A Uniform Approach to Global Concurrency Control and
Recovery in Multidatabase Environment

SangKeun Lee Chong-Sun Hwang WonGye Lee
Dept. of Computer Sci. and Eng. Dept. of Computer Sci. and Eng. Dept. of Computer Science Education
Korea University Korea University Korea University
1sk@disys.korea.ac.kr hwang@disys.korea.ac.kr lee@comedu.korea.ac.kr
Abstract Local autonomy is the most fundamental assump-

In this paper, we provide a uniform approach to global con tion of the MDBS concept and is usually classified into

currency control and recovery in multidatabase environment. design autonomy, ezecution autonomy, and communi-

Instead of considering global serializability and global atom- .catit.m autonomy [21} .Since autonomy of the I.)a..rtic-
icity as two orthogonal concepts, we simply adopt global ipating LDBSs distinguishes MDBSs from traditional

serializability as the only correctness criterion and require distributed database systems, the overriding issue for
global serializability to be maintained even in a failure-prone enforcing global serializability and global atomicity in
multidatabase environment. We first propose rigid conflict multidatabase environment has been the preservation

serializability (R-CSR) as a sufficient condition for the global of local autonomy.

transaction manager to ensure global serializability in an Local heterogeneity is another important assumption

aut?nomous, heterog.eneou‘s, and failure-free multldzftab.ase of the MDBS concept. We identify the important het-

environment. Following this, we show that the combination ties to + 4 t as dissimilari

of cascadeless R-CSR of global transactions and a coniezt- :.rogfanel es to transaction management as dissinuar-
ies in :

sensitive and late redo recovery leads to the achievement of

global serializability in a failure-prone multidatabase envi- e Concurrency control mechanisms used by the LDBSs;

ronment. o Commitment protocols used by the LDBSs; and

e Recovery mechaenisms used by the LDBSs.
Compared to local autonomy, there has been rela-

tively not much work on the impacts of local heterogene-

A Multidatabase System (MDBS) [18] is a facility that ity on global serializability. Although many approaches

supports global applications accessing data stored in dif- [10.11,26] to global serializability have successfully led

1 Introduction

ferent databases. It is assumed that access to these to the maintenance of global serializability without vi-
databases is controlled by autonomous and heteroge- olation of local autonomy. the impacts of heterogeneity
neous Local Database Systems (LDBSs). The MDBS in the participating LDBSs on these approaches have
permits local transactions and global transactions to not been analyzed, as we will show in Seciion 3. Inde-
coexist. Local transactions are submitted to a sin- pendently of ensuring global serializability, the problem

gle LDBS outside of the MDBS control,. while global of ensuring global atomicity in an MDBS has also been
(sub)transactionsinteract with both the MDBS and the widely studied in [8.9.15.19,25]. However, global serial-
LDBSs for purposes of local concurrency control and izability and global atomicity have been considered as
recovery. The Global Transaction Manger (GTM]) in two orthogonal concepts, and as a result, the combina-
the MDBS supports the execution of global transac- tion of ensuring global serializability and global atom-

tions spanning multiple local databases in the federa- icity has become a difficult and complex work.

tion. Transaction management mechanisms in MDBSs In this paper, we simply adopt global serializability
must ensure serializability and afomicity, while properly as the only correctness criterion, instead of considering
coping with autonomy and heterogeneily of the partici- global serializability and global atomicity as two orthog-
pating LDBSs. onal concepts, and require global serlalizability to be
— e digitalhand copics o all or art of this material for maintained even in a failure-I-)rf)ne mulltidata!)a:.se erin_ri-
:):::‘;::::‘::1:;':‘\:;0;“: !:I“\: is‘;ml:lc':l \;'illn;m fee anvidcd that the copies ronment. We ﬁrst.propose f‘fgld conflict serializability
are nol made or distrihuted for prolit ar commercial advantage. the copy- (R-CSR) as a sufficient condition for the GTM to ensure
right notice, the title of the publication and it date appear. and notice 1S global serializability in an autonomous, heterogeneous,

given that copyright is by permission of the ACM. Inc. To copy otherwise.

{0 republish, to post on servers or to redistribute to lists, requires specific and a failure-free multidatabase environment. Subse-

permission andfor fec. quently, we derive several conditions for maintaining
CIKM 97 Laslegas Nevada USA global serializability in presence of failures. The prin-
Copyright 1997 ACM 0-89791-970-x/97/11..53.50

51

ciple is to ensure cascadeless R-CSR of global transac-
tions, which is combined with a contezi-sensitive and
late redo global recovery scheme.

The organization of this paper is as follows. Section
2 presents the system model, notation, and terminology
used throughout the paper. Section 3 characterizeslocal

heterogeneity as ebnormal direct confiicts among global’

transactions and analyze their impacts on the previous
approaches [7,10,11,26] to global serializability. Section
4 proposes R-CSR as a sufficient condition for the GTM
to ensure global serializability in an autonomous, het-
erogeneous, and failure-free multidatabase environment.
In Section 5, we present the ways of ensuring global
serializability in a failure-prone multidatabase environ-
ment. Conclusion is in Section 6.

2 The System Model, Notation, and
Terminology

An MDBS consists of a number of pre-existing LDBSs,
located at sites s1,59,...,8. (R = 2), where each
LDBS; (1 < i £ n) is a local database management
system. An MDBS supports local transactions and
global transactions. Local transactions access data
managed by only a single LDBS and are executed
under the LDBS. Global transactions are executed
under MDBS control. A global transaction consists
of a set of global subtransactions, each of which is an
ordinary local transaction from the point of view of
an LDBS where the subtransaction is executed. We
assume that each global transaction generated by the
MDBS has at most one subtransaction at each LDBS.
‘We also presumes that concurrency control mechanisms
of LDBSs ensure local serializability {SR) {5], and each
LDBS is responsible for ensuring local atomicity [5].
The MDBS software that executes on top of the pre-
existing LDBSs consists of a GTM and a set of servers,
one associated with each LDBS. Each global transaction
submits its operations to the GTM. For each submitted
operation, the GTM determines whether to submit the
operation to local sites, or to delay it, or to abort the
transaction. If the operation is to be submitted, the
GTM selects a local site (or a set of sites) where the
operation should be executed. The GTM submits global
transaction operations to the LDBSs through the server
which acts as the liaison between the GTM and the
LDBS. Operations belonging to a global subtransaction
are submitted to the LDBS by the server as a single
transaction. We assume that each LDBS acknowledges
to the server (and, in turn, to the GTM) the execution
of operations submitted to it. In particular, we do not
consider failures or aborts throughout Section 3 and 4.
For a transaction T;, there are four basic operations:
ri(z), wi(z), €;; and a;; where ¢; and a; are commit and
abort termination operations, and r; and w; are read
and write operations accessing data item z in an LDBS.

e A e A e e S N [ITA T AN e Ll

A transaction T, that refers to either a local or global
transaction, is a partial order of read, write, commit,
abort operations which contain exactly one termination
operation that is the last element in the partial order.
A local transaction Li is a transaction that accesses
data items at a single site sg. A global transaction Gy
consists of a set of global subtransactions Gy (1< k <
n), where Gji is a global subtransaction accessing an
LDBS;. The local schedule at site sg, denoted by S,
is a sequence of local and global transactions operations
resulting from their execution at site sp. We denote
0; <sr 0; if operation o; is executed before operation
o; in schedule Sk, and denote T; — Tj if transaction
T: is serialized before transaction T;. We say that
transactions T; and Tj are in direct conflict in schedule
Sy, if and only if schedule Sj contains operations 0i(z)
followed by operation o0;{z), where o;(z) or oj(x) are
a write operation and T; does not abort before aj(a.')
is executed. We say that T; and Tj are in indirect
conflict in schedule S if and only if there is a sequence
of transaction T4, T2, ... :Tm (m > 1) such that T; is in
direct conflict with Ty, T} is in direct conflict with T3,
.., and finally, T, is in direct conflict with Tj.

A set G = {G1,G,...,Grn} contains those global
transactions that are submitted to the MDBS, and Gy
denotes the set of global subtransactions of G at local
site sz. A global schedule S is the combination of
all local schedules, and a global subschedule Sg is S
restricted to the set G of global transactionsin S. A
global schedule S is globally serializable if and only if
there is a total order defined over committed global
transactions that is conmsistent with the serialization
order of committed global transactions at each LDBS
[6].

3 Abnormal Direct Conflicts and _Their
Impacts on Global Serializability

It is examined in early work [10,11,26] that the main-
tenance of global serializability can be reduced to syn-
chronizing the relative serialization orders of global sub-
transactions of each global transaction at all LDBSs,
and local indirect conflict is the major cause of diffi-
culty of achieving global serializability. It is difficult,
however, to resolve local indirect conflicts at the global
level without violation of local autonomy, because the
behavior or even the existence of local transactions is
not known to the MDBS [10,11]. The previous discus-
sions on resolving local indirect conflicts indicate that
the GTM can determine the serialization order of global
subtransactions at each LDBS without violation of lo-
cal autonomy only by forcing direct conflicting opera- :
tions between global transactions through ticket meth- ‘
ods [10,11] or eszira operation methods {26].

In this section, we will analyze the impacts of local
heterogeneity on these methods. We first characterize

52

local heterogeneity as abnormal direct conflicts between
global transactions, which may not gnarantee that the
execution order of direct conflicting transactions is
identical to the serialization order at some LDBS.

Definition 1. Two transactions T; and Tj are in
abnormal direct conflict in schedule Sy, if either
of the following two conditions is satisfied:

e T; and Tj are in direct conflict in schedule Sy such
that Sy contains operations w;(z) followed by r;(z),
and T} does not commit before r;(z) is executed;

¢ T; and Tj are in direct conflict in schedule Si. such
that S contains operations w;(z) followed by wj(z),
and T; has been submitted to Sy before 7;. O

We now analyze the impacts of abnormal direct con-
flicts on the previous approaches [7,10,11.26] to global
serializability.

3.1 Impacts on Chain-Conflicting
Serializability

Chain-conflicling serializability [26] provides a sufficient
condition for the GTM to synchronize the relative
serialization orders of global subtransactions of each
global transaction at all LDBSs without violation
of local autonomy. This criterion is based on the
property of chain-conflicting iransactions [26]. In
an effort to enfoce it., extra operation method is
suggested, where the GTM appends direct conflicting
operations and controls the execution order of direct
conflicting operations of global transactions identically
at every LDBS. This is based on the analogy in
the execution order of direct conflicting operations
and the serialization order of corresponding global
subtransactions at every LDBS. However, the analogy
may not be guaranteed in the environment where
. abnormal direct conflicts exist, as illustrated in the
following example.

Example 1. Consider an MDBS consisting of two
LDBSs, where data item z isin LZDBS;, and dataitem y
isin LD BS,. Let Gp and G, be two global transactions
defined as follows:

G1: war(z) rar(y) Ga : rea(z) wea(y)

Let 57 and S> be the global subschedule generated at
LDBS; and LDBS,, respectively:

51 : wen(z) rea(z) Sz : re12(y) we(y)

Chain-conflicting serializability implies that global seri-
alizability is always maintained as long as the execution
order of direct conflicting operations of global subtrans-
actions are controlled identically at both LDBSs. Let
us assume that an LD B.S, employs an inteniions lst [5]
mechanism for local recovery, where the changed state

53

by a transaction is reflected on the database only af-
ter the transaction commits. Intentions lists are simi-
lar to shadow page techniques used for recovery in Sys-
tem R [12] and to the private workspace techniques in
many optimistic concurrency control algorithms {e.g.,
[16]). The concurrency control at LDBS; is possibly
constructed such that an issued r;(z) is always serial-
ized before active wj(z), instead of blocking r;(z) even
though wj(z) <s1 ri(z). This kind of concurrency con-
trolis possible if the concurrency control at LD BS; uses
recoverability [4], invalidation [3,14], or preservation [17]
as the basis for determining conflicts, and the serial-
ization order is flexibly determined (e.g., the history
abstraction model [3,20]). Under this situation, chain-
conflicting serializability does not guarantee global se-
rializability anymore. Although the execution orders
of abnormal direct conflicting operations of global sub-
transactions are forced to be identical at both LDBSs
such as :

wen(z) <s1reulz) re12(y) <s2 we(y)

the serialization order of global transactions at LDBS;
can be G — G4, while G; — G at LDBS,. O

3.2 Impacts on Sharing Serializability

The fundamental concern in sharing serializability [26]
is to seek alternative properties of global transactions
other than conflicts such that the MDBS can indirectly
determine the serlalization order of global subtransac-
tions at each LDBS without violation of local autonomy.
This criterion on based on the property of fully-sharing
transactions [26]. Fully-sharing relationship of transac-
tions is defined with respect to all data accessed by those
transactions, irrespective of types of operations. It is ar-
gued that the execution order of sharing operations of
transactions can also determine the serializaion order of
the transactions. Example 1, however, illustrates the
fact that the execution order of sharing operations of
global transactions that is identical to the order of fully
sharing property of global subtransactions may not be
identical to the serialization order in some LDBS where
abnormal direct conflicts exist. Let us consider the fol-
lowing additional example.

Example 2. Consider an MDBS consisting of two
LDBSs, where data item z is in LDBS;. and data items
y and z arve in LDBS,. Let us assume an LDBS, uses
timestamp ordering mechanism for local concurrency
control that applies Thomas’ Write Rule (TWR) [5]
with respect to write-write direct conflicts. Let G; and
G2 be two global transactions defired as follows:

Gy : war(z) war(z) ea1

G2 : we2(z) re2(y) we2(2) ca2

Let 57 and S» be the global subschedule generated at
LDBS, and LDBS,, respectively:

51 = wen(z) cenn wea () cen

Sa : a2 (y) wei2{2) car2 waea(z) caa2

oSS A S o DA L TR VAR (U

The scenario at LDBS, is as follows. First, G2 has
a smaller timestamp than Gy since Gz has been
submitted before Gi5. Following this, when a TWR
write-write synchronizer receives the wge2(z) that has
arrived too late insofar as the timestamp ordering rule is
concerned, it simply ignores (i.e., does not send it to the
data manager [5]) but reports its successful completion

to the server being responsible for the execution of Gzo.
Ac o racult althanoeh the evacution arders of abnormal

AS d ITOURL; GILAUVUBH VUL TALLWLAVLAL LLiibld V2 G232
direct conflicting operations of global subtransactions
are forced to be identical at both LDBSs such as:

wen{z) <s1 wa2{z) wa12(z) <s2 wee2(2)
the serialization order of global transactions at LDBS,
can be Gy — Gy, while G; — G2 at LDBS;. O

3.3 TImpacts on Rigorous Transaction
Scheduling Approaches

It has been argued that in [7] that global serializabil-
ity is assured in a multidatabase system if each global
transaction is commit-deferred [7] and every LDBS gen-
erates only a rigorous [7] schedule. Assuming rigorous-
ness of the participating LDBSs, it has also been ar-
gued that Implicit Ticket Method (ITM) [10,11] achieves
global serializability by controlling the commitment or-
der of global subtransactions. However, rigorous limes-
tamping ordering that applies TWR with respect to the
write-write abnormal direct conflicts may not guarantee
that the relative serialization order of each subtransac-
tion is determined by its commitment order. Consider
Example 2 again. Although S; and S> are rigorous, Gy
and G, are commit-deferred, and commitment order is
controlled such that cg; <s cg2, the serialization order
at LDBS, can be G3 — G1, while G; — Gz at LDBS.

3.4 Impacts on Optimization of Ticket
Operations

The Optimistic Ticket Method (OTM) [10.11] and
the Conservative Ticket Method (CTM) [11] force
direct conflicts among global transactions by ticket
operations. The OTM uses the ticket value as the
relative serialization order of a global subtransaction in
a local site without violation of local autonomy. The
ticket values read by ticket operations at one local site
can elegantly determine the relative serialization order
of corresponding global subtransactions at a local site
even when abnormal direct conflicts exist. A possible
optimization [10,11] has also been suggested, saying that
there is no need for global transactions to take tickets
at a local site if all global transactions conflict directly
at the local site. It is not sufficient. however, to observe
the order to determine their relative serialization order
at the local site, as illustrated in Example 1 and 2.

54

4 Rigid Conflict Serializability

‘We have showed in Section 3 that chain-conflicting se-
rializability and sharing serializability may not guaran-
tee global serializability in multidatabase environment
mainly due to the existence of abnormal direct conflicts.
In this section, we first identify rigid direct conflicls.
Then, we provide rigid conflict serializability (R-CSR),
which is used for the GTM to enforce global serializabil-
ity in an autonomous, heterogeneous, and failure-free
MDBS environment.

4.1 Rigid Direct Conflicts

Based on the principles of weaker conflict relations
[3.4.13,14,17,24] and a variety of concurrency control
and recovery implementations [1,2,5,12,17,23], we iden-
tify rigid direct conflicts between global transactions,
which guarantee that the execution order of involved
transactions is necessarily identical to the serialization
order of them, with tolerance of local heterogencity as
well as without violation of local autonomy.

Definition 2. Two transactions T; and Tj are in rigid
direct conflict in schedule Sj if either of the
following three conditions is satisfied:

o (Read-Write) T; and T; are in direct conflict in
schedule Sy such that Sy contains operations r;i(z)
followed by w;(z), i.e., Ti(z) <sk wj(z);

o (Write-Read) T; and Tj are in direct conflict in
schedule Sy such that S contains operations w;(x)
followed by r;j(z), and T; commits before 7; is
executed, i.e., wi(z) <sk ¢ <sk T;{T);

o (Write-Write) T; and Tj are in direct conflict
in schedule S; such that S; contains operations
w;(z) followed by w;(z), and T; completes its first
operation in S) before the submission of Tj's first
operation. O

The basic rationale of rigid direct conflicts is that no
schedule generated by any combination of weaker con-
flict relations and a variety of concurrency control im-
plementations allows the situation where the execution
order of two rigid direct conflicting transactions is differ-
ent from the serialization order of the two transactions.

4.2 Rigid Conflict Serializability
Rigid conflict serializability (R-CSR), which is mod-
ified from chain-conflicting serializability[26], requires
that every global transaction accessing more than two
LDBSs be in rigid direct conflicts at the accessed LDBSs
in order for the GTM to determine the relative serial-
jzation order at the LDBSs.

We first define rigid conflict transactions in the
following Definition 3.

Definition 3. A set of transactions, T = {T1,T%,.. 4
T,n}, is rigid conflicting if there is a total order

N — Ty — ... = Ty on T such that 7} is in
rigid direct conflict with T3, Ty is in rigid direct
conflict with T3,.... and finally, Tj,—; is in rigid
direct conflict with Tj,,. A set of global transactions,
G = {G1,Ga,. ... G}, is rigid conflicting if there is

a total order O on G such that forall s (1 <k < n),
G} is rigid conflict in an order consistent with O. O

Definition 4. A gobal subschedule S¢ is rigid con-
flict serializable if and only if the set G of com-
mitted transactionin Sg is rigid conflicting in a total
order O on G, and S¢ is serializable in O. O

R-CSR provides a sufficient condition for global se-
rializability, which is used for the GTM to maintain
global serializability in an autonomous, heterogeneous,
and failure-free multidatabase environment. Note that
R-CSR guarantees global serializability only provided
that every LDBS generates locally serializable execu-
tion. This is shown in the following Theorem 1. We do
not provide the proof due to the page limit.

Theorem 1. Let S be a global schedule and G be the
set of global transactions in S. If S is rigid conflict
serializable and every Sp at LDBS, (1<k<n)is
locally serializable, then S is globally serializable. O

In order to enforce R-CSR, we suggest a rigid
method where the GTM forces rigid direct conflicts on
the iicket data item located in each local site when
each global subtransaction begins its execution in a
conservalive manner that the relative serialization order
of global subtransactions is the same in all participating
LDBSs. Determining R-CSR order at the beginning
of each global subtransaction has a desirable feature
with respect to an effecive global recovery, as will be
described in the following section.

5 Rigid Conflict Serializability in
Failure-Prone MDBSs

In MDBS environment, a global transaction at a local
site can be aborted as a result of normal database
management systems operations (such as aborts caused
by a local deadlock detection procedure), while the same
transaction can be committed at some other local sites.
Multidatabase recovery procedures should ensure that
the GTM can recover from these aborts and failures
alike. In this paper, we consider such situations as global
transaction failures and any global transaction failure is
reported to the GTM. If a global transaction fails before
it commits, then any of its local subtransactions must be
undene by the appropriate LDBSs. As a consequence,
global database consistency is also preserved since the
transaction did not make changes in any of its local
databases. Thus, the MDBS does not need to use
the undo operation to restore a multidatabase to a
consistent database state. The situation becomes more

complicated if a failure occurs during the processing
of a commit operation of a global transaction. The
difficulty in achieving atomicity of global transactions
is caused by the fact that many pre-existing LDBSs
do not support prepered siaies for implementing atomic
commitment protocols such as two-phase commit (2PC)
protocol [5].

In this section, we show how database consistency can
be preserved by forcing R-CSR in presence of global
transaction aborts and several types of failures. In
particular, we suggest a contezi-sensitive and late redo
global recovery scheme which effectively relaxes the
strictness requirement of global transactions imposed
by many redo approaches [6.8,9.15.19.25] to global
atomicity.

5.1 The Recovery Model and Restrictions

To achieve atomic commitment protocol, an MDBS
uses the 2PC protocol where the GTM acts as the
coordinator and the associated servers at local sites
act as the participants. Since we assume that LDBSs
do not support a prepared-to-commit state, the global
transaction may be aborted at some local site at any
time, even after the server has voted to commit the
transaction. In particular, a global subtransaction
is said to be unilaterally aborted [15] if an LDBS
aborts the subtransaction that the GTM has decided to
commit. For the sake of simplicity. we also say that the
global transaction containing at lease one unilaterally
aborted subtransactin is unilaterally aborted. If a global
subtransaction is unilaterally aborted. the GTM must
take redo recovery actions to ensure its updates are
reflected on the database. The GTM achieves this
by resubmitting a redo transaction for the unilaterally
aborted subtransaction until it is committed at the local
site. To construct such a redo transaction, the server
must maintain a server log in which it logs the updates
of global subtransactions. In case of failure of the redo
transaction, it is repeatedly resubmitted by the server
until it commits.

The previous approaches [8.15.19] have required the
following conditions in order to achieve the atomicity of
global transactions :

o Restrictions imposed on the execulion of local trans-
actions : the schedule produced by each participat-
ing LDBS is cascadeless 1;

o Restrictions imposed on the daia iftems accessed by
transaclions : the data set is partitioned into globally
updateable and locally updateable subsets?, and a
global update subtransaction is disallowed to read
any locally updateable data.

1This restriction is identified as M-recoverability in [19]

2 Globally updateable data items are those that can only be
modified by global transactions, and locally updateable data items
are those that can only be modified by local transactions (8]

Pk 5t

SR OE SR T)k e I ey P R I - o b L i o e T I TR, T Il A
: B R e N L R e AR A W 5 A XS v R A B Ml VG 4 5 0 .,

LENS AR AN

We assume that the execution of local transactions
and the data items accessed by transactions are re-
stricted as above in the remainder of this paper. Ad-
ditionally, it is assumed that the GTM forces R-
CSR among global transactions by applying the rigid
method.

5.2 Scheduling of Global Commit Operations

Under the recovery model and restrictions presented in
section 5.1, the task of ensuring global serializability in
presence of failures can reduce to preventing the sit-
nations where R-CSR between a unilaterally aborted
global transaction and other global transactions is vio-
lated by executing a redo transaction of the unilaterally
aborted global transaction.

Note that R-CSR between any two global transac-
tions G; and Gj necessarily involves one of three types
of rigid direct conflicts at each local site accessed by the
both transactions : Read-Write, Write-Read, or Write-
Write rigid direct conflict. If R-CSR between G; and
Gj involves Write-Read rigid direct conflict at all lo-
cal sites accessed by the two transactions, R-CSR can
be maintained even if any transaction of the two ones
would be unilaterally aborted. That’s because Write-
Read rigid direct conflict requires read operation to be
executed only after write operation successfully com-
mits at global level. In contrast, care must be taken if
R-CSR between G; and G; involves at least one Read-
Write or Write-Write rigid direct conflict at any local
site, as illustrated in the following Example 3.

" Example 3. Consider the global subschedule 5;
and S, generated at LDBS; and LD BS, respectively,
where data item z, y, and z in LDBS; are globally
updateable and a data item v in LDBS, are also
globally updateable (ua is used to denote a unilateral
abort step, L is a local transaction at LDBS;, and T3
is a redo transaction for G1).

S : ren{t) Te1(z) wen (¥) wen (t) reai(w) wa{z)
uagn cen rr1(2) rri(y) ez wrs(y) crs

So = wei(te) wer2{v) cer2 rGa2(t2) wa22(v) €2
Although the GTM keeps R-CSR between two global
transactions G; and G in the order Gi — G2 at both
sites through Read-Write and Write-Read rigid direct
conflicts, the unilateral abortion of G111 and its redo
transaction 75 cause the serialization order to be G2 —
G, at S;, thus resulting in a globally nonserializable
schedule. O

The above situation demonstrates that the GTM
should use some criterion on scheduling global commit
operations in order to ensure global serializability in
presence of failures. We present below a crieterion on
scheduling of global commit operations.

e Criterion on Global Commiiment : The GTM sched-
ules the global commit operations of any two global
transactions, including redo transactions, such that

56

the commitment order is consistent with the R-CSR
order for any site at which both transactions were
executing.

The above criterion on scheduling of global commit
operations enables the GTM to enforce R-CSR by
aborting all other global subtransactions succeeding the
unilaterally aborted one in the R-CSR order before
performing a redo transaction. After the abort step, the
GTM applies the rigid method to each redo transaction,
Example 3. (Revisited) Consider again the sub-
schedule S; where now the GTM follows the criterion on
scheduling global commit operations, aborts Gz1, and
applies the rigid method to T5.
81 = Ten () ren(®) wen (¥) weai(h) reai () wan (2)
uagn aca Tra(t) wrs(y) ers T11(2) r12(y) e
S, = weiz(ta) we2{v) corz Tante) waa(v) agze
which maintains global database consisiency. O
Although many previous approaches {6,8,15,19,25] to
redo techniques have required siriciness {5] of schedules
at global level in order to preserve global database
consistency, the strictness requirement is relaxed at the
expense of aborting concurrent global transactions,
The basic advantage of aborting concurrent global
transactions with the criterion on global commitment
is that it relaxes the strictness imposed on the global
execution of global transactions. Its main disadvantage
is that global transactions suffer frequently from global
restarts caused by the abortion step. In the following
section we suggest a novel recovery that addresses the
issue.

5.3 A Context-Sensitive and Late Redo
Recovery

In this section we suggest a novel global recovery, called
a context-sensitive and late redo recovery. The suggested
recovery scheme can, to some extent, abbreviate the
abortion step necessary to maintain global serializability
in presence of failures.

A global recovery for a unilaterally aborted wi(z) is
performed in a contezi-sensitive manner such that :

o Contexi-Sensitive Recovery Rule (in case of unilat-
eral aborts) : A global redo for wi(x) is a null op-
eration, denoted by X;{z), if there exists some write
operation w;j(z) satisfying wi(z) <sg¢ wj(z). Oth-
erwise, it is w;(x).

The semantics of the context-sensitive redo recovery
for wi(z) is based on the resulting schedule stored
in a server log up to the time a unilateral abort
happens. Note that the context-sensitive recovery rule
utilizes both the local atomicity property in all the
participating LDBSs and the R-CSR order determined
at the beginning of each global subtransaction.

If a redo transaction of a unilaterally aborted global
subtransaction is composed of a set of null operations

et

only, the GTM can safely assume that it is successfully
completed, and if not, the GTM aborts all the concur-
rent global subtransactions and performs a redo trans-
action for a unilaterally aborted one. To demonstate
the effects of the context-sensitive redo recovery, con-
sider the following schedule S; (data item z and y are
globally updateable) :

51 : reu(t) wen(z) weai(t) re21(y) wen () veen
can

which maintains global database consistency without
performing the step to abort Ga.

The semantics of the context-sensitive recovery, how-
ever, may violate the global database consistency if an
active wj(z) succeeding w;(z) is nonunilaterally aborted
at the local site after the context-sensitive recovery has
been performed. Consider the following schedule S; :
S1 : ren(t) wen(z) wea(t) ren (v) wen(z) vaen
acn
which violates global database consistency since the
value of z written by committed Gy is not reflected
on the database. This shows that the semantics of the
context-sensitive redo recovery alone is not sufficient
to maintain global database consistency. To maintain
global database consistency a global leie redo recovery
for a unilaterally aborted w;{z) should be employed to-
gether with the context-sensitive one in such a manner
that :

e Late Redo Recovery Rule (in case of nonunilateral
aboris) : A global late redo for w;i(z) is wi(sz) if
there does not exist some active wj(z) satisfying
wi(z) <s¢ wj(x) when a global subtransaction con-
taining w(z) is nonunilaterally aborted. Otherwise,
it is A;(x).

Consider again the above schedule S, (T3 is a redo
transaction for G;) where now the late redo recovery
rule is applied:

51 : reu(h) wen(z) wea(h) rea(y) wen(z) veen
!}\Gll(x) | aga |1"_r-3(t1) wrs(x) CTsI i

which maintains global database consistency, possibly
by aborting all the concurrent global subtransactions at

S1.

5.4 Enforcing Rigid Conflict Serializability

Although the strictness requirement imposed on the
global execution of global transactions in the literature
is effectively relaxed through the criterion on global
commitment and the context-sensitive and late redo
recovery, it is necessary that the global execation
of global transactions be cascadeless if no additional
mechanism is employed at global level. Consider the
following globally noncascadeless schedule S; where a
data item z is globally updateable :

81 : ren(t) wen(z) veen wea(t) rea(z) we(z)

57

which violates the global database consistency since the
value of z written by commitied G1; is not reflected on
Go1. Note that 7g21{z) can be executed at cascadeless
LDBS; since Gq; is aborted from the view of LDBS,;,
and Gq1 is assumed to be successfully completed from
the GTM viewpoint by the context-sensitive recovery
rule. This undesirable situation can be avoided if the
GTM controls the global exection of global transactions
such that it generates only cascadeless schedule at global
level.

The following Theorem 2 shows global database
consistency can be preserved in presence of failures. We
do not provide the proof due to the page limit.

Theorem 2. A global schedule S is globally serializ-
able in presence of failures if the following conditions
are satisfied :

1. The GTM controls the execution of global trans-
actins, including redo transactions, such that it
generates cascadeless and rigid conflict serializable
schedules by the rigid method;

The GTM schedules global commit operations
according to the criterion on global commitment;

. A global redo procedure follows the context-
sensitive and late redo recovery rules;

Each S; at LDBS; {1 < k £ n) is locally
cascadeless and serializable;

. BEach LDBS; (1 € k < n) is responsible for
ensuring local atomicity:;

The data set is partitioned into globally update-
able and locally updateable subsets, and a global
update subtransaction is disallowed to read any
locally updateable data. O

6 Conclusion

‘We have provided a uniform approach to global concur-
rency control and recovery in multidatabase environ-
ment. For the end. we have simply adopted global se-
rializability as the only correctness criterion and have
required global serializability to be maintained in a
failure-prone environment.

With respect to global serializability in a failure-
free multidatabase environment, we have identified
abnormal direct conflicts among global transactions and
have shown that rigid conflict serializabilily proposed in
this paper notably resolves abnormal direct conflicts.
With respect to global serializability in a failure-
prone multidatabase environment, we have presented a
criterion on global commitment and a context-sensitive
and late redo recovery scheme. In particular, the
context-sensitve and late redo recovery relaxes the
strictness restriction imposed on global execution of
global transactions in an effective manner.

et
7’& { Sctir S

I 1 e Y N P P I oyt 5 TR L ST D W A I
Y eI s S SRR Rl T R

References

{2l

2l

3

14

(8}

fel

gl

8

[

10}

{11

[12]

13}

[14]

Agrawal, D., and Abbadi, A. *Locks with Constrained
Sharing,” Proceedings of the 9th ACM Symposium on
Principles of Database Systems, 1990

Alonso, G., Vingralek, R., Agrawal, D., Breitbart, Y.,
Abbadi. A., Schek, H., and Weikum, G. "A Unified
Approach to Concurrency Control and Transaction
Recovery,” Information Systems, Vol.19, No.1, 1994

Anastassopoulos, P., and Jean Dollimore. "A Unified
Approach to Distzributed Corcurrency Control.” In
Distributed Computing Systems. Thomas L.. Casavant,
and Mukesh Singhal, IEEE Computer Society Press,
Califonia, 1994

Badrinath, B., and Ramamritham, K. ”Semantics-
Based Concurrency Control : Beyond Commutativity,”
ACM Transactions on Database Systems, Vol.17, No.1,
1992

Bernstein, P. A., Hadzilacos, V., and Goodman,
N. Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, Mass., 1987

Breitbart, Y., Garcia-Molina, H., and Silberschatz,
A. "Overview of Multidatabase Transaction Managem-
nent,” VLDB Journal, Vol.1, No.2, 1992

Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M.,
and Silberschatz, A. "On Rigorous Transaction
Scheduling,” IEEE Trensactions on Software Engineer-
ing, Vol.17, No.9, 1951

Breitbart, Y., Silberschatz, A., and Thompson, G.
*Transaction Management Issues in a Failure-Prome
Multidatabase System Environment,” VLDB Journal,
Vol.1, No.1, 1992

Georgakopoulos, D. "Multidatabase Recoverability
and Recovery,” Proceedings of the 1si International
Workshop on Interoperability Multidatabase Systems,
1991

Georgakopoulos, D., Rusinkiewicz, M.; and Sheth,
A. *On Serializability of Multidatabase Transactions
through Forced Local Conflicts,” Proceedings of the Tth
International Conference on Date Engineering, 1991

Georgakopoulos, D., Rusinkiewicz, M., and Sheth,
A. 7Using Tickets to Enforce the Serializability of
Multidatabase Transactions,” IEEE Transactions on
Knowledge and Data Engineering, Vol.6; No.1, 1994

Gray, J., Lorie, R.. Putzulo, A.. and Traiger; J.
"The Recovery Manager of the System R Database
Manager,” ACM Computing Surveys, Vol.13, No.2,
1981

Guerni, M., Ferrie, J.. and Pons, J. 7"Concurrency
Control and Recovery for Typed Objects using a
New Commutativity Relation,” Deductive and Object-
Oriented Databases. Lecture Notes in Computer Science
1013. Ling, T. W. et al., 1895

Herlihy, M. *Apologizing versus Asking Permission:
Optimistic Concurrency Control for Abstract Data
Types,” ACM Transactions on Databuse Systems,
Vol.15, No.1, 1990

58

R i R R A L o BT SR W b L L

[15] Kang, L, and Keefe, T. "Supporting Reliable and
Atomic Transaction Management in Multidatabase Sys-
tems,” Proceedings of the 13th Internaional Conference
on Distributed Computing Systems, 1993

[16] Kung, H., and Robinson, J. "On Optimistic Methods
for Concurrency Control,> ACM Transactions on
Daiabase Systems, Vol.6, No.2, 1981

[17] Lee, S., Jung, S, and Hwang, C. ” A New Conflict Rela-
tion for Concurrency Control and Recovery in Object-
Based Databases,” Proceedings of the 5th International
Conference on Information and Knowledge Manage-
ment, 1996

[18] Litwin, W. *From Database Systems to Multidatabase
Systems: Why and How,” British National Conference
on Datebases, Cambridge Press, 1988

[19] Mehrotra, S., Rastogi. R., Breitbart, Y., Korth, H,, and
Silberschatz, A. *Ensuring Transaction Atomicity in
Multidatabase Systems,” Proceedings of the 11th ACM
Symposium on Principles of Databuse Sysiems, 1992

[20] Ng, T. *Using Histories to Implement Atomic Objects,"
ACHM Transactions on Computer Systems, Vol.17, No.d,
1989

[21] Veijalainen, J. Transaction Concepts in Autonomous
Databases Environments, R. Oldenbourg Verlag, 1090

[22] Veijalainen, J., and Wolski, A. Prepared and Com-
mit Certification for Decentralized Transaction Man-
agement in Rigorous Heterogeneous Multidatabases,”
Proceedings of the 8th International Conference on Dala
Engineering, 1992

[23] Vingralek, R., Ye, H., Breitbart, Y, and Schek,
H. *Unified Transaction Model for Semantically Rich
Operations,” Proceedings of the Sth International
Conference on Database Theory, 1995

[24) Weibl, W. "Commutativity-Based Concurreacy Con-
trol for Abstract Data Types,” IEEE Tranaaclions on
Computer Systems, Vol.37, No.12, 1088

[25] Wolski, A., and Veijalainen, J. "2PC Agent Method:
Achieving Serializability in Presence of Failures in
a Heterogeneous Multidatabase,” Proceedings of the
PARBASE-$0 Conference, 1990

[26] Zhang, A., and Elmagarmid, A. "A Theory of
Global Concurrency Control in Multidatabase Sys-
tems,” VLDB Journal, Vol.2, No.3, 1993

