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Abstract

This paper proposes preservation as a new conflict rela-

tion in an object-based database. By explicitly including

reverse-operations which bridge the gap between concur-

rency control and recovery, preservation can be used in-

dependently of execution contexts to which different re-

covery algorithms and/or object models give rise, and fur-

ther it forms a basis for formulating semantics-based recov-

ery. This paper also makes a t wo-dimensional( i.e., execution

cent exts and operations’ specifications) comparison bet ween

preservation and other conflict relations. Irr each execution

cent ext, our formal comparison reveala that preservation-

based concurrency control achieves more concurrency than

commutativity-based one.

1 Introduction

In contrast to the read/write database systems, object-

based database systems can increase concurrency us-

ing semantic information of high-level operations on ab-

stract data types. That’s because the information able

to be used to increase concurrency is represented in the

specifications of objects. Maintaining semantic informa-

tion, however, often leads to throughput degradation.

Thus, the semantic information should be used, in a

restricted way, in hot spot objects and the objects ac-

cessed by applications, e.g., long-lived transactions, that

need the concurrency to provide necessary functionality.

Several protocols based on commutativity of high-

level operations have been proposed[l,5,7,16] and weak

relations, such as recoverabiMy[3] and invalidation[14],

have also been proposed in the literature. Unlike com-

mutativity which considers both the state of an object

and the return values of operations, weak relations con-
sider only the return values of operations with respect

to some particular execution order of operations. It has
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been shown that weak relations-based concurrency con-

trols can achieve more concurrency than commutativity-

based one from both the theoretical[3,13,14] and the

practical[17] points of view. However, most conflict re-

lations have been defined in different execution contexts

to which different recovery algorithms and/or object

models give rise, and thus conflict relations to be able

to be used in database systems are necessarily depen-

dent upon execution contexts. Moreover, though the

concurrency controls based on some conflict relations,

such as recoverability y[3], need the support of special re-

covery systems dfierent from the standard ones, there

has been no explicit considerations of the recovery per-

spective within the conflict relations.

From these observations, this paper proposes a new

conflict relation called preservation. By explicitly

including the reverse-operations which bridge the gap

between concurrency control and recovery, preservation

can be used independently of execution contexts and

further it forms a basis for formulating semantics-based

recovery algorithms. From the performance perspective,

by considering only the return values of operations with

respect to some particular execution order of operations,

preservation is weaker than commutativity.

The remainder of this paper is organized as follows.

We describe database model in Section 2, and de fine(or

modify) related coni%ct relations in Section 3. In Sec-

tion 4, we propose a new conflict relation called preser-

vation. In Section 5, we make a formal comparison be-

tween preservation and related conflict relations, then

in Section 6, describe a preservation-based concurrency

control. Recovery issues are discussed in Section 7, and

conclusions are in Section 8.

2 Database Model

Transactions in database systems perform operations

on objects. A transaction T is modeled by a tuple
(OPT,< T), where OPT is a set of abstract operations

and <T is a partial order on them. Concurrent execu-

tion of a set of transactions T1,. . . . Tn gives rise to a

log E = (OPE,<~). OP~ is (uiOPTi) md (Ui <Ti)
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C< ~. <~ is a partial order on the operations in OPE.

If Oi <~ Oj, we say that Oj executed after Oi. The

execution log is serializable if there exists a total order

<s, called a serialization order, on the set { TI,... , Z’n

} such that if an operation Oi in transaction Ti conflicts

with Oj in Tj7 and if Ti <S Tj, then Oi <E Oj. Exe-

cution of operations on different objects can be thought

of as generating logs Ek for each object k such that

log E is the union of all these logs. Each object has a

type, which defines a possible set of states of the object,

and a set of primitive operations that provide the only

means to create and manipulate objects of that type.

The specification of an operation indicates the set of
possible states and the responses that will be produced

by that operation when the operation is begun in a cer-

tain state. Formally, the specification is a function f

such that

f : S + SXV, where S = {Sl, Sz,...} is a set of

states, and V = {q, V2, . . . } is a set of return values.

For a given state s c S, we define two components

for the specification of an operation: return(o, s) which

is the return value produced by an operation o, and
state (o,s) which is the state produced after execution

of o. The definitions of state(o, s) and retum(o, s)

can be extended to a sequence of operations O. Thus,

state (O, s) is the state produced after execution of

operations in O, and return(O, s) is the union of the

return values of operations in O. The specification of an

object defines the set of possible sequences of operations

for this object. A sequence of operations h is legal if it

pertains to the specification of an object. Transactions

access and manipulate the objects of database through

operations. A transaction either commits on all objects

or aborts on all objects.

The differences of recovery algorithms and/or object

models employed in database systems give rise to

different ezecution contezts. In order to eliminate

the effects of an aborted operation, if the aborted

operation’s undo-operation(or compensating-operation)

recorded in write-ahead log is performed, the databsse

systems are called the UIP(Update In Place) model[lO],

whereas if an aborted operation recorded in the invoking

transaction’s private workspace(intentions list ) is only

removed from it, the database systems are called the

DU(Deferred Update) model[lO]. In the biversion

object model[16], each object has two states, namely

the current state and committed state. In this paper,

it is assumed that execution contexts are classified into

these three models.

3 Related Conflict Relations

We here define several related conflict relations on the

given database model. In the DU model, the definition

of forward commutativity[l] is as follows.

Definition 1 Consider two operations 01 and 02 ex-

ecuted concurrently by transaction T1 and T2 re-

spectively on the same object. Operations o~
and 02 “Forward Commute(FC)”, and denoted by

(ol FC 02), iff

a): for all state s G S such that state(ol, s),

retum(ol, s), state(02, s), and retum(02, s) are de-

fined,

b): stde(01,state(02, s)) = state(02,state(01, s)),

and retum(ol, s) = return(ol, state(02, s)), and

return(o.2, s) = return(oz, state(ol, s)). Cl

Intuitively, operations 01 and 02 forward commute. if

both execution” 01; 02”’ and” 02; 01” are legal and would

have the same effects on the object(i.e., the same state)

and on the transactions(i.e., the same return values).

In the DU model, the state of an object on which only

the effects of committed transactions are reflected is

visible to concurrent operations. This execution context

is represented in a) of Definition 1.

In the UIP model, the definition of backward commu-

tativity[l] is as follows.

Definition 2 Consider two operations 01 and 02 such

that 01’s execution is immediately followed by the

execution of 02. Operations 01 and 02 “Backward

Commute(BC)”, and denoted by (ol B(7 02), if

a): for all state s c S such that state(ol, s),

retum(ol, s), state(02, state(ol, s)), and

retum(02, state(ol, s)) are defined,

b): state(ol, state(02, s)) = state(02, state(ol, s)),

and retum(ol, s) = retum(ol, state(02, s)), and

retum(o-2, s) = retum(oz, sta.te(ol, s)). 0

Intuitively, operations 01 and 02 backward commute,

if the execution in reverse order “02; 01” are legal and

would have the same effects on the object and on the

transactions. In the UIP model, the state of an object

on which the effects of both committed transactions

and active ones are reflected is visible to concurrent

operations. This execution context is represented in a)

of Definition 2.

In the biversion object model, the definition of

forward-backward commutativity[16] is as follows.

Definition 3 Consider two operations 01 and 02 such

that 01’s execution is immediately followed by the

execution of 02. Operations 01 and 02 “Forward-

Backward Commute(FBC)”, and denoted by

(ol FBC 02), iff

a): for all state s c S such that state(ol, s),

retum(ol, s), state(02, s), state(02, state(ol, s)), and
return(oz, s) = return(02, state(ol, s)) are defined,

b): state(ol, state(02, s)) = state(02, state(ol, s)),

and retum(ol, s) = refum(ol, state(oz, s)). U
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In the biversion object model, the invoked opera-

tion can see both the current state and the commit-

ted state of an object. With this execution context,

it is possible to determine whether return(02, s) =

retum(02, state(ol, s)) condition is satisfied or not.

Thus, the return(02, s) = return(oz, stute(ol, s)) con-

dition is in a) of Definition 3.

The definition of recoverability[3], one of weaker

relations than commutativity, is as follows.

Definition 4 Consider two operations 01 and oz such

that 01’s execution is immediately followed by the

execution of 02. An operation oz is “Immediately

Relatively Recoverable(RRr)” with respect to op-

eration 01, and denoted by (02 RRI 01), iff for all

state s c S such that retzwn(ol, s) and state(ol, s)

are defined, return(02, s) = return(oz, state(ol, s)).

c1

Intuitively, recoverability captures what happens

when operations are removed from an execution log E.

In contrast to recoverability, invalidation[14] defined in

the DU model captures what happens when operations

are inserted into an execution log E. We should note

that, in the DU model, recoverability and invddation

are identical in the sense that these relations detect

conflicts when one operation’s return value is affected

by another concurrent execution.

4 Preservation Relation

4.1 Motivation

A new conflict relation, called preservation, is motivated

from two observations, one from concurrency control

and another from recovery. First, most conflict rela-

tions can be used in only particular execution contexts,

as shown in Section 3. Second, even though the con-

currency controls based on some conflict relations are

necessarily supported by special recovery systems, there

has been no explicit considerations of the recovery per-

spective within the conflict relations. For instance, in

the UIP and biversion object models, it would be impos-

sible to use recoverability [3] without the support of spe-

cial recovery systems different from the standard ones in

which recovery is processed by simply performing undo-

operations for aborted operations. That’s because the

recoverabiMy-bssed concurrency control might cause in-
correct state of an object or cascading aborts without

the support of the context-sensitive recoyery systems.

Let us consider Account object where deposit

and post(x2) operations are defined. Deposit(xl) re-

turns OK after increments the balance of account by
xl, and post(x2) returns OK after interests x2the UIP

model, the initial balance of account is 100, and de-

posit ( 100)’s execution by one active transaction is fol-

lowed by post (5)’s execution by another active transac-

tion, both of which return 01{s. According to the def-

initions of recoverability and invalidation, deposit ( 100)

and post (5) operations are relatively recoverable, and

deposit (100) does not invalidate post (5). Thus, these

two operations are allowed to execute concurrently and

the balance of account will be 210. In the case of

deposit( 100)’s abort, however, the balance of account

would be incorrect 110 under the standard recovery pro-

cess where the undo-operation for deposit( 100) is sinl-

ply performed. Even if this incorrect state of Account

object is detected, csscading abort of causing post (5)’s

abort occurs. This phenomenon also occurs in the biver-

sion object model where deposit ( 100)’s undo-operation

present in intentions list executes on the current state

of Account object. In order to circumvent this prob-

lem, the context-sensitive recovery, in which undo of

the post (5) is followed by undo of the deposit ( 100) and

is followed by redo of the post(5), is needed. Recover-

ability in itself, however, addresses no considerations of

recovery and abstracts that kind of recovery from the

concurrency control.

From these observations, this paper comes up with

preservation as a new conflict relation. The novelty

of preservation is the explicit inclusion of reverse-

operations within the definition, which is intended

to bridge the gap between concurrency control and

recovery or execution contexts to which particular

recovery systems give rise. We start by defining the

reverse-operations which will be explicitly considered

in determining conflicts between operations, then we

define preservable operations which are allowed to

execute concurrently. Lastly, we illustrate the use

of preservation ss the basis for conflict relations with

Account object.

4.2 Reverse-Operations and Preservable

Operations

In this paper, an object is extended to contain explicit

reverse-operations, along with the type defining the

possible state set of the object and the (regular)

operations accessible to the object. A reverse-op erat ion

for an update operation on an object is defined as

follows.

Definition 5 Consider one update operation, o, de-

fined on some object. A special operation. denoted

by 5, is a “reverse-operation” for o, iff for all state
s G S, state(6, state(o, s)) = s. 0

Definition 5 states that a reverse-operation 3 for an

update operation o obliterates the effect of o on an

object (in case of non-update operations the reverse-
operations does not need to be provided). From

this viewpoint, any reverse-operation must successfully

complete. In addition, reverse-operations are used only

for obliterating the effects of regular operations and
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cannot be used as regular operations themselves. Thus,

in a sense, a reverse-operation is just another name for

an undo-operation. The main difference is, however,

that reverse-operations will be explicitly considered in

determining conflicts between operations in order to

consider the recovery perspective during concurrency

control. That is the reason for making another name.

It should be noted that, from the definition, there

may exist several reverse-operations for one update

operation. For example, one form of a reverse-operation

for push(xl) in Stack object may involve removing the

pushed element, xl, from the Stack, and another may

involve removing the top element in the Stack.

Since, in the DU model, update operations present in

the intentions liit have only to be removed to obliterate

the effects of them on objects, the reverse-operations

are practically used only in the UIP and biversion

object models where the reverse-operations which are

present in write-ahead log(UIP model) or intentions

list (biversion object model) should be executed during

undo process.

We then, with the reverse-operations, define an

“immediately preservable” relation as fo~ows.

Definition 6 Consider two operations 01 and 02 such

that 01’s execution is follow ed by execution of

oz. An operation 02 is “immediately preservableti

with respect to 01, denoted by (02 PI 01), iff for

all s E S, there exists ~ for an operation 01 such

that, retum(02, s) = retum(02, state(ol, s)), and

state (oz, s) = state (~, state(oz, state(ol, s)). 0

The state(02, s) = state (~, state (o.2, sttite(ol, s)) con-

dition, which checks if the state of an object is pre-

served correct after the execution of a reverse-operation

for an aborted operation, is contained in Definition 6.

Thus, if a reverse-operation for push(xl) in Stack ob-

ject involves removing the pushed element, xl, then

two push(xl) operations are immediately preservable,

whereas two push(xl) operations are not if a reverse-

operation for push(xl ) involves removing the top ele-

ment in the Stack.

With the immediately preservable relation, a com-

muting relation between two operations is defined as

follows.

Definition 7 Two operations 01 and 02 “commute”,
and denoted by (01 C 02), iff for all states s E S,

state(oz, state(ol, s)) = state(ol, state(oz, s)),

(02 P] 01), and (ol PI 02). 0

From Definition 7, we can make the following observa-

tions: First. commutativity is a symmetrical property,

whereas preservation is not. Second, commutativity im-
plies preservation.

So far, (02 Pr 01) was used to denote the fact that Oz
was immediately preservable with respect to 01 when

02 was executed after 01. We extend the concept to
include the case where 02 is preservable to 01 in spite

of intervening operations that have executed but not

committed yet.

Definition 8 Consider a sequence of operations O =

{01, . . . . On-l }, which has executed but not conlmit-
ted yet, and an operation on such that for V1 s i <

n, oi <E oi+l. An operation o. is “preservable” to

01, denoted by (on P 01), iff for all s G S and for

any sequence Osub of 0,

there exists a collection of each corresponding

reverse-operation for each update operation in o~ub,

G , such that return(on, state(o - O.Ub, s))

= retum(on, state (O, s)) ,and state(on, state(O -

O,ub, s)) = Sih?f?(m, SkZIh?(On,StUte(O, S))). a

Definition 8 states that the preservable relation

between two operations, in case there are intervening

operations which have executed but have not committed

yet, is defined as the relation where the state of an

object is preserved correct and on’s return value is not

affected after any subsequence O=Ub of O is aborted.

Lemma 1 Consider a sequence of operations O =

{O1,...,Ol},}, which has executed but not commit-

ted yet, and an operation on such that for V1 ~ i <

n, oi <E oi+l. For V1 ~ z < n, if (on Pr o.) then

(on P 0,).

Proof: Let F denote the operations that execute

between on and 01. The proof is done by induction

on[~l.

●

●

●

From

Induction base : I F I = 1,i.e., F contains only

one operation so O = {o~, o*}. Since (0s PI 02),

the state of object will be preserved correct

and the return value of 03 will not be affected

even after 02’s abortion. And since (03 PI 01),

(03 P 0,).

Induction hypothesis : IFI = k-1, i.e., F

contains k-1 operations so O = {o~, oz,..., o~}.

For V1 ~ z ~ k, we assume that if (on PI or)

then (on P O1).

Induction step : I F I = k, i.e., F contains k

operations so O = {ol, Oz, .... ok, ok+l }. Since

(on PI ok+~) and (on PI ok), we can get

(on P ok) by using a reasoning similar to

the base case. Further, due to the induction

hypothesis, for V1 ~ z ~ k + 1, if (on PI o=)

then (on P O1). 0

the above Lemma 1, we know that an operation

which is invoked on an object is allowed to execute
concurrently only when it is immediately preservable

to all the operations which have executed but not

committed yet on that object.
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4.3 Example

It is assumed here that each operation is atomically ex-

ecuted and return values of operations are taken into

account in determining conflicts; this consideration in-

creases concurrency between t ransactions[9, 10, 13]. With

Account object, we show how execution contexts af-

fect the presermtion table. Account object provides

deposit, withdraw(x2), and post(x3) operations,

and each reverse-operation for each operation. Each

reverse-operation for deposit (xl), wit hdraw(x2), and

post (x3) involves decrementing the balance by xl, in-

crementing by x2, and decrementing the balance to be

balance x 100/(100+ z3) respectively. The preservation

for Account object is shown in Table 1.

\

0P2
~$~ deposit(xl ) Wltftdraw(xz) withdmw(x2) p0st(x3)

OP1 Iofc IOK Insufficient IOK
\

&posit(xl’) m RJ

IOK P ?9) % b
withdmw(x2’) n, b

/OK I P -“
% ~B) %

witbdr-aw(x2’)

Ifllsufacie.nt P P P P

PoMx3YOK I RIb fb h P

Table 1. Preservation for Account

In Table 1 , the entries denoted by P, PD, Pu,

P~, and P(B) indicate , respectively, preservation in

every models, only in the DU, UIP, biversion object

model, and may be preservable or may not depend-

ing on the state of an object in the. biversion ob-

ject model. The notation (OP2, OP1) used is meant

that an operation OP2 is invoked when OP 1 has ex-

ecuted not committed yet. Consider the pair (with-

draw(x2)/OK, deposit(xl’)/OK). In the UIP model,

this pair is not preservable because the return value OK

of withdraw could be different if previously executed

deposit(xl’)/OK operation aborted, whereas this pair is

preservable in the DU model. In contr=t, in the biver-

sion object model, this pair is preservable if the return

value of withdraw(x2) is OK from both the current and

the committed state of Account object.

5 A Formal Comparison to Related

Conflict Relations

In this section, we make a two-dimensional comparison

between preservation and other conflict relations: one

dimension is execution contexts, and’ the other is

operations’ specifications.

The reason for taking execution contexts as one

dimension is that it is very difficult to compare the

conflict relations each of which is defined in different

execution context. For example, the two executions of

the same operations, one generated in the DU model

where FC is defined and the other in the UIP model

where BC is defined, are different. That is, the case

occurs that the execution recognized as serializable in

the UIP model is not necessarily serializable in the DU

model[16]. Thus, we take different execution contexts

ss one dimension for the formal comparison.

Operations’ specifications indicate both the state of

an object and the return values of operations after the

execution of concurrent operations. From both the
theoretical[3,13,14] and the practical[17] points of view,

weak relations, such as recoverability and invalidation

which consider only the return values of operations,

achieve more concurrency than commutativity relations

which consider both the state of an object and the

return values of operations. Thus, we take operations’
specifications as the other dimension for the formal

comparison.

With these two dimensions(i.e., execution contexts

and operations’ specifications), we make a formal

comparison between preservation and others, as is

shown in Table 2. Here, it is assumed that the standard

recovery systems, in which recovery is processed by

simply performing the undo-operations for aborted

operations, are employed.

Openuion’s UfP model DU model Biversion

Spcificadon
object model

state of an object

& tetum wakes of BC Fc Fac
Operations

Presemnion
return vales

Preservaon Recoverability Presemmon
of operations

Invalidahon

Table 2. Formal comparison between preservation and

other conflict relations

According to the formal comparison in Table 2,

preservation is identical to recoverability and invalL

dation in the DU model. However, preservation can

be used in every execution contexts, while still being

weaker than commutativity. The seemingly overhead

of preservation that the reverse-operations should be

provided can be alleviated if the fact is taken into ac-

count that undo-operations equivalent to the reverse-

operations are inherent in the UIP or biversion object
model.

6 Preservation-based Concurrency
Control

In this section, we discuss the issues related to a

concurrency control based on preserntion semantics.

Each object scheduler ok maintains it’s dependency

graph DGk, which is composed of commit dependency
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graph OGk and conflict relation graph CGk. These

graphs are defined as follows.

Definition 9

● OGk=(N, M)is’’commitd ependency&aph”at

object k, where N is the set of nodes corresponding

to active transactions that have begun execution

but not committed, and M is a set of edges. An

edge e belonging to M is a directed edge from Tj

toTi if Ti h= executed oi and Tj ha executed oj

such that, oi <Ek Oj, and _I(Oj c Oi) but (Oj PI oi).

. CGk = (N, M) is “Conflict relation Graph” at

object k, where N is the set of nodes corresponding

to active transactions that have begun execution

but not committed, and M is a set of edges. An

edge e belonging to M is a directed edge from Tj

toTi if Ti has executed oi and Tj h= executed oj

such that, oi <Ek Oj, and ~(oj PI oi).

● DGk(= OGk U cGk) is “Dependency Graph” at

object k. ❑

The dependency DGk is defined at object k. We

must ensure, however, that there is no cycle in the

dependency graph in the whole database system. To

this end, we define the dependency graph in the

database system in the following Definition 10.

Definition 10 DG(= uDG~) is “Dependency Graph

in the database system”. ❑

It is assumed that cycles formed in the DG can be

handled using several known techniques of deadlock

detection and resolution[ll,12]. Each object scheduler

Ok controls concurrent execution of operations using

a concurrency control algorithm shown in Figure 1.

A concurrency control proposed here is a 2 Phase

Locklng(2PL) scheme using typed locks, in which

concurrency control operates at each invocation of an

operation (i.e., a pessimistic concurrency scheme). If

the invoked operation is immediately preservable to

or commutes with operations belonging to aJl other

active transactions, it can be executed by forming the

commit dependency among trans actions which are in

preservable but not commuting relation. Otherwise,

it generates a conflict and the conflict relation is

formed between transactions, and then the transaction

is blocked until the conflict disappears; that is, until

the termination (committed or aborted) of the blockhg

transaction. The data structures, procedures, and

functions employed in a concurrency control algorithm

are the following:

● Data Structures

Ek : the execution log containing the set of opera-

tions executed at object k

●

OGk : the commit dependency graph at object k

CGk : the conflict relation graph at object k

DG(= UDGk) : the dependency graph in the database

system.

Procedures and Functions

04=Ek : takkg out frc3m Ek one OperiitiOn, o, one

at a time.

(Ti ~ Tj) ~ CGk : adding the edge from Ti to Tj

in the CGk.

(Ti * Tj) + OGk : adding the edge from Ti to Tj

in the OGk.

Cycle(DG) : returning TRUE if there exists any

cycle in the DG, otherwise returning FALSE,

Execute(o) : executing the operation o at object k.

Abort (Ti) : aborting the active transaction Ti.

Block(Ti) : making the active transaction Ti blocked

until all the others which confllct with Ti commit

or abort.

Input oi : the invoked operation by an
Al~o;~~g

:= falsq
* (~k # 0) ~ ~ conflict &

active Ti

f Cycle(D_G) ~ Abort’{!, ); &

~ Execut e(o”i);. . .

Figure 1. Preservation-based concurrency control

algorithm

We now describe two properties which a presented

concurrency control has in the following Definition 11

and Lemma 2.

Definition 11 An operation oi invoked by transaction

Ti is “safe” in a log E, if for all uncommitted

operations Oj <E Oi (~ # ~), (Oi P Oj).

To ensure that the intended semantics of the opera-

tions are guaranteed in spite of transaction aborts, we

shall require that all operations in a log be safe.

Lemma 2 A log E is free from csscading aborts if it

contains only safe operations.

Proof: From Definition 11, safe operations in a log

E are preservable, and from Definition 8, the

state of database is preserved correct and return

values of preservable operations are not affected
even after one or more operations are aborted.

Therefore, a log E is free from cascading aborts.
o
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Cascading aborts can be avoided by allowing only

preservable operations to execute concurrently. A

presented concurrency control algorithm produces a

serifllzable log by scheduling operations such that cycles

are not formed in the DG. We show this fact in the

following Theorem 1.

Theorem 1 Cycles are not formed in the dependency

graph in database system DG if a log E contains

only safe operations.

Proof: From Definition 11, safe operations in a

log E are preservable, and each object scheduler

aborts the transaction that invoked an operation

participating in forming a cycle in DG. Therefore,

cycles are not formed in DG if a log E contains

only safe operations. 0

7 Recovery Issues

In this section, we discuss the recovery issues combined

with the preservation-based concurrency control. In

ctwe of a transaction abort during normal functioning

in the DU model, the recovery process consists of sim-

ply discarding all the operations of the aborted transac-

tion from the corresponding intentions liit. In contrast,

in the UIP and biversion object models, the recovery

process combined with preservation-based concurrency

control consists of canceling all of its update opera-

tions by executing, in reverse order, the corresponding

reverse-operations. In this way, the effects of all the

operations executed by other transactions after aborted

one are not lost since these operations are preservable to

the aborted one. This process is also applied to the case

with a system failure when the restart procedure has to

perform undo action, which is to suppress the effects of

uncommitted transactions already incorporated to the

databsse.

In addition to the standard recovery algorithms, we

insist that the notion of preservation form the basis

for formulating semantics-based recovery algorithms

satisfying the requirements. Thus, several approaches

to the semantics-based recovery algorithms can be

constructed. We here propose one approach combined

with the preservation-based concurrency control by

enriching the semantics of reverse-operations in a way

that meet the preservation requirements. The major

motivation of extending recovery systems is to allow
more concurrency in the UIP and biversion object

models. We start by defining the enriched semantics of

reverse-operations based on the resulting actions that

will appear in the log as follows.

Definition 12 Consider an active update operation,

oi, and all the following active operations, oj . . . ok,

on some object x. The “enriched semantics* of ~ is

z.. . ~Oj . . . ok if there exists any active operation

Oi, such that Oi <Ez oil and -I(Oi/ C oi), otherwise

it is ~. 0

Note that the enriched semantics of one reverse-

operation is comprised of undo and redo of operations

context-sensitively in a way that meets the requirements

of preservation. For example, in case of deposit ( 100)’s

abort in the example in Section 4.1, the context-

sensitive recovery with the enriched semantcs of reverse-

operations involves the undo of post(5), followed by

undo of deposit (100), and followed by redo of post ( 5).

Furthermore, if we combine before-state and reverse-

operations in recovery systems, the recovery systems

with the enriched semantics of reverse-operations can be

made efficiently. The value of an object x just before an

operation oi is executed is referred to as the before-state

of x with respect to the operation oi. The before-state

of x may be uncommitted or committed value, whereas

beiore-image[2, 10] of x is committed one. An operation

restoring the before-state of the accessed object with

respect to Oi is denoted by before-state (oi). Note that

the prefix comprised of a sequence of reverse-operations

in Definition 12, z.. . ~, is exactly corresponding to

the operation before-state(oi). Thus, by restoring the

before-state instead of executing the sequence of reverse-

operations for all the following operations, the recovery

systems can be made efficiently. For this end, we

define the expanded reverse-operations which contain

the enriched semantics as follows.

Definition 13 Consider one active update operation,

oi, and all the following active operations, oj . . . ok,

on some object x. An *expanded reverse-operation”

for oi, denoted by Expanded(~), is defined such that

Expanded(K) is befwewtd.e(oi)oj . . . o&if any active

oi, such that oi <E= oil and ~(oi, C oi), otherwise

it is ~. ❑

Each time an update operation, Oi, is executed on an

object, the pair comprised of before-stat e(oi) operation

and ~ is recorded. Assuming these pairs, we can de-

velop an alternative recovery system as follows:

When oi aborts, the Expanded(~) is executed.

That is, if there exists the following active operations,
Oj . . . ok, which update the same object and any oper-

ation among them which does not commute with the
aborted one, then before-state(oi )oj . . . ok is executed.

Otherwise, the reverse-operation for aborted one is ex-

ecuted. Note that, in case of the execution of before-

StUik(Oi)Oj . . . Ok, each before-state of oj . . . ok should be

re-constructed semantically right. This kind of recov-

ery systems proposed here is much more complex than

existing standdard ones, but it is the cost we pay for

allowing more transactions to execute concurrently in

the UIP and biversion object models.
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8 Conclusions

The semantics of abstract data types have been ex-

ploited in the scope of commutativity and weak rela-

tions. We pointed out, however, that most conflict

relations are not general enough to be ‘used indepen-

dently of execution contexts and some con fllct relations

have no explicit considerations of the recovery perspec-

tive even though concurrency controls based on these

conflict relations are necessarily supported by context-

sensitive recovery. In thlk paper, we proposed preserva-
tion w a new con%ict relation which explicitly, includes

the reverse-operations within the definition. Since the

reverse-operations bridge the gap between concurrency

control and recovery, preservation can be well fitted into

every execution contexts.

Thus, one contribution of this paper is the provision of

a single notion of conflict relation independent of execu-

tion contexts. An additional value of preservation lies in

the fact that it forms a basis for formulating semantics-

based recovery algorithms satisfying the requirements

mentioned. Since the reverse-operations have a great

impact on the conflicts in context of preservation, more

elaborate recovery algorithms, such as context-sensitive

ones, will have the potential for weaker conflicts. With

respect to the performance issues, preservation-based

concurrency control achieves more concurrency than

commutativity from the theoretical point of view.
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