub- 
transactions are forced to be identical at both LDBSs 
such as : 

WGll(x) <Sl ‘-G2l(x) TG12(Y) <S2 wG22(Y) 

the serialization order of global transactions at LDBSl 
can be G2 + G1, wMe GI t G-J at LDBS2. 0 

3.2 Impacts on Sharing Serializability 
The fundamental concern in sharing serializability [26] 
is to seek alternative properties of global transactions 
other than conflicts such that the MDBS can indirectly 
determine the serialization order of global subtransac- 
tions at each LDBS without violation of local autonomy. 
This criterion on based on the property of faZZy-sharing 
transactions [26]. Fully-sharing relationship of transac- 
tions is defined with respect to rdl data accessed by those 
transactions, irrespective of types of operations. It is ar- 
gued that the execution order of sharing operations of 
transactions can also determine the serializaion order of 
the transactions. Example 1: however: illustrates the 
fact that the execution order of sharing operations of 
global transactions that is identical to the order of fully 
sharing property of global subtransactions may not be 
identical to the serialization order in some LDBS where 
abnormal direct conflicts exist. Let us consider the fol- 
lowing additional example. 

Example 2. Consider an MDBS consisting of two 
LDBSs, where data item x is in LDBSl: and data items 
y and z are in LDBS2. Let us assume an LDBS2 uses 
timestamp ordering mechanism for local concurrency 
control that applies Thomas White Rule (TWR) [5] 
with respect to write-write direct conflicts. Let Gr and 
Gz be two global transactions defined as follows: 
Gl : wGl(x) wG1 (2) CGl 
G2 : wG2(4 TG&) 2062(z) CG~ 
Let Sr and Sz be the global subschedule generated at 
LDBSl and LDB.92: respectively: 
sl : wGll(x) CGll wG21(4 ‘%21 

s-j : %322(y) wG12(4 cG12 wG22(4 cG22 
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The scenario at LDBS;! is as follows. First: G22 has 
a smaller timestamp than G12 since G22 has been 
submitted before G12. Following this, when a TWR 
write-write synchronizer receives the w~zz(z) that has 
arrived too late insofar as the timestamp ordering rule is 
concerned, it simply ignores (i.e., does not send it to the 
data manager 153) but reports its successful completion 
to the server being responsible for the execution of G22. 
As a result, although the execution orders of abnormal 
direct conflicting operations of global subtransactions 
are forced to be identical at both LDBSs such as: 

=‘Gll(z) +I wG21(4 ?-“G12(z) <.SZ WG22(4 

the serialization order of global transactions at IJIBS 
can be G2 + Gl: while Gl+ G2 at LDB$. q  

3.3 Impacts on Rigorous Transaction 
Scheduling Approaches 

It has been argued that in [7] that global serializabii- 
ity is assured in a muitidatabase system if each global 
transaction is commit-deferred [7] and every LDI3S gen- 
erates only a rigorous [7] schedule. Assuming rigorous- 
ness of the participating LDBSs, it has also been ar- 
gued that 1mpZicit Ticket Methud (ITM) [lO,ll] achieves 
global serializabiity by controlling the commitment or- 
der of global subtransactions. However: rigorous time- 
tamping ordering that applies TWR with respect to the 
write-write abnormal died conflicts may not guarantee 
that the relative serialization order of each subtransac- 
tion is determined by its commitment order. Consider 
Example 2 again. Although Sl and S2 are rigorous, Gr 
and G2 are commit-deferred, and commitment order is 
controlled such that cGr <s CGz: the serialization order 
at LDB& can be Gz -+ G1: while Gr --, Gz at LDBSr. 

3.4 Impacts on Optimization of Ticket 
Operations 

The Optimtistic Ticket Method (OTM) [lO,ll] and 
the Conssrvat~ve Ticket Method (CTM) [ll] force 
direct conflicts among global transactions by ticket 
operations. The OTM uses the ticket value as the 
relative serialization order of a global subtransaction in 
a 1ocaI site without vidation of local autonomy. The 
ticket values read by ticket operations at one local site 
can elegantly determine the relative serialization order 
of corresponding global subtransactions at a local site 
even when abnormal direct conflicts exist. A possible 
optimization [lOJl] has also been suggested, saying that 
there is no need for global transactions to take tickets 
at a local site if ali global transactions confiict directly 
at the local site. It is not snfficient: however: to observe 
the order to determine their relative serialization order 
at the local site, as illustrated in Example 1 and 2. 
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4 Rigid Conflict Serializability 
We have showed in Section 3 that chain-conflicting se- 
riaiizabiiity and sharing serializability may not guarnn- 
tee global serializability in multidatabase environment 
mainly due to the existence of abnormal direct conflicts. 
In thii section, we first identify rigid direct conflicts. 
Then, we provide rigid conflict setial~zzaiifity (R-CSR), 
which is used for the GTM to enforce global scrializabil- 
ity in an autonomous, heterogeneous, and failure-free 
MDBS environment. 

4.1 Rigid Direct Conflicts 
Based on the principles of weaker conflict relations 
[3,4,13,14,17,24] and a variety of concurrency control 
and recovery implementations [1,2,5,12,17,23], we idcn- 
tify tigid direct con~%cts between global transactions, 
which guarantee that the execution order of involved 
transactions is necessarily identical to the serialization 
order of them, with tolerance of Iocai heterogeneity as 
well as without violation of local autonomy. 

Definition 2. Two transactions T; and Tj are in rigid 
direct conflict in schedule Sk if either of the 
following three conditions is satisfied: 
l [Read-Write) T’i and Tp are in direct conflict in 
schedule Sk such that Sk contains operations T;(I) 
followed by q(z): i.e.: Ti(z> <Sk q(z); 
l (Write-Read) Ti and Tj are in direct conflict in 
schedule Sk such that & contains operations W;(Z) 
followed by Tj(z); and Ti commits before rj is 
executed: i.e.: W;(Z) <Sk Ci <sk Tj(Z); 

l (Write-Write) T; and Tj are in direct conflict 
in schedule si, such that Sk contains operations 
We followed by W&C): and Ti completes its first 
operation in Sk before the submission of Tj’s first 
operation. n 

The basic rationale of rigid direct conflicts is that no 
schedule generated by any combination of weaker con- 
flict relations and a variety of concurrency control im- 
plementations aiiows the situation where the execution 
order of two rigid direct conflicting transactions is diffcr- 
ent from the seriaiization order of the two transactions. 

4.2 Rigid Conflict Serializability 
Rigid conflict serializability (R-CSR), which is mod- 
ified from chain-conflicting seriaiizability[26], requires 
that every global transaction accessing more than two 
LDBSs be in rigid direct conflicts at the accessed LDBSs 
in order for the GTM to determine the relative scrial- 
ization order at the LDBSs. 

We first define rigid conflict transactions in the 
following Definition 3. 

Definition 3. A set of transactions, T = (!f’r ,Tz, . . .1 
Tm): is rigid conflicting if there is a total order 



Tl + T2 + . . . --t T,,, on T such that Tl is in 
rigid direct conflict with Tz: T2 is in rigid direct 
conilict with Tat.. .: and finally: T,-l is in rigid 
direct conflict with T,,,. A set of global transactions: 
G=(G1:G2:...:G,,J: is rigid conflicting if there is 
a total order 0 on G such that for all Sk (15 k < n): 
Gk is rigid conflict in an order consistent with 0. 0 

Definition 4. A gobal subschedule SC is rigid con- 
flict serializable if and only if the set G of com- 
mitted transaction in SG is rigid conflicting in a total 
order 0 on G: and SG is serializable in 0. D 

R-CSR provides a sufficient condition for global se- 
rializability: which is used for the GTM to maintain 
global serializability in an autonomous, heterogeneous, 
and failure-free multidatabase environment. Note that 
R-CSR guarantees global serializability only provided 
that every LDBS generates locally serializable execu- 
tion, This is shown in the following Theorem 1. We do 
not provide the proof due to the page limit. 

Theorem 1. Let S be a global schedule and G be the 
set of global transactions in S. If SC is rigid conflict 
serializable and every Sk at LDBSk (1 5 k 5 n) is 
locally serializable, then S is globally serializable. 0 

In order to enforce R-CSR, we suggest a rigid 
method where the GTM forces rigid direct conflicts on 
the ii&t data item located in each local site when 
each global subtransaction begins its execution in a 
conservative manner that the relative serialization order 
of global subtransactions is the same in all participating 
LDBSs. Determining R-CSR order at the beginning 
of each global subtransaction has a desirable feature 
with respect to an effecive global recovery, as will be 
described in the following section. 

5 Rigid Conflict Serializability in 
Failure-Prone MDBSs 

In MDBS environment, a global transaction at a local 
site can be aborted as a result of normal database 
management systems operations (such as aborts caused 
by a local deadlock detection procedure), while the same 
transaction can be committed at some other local sites. 
Multidatabase recovery procedures should ensure that 
the GTM can recover from these aborts and failures 
alike. In this paper: we consider such situations as gIobai 
transaclion failures and any global transaction failure is 
reported to the GTM. If a global transaction fails before 
it commits, then any of its local subtransactions must be 
undone by the appropriate LDBSs. As a consequence: 
global database consistency is also preserved since the 
transaction did not make changes in any of its local 
databases. Thus, the MDBS does not need to use 
the undo operation to restore a multidatabase to a 
consistent database state. The situation becomes more 
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complicated if a failure occurs during the processing 
of a commit operation of a global transaction. The 
diiculty in achieving atomicity of global transactions 
is caused by the fact that many pre-existing LDBSs 
do not support preps-red states for implementing atomic 
commitment protocoki such as two-phase commit (2PC) 
protocol [5]. 

In this section: we show how database consistency can 
be preserved by forcing R-CSR in presence of global 
transaction aborts and several types of failures. In 
particular, we suggest a conted-sensitive and late redo 
global recovery scheme which effectively relaxes the 
strictness requirement of global transactions imposed 
by many redo approaches [6,8:9J5J9,25] to global 
atomic& 

5.1 The Recovery Model and Restrictions 
To achieve atomic commitment protocol, an MDBS 
uses the 2PC protocol where the GTM acts as the 
coordinator and the associated servers at local sites 
act as the participants. Since we assume that LDBSs 
do not support a prepared-to-commit state: the global 
transaction may be aborted at some local site at any 
time: even after the server has voted to commit the 
transaction. In particular, a global subtransaction 
is said to be unilaterally aborted [15] if an LDBS 
aborts the subtransaction that the GTM has decided to 
commit. For the sake of simplicity, we also say that the 
global transaction containing at lease one unilaterally 
abortedsubtransactin is unilaterally aborted. If a global 
subtransaction is unilaterally aborted, the GTM must 
take redo recovery actions to ensure its updates are 
rellected on the database. The GTM achieves this 
by resubmitting a redo transaction for the unilaterally 
aborted subtransaction until it is committed at the local 
site. To construct such a redo transaction, the server 
must maintain a server log in which it logs the updates 
of global subtransactions. In case of failure of the redo 
transaction, it is repeatedly resubmitted by the server 
until it commits. 

The previous approaches [8J5:19] have required the 
following conditions in order to achieve the atomic&y of 
global transactions : 

a &&&ions imposed on the execution of local tmns- 
actions : the schedule produced by each participat- 
ing LDBS is cascadeless ‘; 

l Restrictions imposed on the data items accessed by 
tnznsactions : the data set is partitioned into globally 
updateable and locally updateable subsets*, and a 
global update subtransaction is disallowed to read 
any locally updateable data. 

‘This restriction is identified as M-rec~~enrbiZity in [19] 
*Globally updateable data items are those that can only be 

modified by global transactions. and locally updateable data items 
are those that can only be modified by local transactions [S] 
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We assume that the execution of local transactions the commitment order is consistent with the R-CSR 
and the data items accessed by transactions are re- order for any site at which both transactions were 
stricted as above in the remainder of this paper. Ad- executing. 
ditionally, it is assumed that the GTM forces R- 
CSR among global transactions by applying the rigid The above criterion on scheduling of global commit 

method. operations enables the GTM to enforce R-CSR by 
aborting all other global subtransactions succeeding the 

5.2 Scheduling of Global Commit Operations unilaterally aborted one in the R-CSR order before 

Under the recovery model and restrictions presented in 
performing a redo transaction. After the abort step, the 

section 5.1, the task of ensuring global serializability in 
GTM applies the rigid method to each redo transaction. 

presence of failures can reduce to preventing the sit- 
Example 3. {Revisited) Consider again the sub- 

uations where R-CSR between a unilaterally aborted 
schedule Sl where now the GTM fohows the criterion on 

global transaction and other global transactions is vio- 
scheduling global commit operations: aborts Gzl, and 

lated by executing a redo transaction of the unilaterally 
applies the rigid method tD T3. 

aborted global transaction. 4 : TGll(h) TGl&) wGll(?!) wG2l(h) TG21(4 wG21(4 

Note that R-CSR between any two global transac- ‘UaGlI (1621 TT3(fl) wT3(Y) cZ’3 %1(z) %1(2i) CL1 

tions G; and Gj necessarily involves one of three types s2 : wG12(1) 20012(u) cG12 TG22(t2) w322(v) (1622 

of rigid direct conflicts at each local site accessed by the 
which maintains global database consistency. 0 

both transactions : Read-Write, Write-Read: or Write- 
Although many previous approaches [6,8,15,19,25] to 

Write rigid direct conihct. If R-CSR between Gi and redo techniques have required strictness [5] Of schedules 

Gj involves Write-Read rigid direct cont3ict at all lo- 
at global level in order to preserve global database 

cal sites accessed by the two transactions, R-CSR can 
consistency, the strictness requirement is relaxed at the 

be maintained even if any transaction of the two ones 
expense of aborting concurrent global transactions. 

would be unilaterally aborted. That% because Write- 
The basic advantage of aborting concurrent global 

Read rigid direct conflict requires read operation to be 
transactions with the criterion on global commitment 

executed only after write operation successfully com- 
is that it relaxes the strictness imposed on the global 

mits at global level. In contrast, care must be taken if 
execution of global transactions. Its main disadvantage 

R-CSR between Gi and Gj involves at least one Read- 
is that global transactions suffer frequently from global 

Write or Write-Write rigid direct conflict at any local 
restarts caused by the abortion step. In the following 

site: as illustrated in the following Example 3. 
section we suggest a novel recovery that addresses the 

Example 3. Consider the global subschedule Sr 
issue. 

and 5’2 generated at LDBSl and LDB& respectively, 5.3 A Context-Sensitive and Late Redo 
where data item CC: y: and L in LDBSr are globally Recovery 
updateable and a data item v in LDBSZ are also 
globally updateable (ata is used to denote a unilateral 

In this section we suggest a novel global recovery, called 

abort step, Lr is a local transaction at LDB&: and T3 
a context-sensitive and late redo recovery. The suggested 

is a redo transaction for G& 
recovery scheme can2 to some extent, abbreviate the 

sl : TGll(t1) TGlI(z) WGll(Y) wG21@1) TG2&) wG21(4 

abortion step necessary to maintain global serializability 

UaGll cG21 %1(Z) TL&/) CL1 wT3(!/) CT3 
in presence of failures. 

f32 : WGlZ(t2) wGl2(4 cG12 TG22(t2) wG22(4 cG22 
A global recovery for a unilaterally aborted w;(Z) is 

* 
Although the GTM keeps R-CSR between two global 

performed in a context-sensitive manner such that : 

transactions Gr and Gz in the order Gr + Gz at both l Context-Sensitive Recovery Rule (in case of udat- 

sites through Read-Write and Write-Read rigid direct end aborts) : A global redo for w;(z) is a null Dp 
conflicts: the unilateral abortion of Gr1 and its redo eration, denoted by A;(Z): if there exists some write 
transaction Ts cause the serialization order to be G2 + operation wj(x) satisfying W;(Z) <SC Wj(X)a Oth- 
Gr at Sr: thus resulting in a globally nonserializable erwise: it is Wi(Z)* 

schedule. D 
The above situation demonstrates that the GTM The semantics of the context-sensitive redo recovery 

should use some criterion on scheduling global commit for We is based on the resulting schedule stored 

operations in order to ensure global serializability in in a server log up to the time a unilateral abort 

presence of failures. We present below a crieterion on happens. Note that the context-sensitive recovery rule 

scheduling of global commit operations. utilizes both the local atomicity property in all the 
participating LDBSs and the R-CSR order determined 

l Criterion on Global Commitment : The GTM sched- at the beginning of each global subtransaction. 
ules the global commit operations of any two global If a redo transaction of a unilaterally aborted global 
transactions, including redo transactions, such that subtransaction is composed of a set of nd operations 
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only, the GTM can safely assume that it is successfully 
completed, and if not: the GTM aborts all the concur- 
rent global subtransactions and performs a redo trans- 
action for a unilaterally aborted one. To demonstate 
the effects of the context-sensitive redo recovery: con- 
sider the following schedule Sr (data item z and y are 
globally updateable) : 

: TGll(h) ~Gll(~) wG2l(h) TG21(!/) wG21(4 UQGll 

f%ij Gil 2 cG21 

which maintains global database consistency without 
performing the step to abort Gzr. 

The semantics of the context-sensitive recovery, how- 
ever, may violate the global database consistency if an 
active wj(z) succeeding wi(z) is nonuniZuteruZ2y aborted 
at the local site after the context-sensitive recovery has 
been performed. Consider the following schedule Sr : 
sl : rGll(h) wGll(z) wG2l(tl) TG21(Y) wG&) UaGll 

IXGLL(Z)I (1021 

which violates global database consistency since the 
value of x written by cornmS;tied Grr is not reflected 
on the database. This shows that the semantics of the 
contest-sensitive redo recovery alone is not sufficient 
to maintain global database consistency. To maintain 
global database consistency a global lute Ted0 recovery 
for a unilaterally aborted wi(x) should be employed to- 
gether with the context-sensitive one in such a manner 
that : 

l Late Redo Recovery Rule (in case of nonunilateral 
aborts) : A global late redo for wi(z) is We if 
there does not exist some active wj(z) satisfying 
wi(x) <SG Wj(X) when a global subtransaction con- 
taining wk(z) is nonunilaterally aborted. Otherwise, 
it is Ai( 

Consider again the above schedule Sl (Ts is a redo 
transaction for Gr) where now the late redo recovery 
rule is applied: 
4 : T~ii(ti) WGII(X) W?.zl(tl) TG21(?/) W~21(2) UQGH 

p&ij aG21 TT3@1) w2-3(x) CT3 

which maintains global database consistency: possibly 
by aborting all the concurrent global subtransactions at 
$1. 

5.4 Enforcing Rigid Conflict Serializability 
Although the strictness requirement imposed on the 
global execution of global transactions in the literature 
is effectively relaxed through the criterion on global 
commitment and the context-sensitive and late redo 
recovery: it is necessary that the global execution 
of global transactions be cascadeless if no additional 
mechanism is employed at global level. Consider the 
following globally noncascadeless schedule Sr where a 
data item x is globally updateable : 
& : TGn(tl) wGll(x) UaGll wG2l(tl) TG21(2) 2uc21(4 
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which violates the global database consistency since the 
value of x written by committed Grr is not reflected on 
Gzr. Mote that TGzr(x) can be executed at cascadeless 
LDBSl since Gr1 is aborted from the view of LDBSl: 
and G11 is assumed to be successfully completed from 
the GTM viewpoint by the context-sensitive recovery 
rule. This undesirable situation can be avoided if the 
GTM controls the global exection of global transactions 
such that it generates only cascadeless schedule at global 
level. 

The following Theorem 2 shows global database 
consistency can be preserved in presence of failures. We 
do not provide the proof due to the page limit. 

Theorem 2, A global schedule S is globally serializ- 
able in presence of failures if the following conditions 
are satisfied : 

1. The GTM controls the execution of global trans- 
actins, including redo transactions, such that it 
generates cascadeless and rigid conflict serializable 
schedules by the rigid method 

2. The GTM schedules global commit operations 
according to the criterion on global commitment; 

3. A global redo procedure follows the context- 
sensitive and late redo recovery rules; 

4. Each Sk at LDBSk (1 < k 5 n) is locally 
cascadeless and serializable; 

5. Each LDBSk (1 5 k 5 n) is responsible for 
ensuring local atomicity; 

6. The data set is partitioned into globally update- 
able and locally updateable subsets, and a global 
update subtransaction is disallowed to read any 
locally updateable data. 0 

6 Conclusion 
We have provided a uniform approach to global concur- 
rency control and recovery in multidatabase environ- 
ment. For the end: we have simply adopted global se- 
rializability as the only correctness criterion and have 
required global serializability to be maintained in a 
failure-prone environment. 

With respect to global serializabiity in a failure- 
free multidatabase environment, we have identified 
abnormal direct conflicts among global transactions and 
have shown that r&id conflict serializability proposed in 
this paper notably resolves abnormal direct conflicts. 
With respect to global serializability in a failure- 
prone multidatabase environment, we have presented a 
criterion on global commitment and a context-sensitive 
and late redo recovery scheme. In particulartr: the 
context-sensitve and late redo recovery relaxes the 
strictness restriction imposed on global execution of 
global transactions in an effective manner. 
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