A Data Model for Supporting On-Line Analytical Processing*

ChangLi
George Mason University
cli@isse.gmu.edu

Abstract

A database application, called “on-line analytical processing” (or
OLAP) and aimed at providing businessintelligence through on-line
multidimensional data analysis, has becomeincreasingly important
due to the existence of huge amounts of on-line data. This paper
formalizes a multidimensional data (MDD) model for OLAP, and
develops an algebraic query language called grouping algebra.
The basic component of the MDD model is a multidimensional
cube, consisting of a number of relations (called dimensions)
and for each combination of tuples (called a coordinate), one
from each dimension, there is an associated data value. Each
dimension is viewed as a basic grouping, i.e, each tuple in
the dimension corresponds to the group consisting of all the
coordinates that contain this tuple. In order to express user
queries, relational algebraexpressionsare then extended to thoseon
basic groupings for obtaining complex groupings, including order-
oriented groupings (for expressing, e.g., cumulative sum). The
paper then considers the environment where the multidimensional
cubes are materialized views derived from base data situated at
remote sites. A multidimensional cube algebra is introduced in
order to facilitate the data derivation. The purpose of the paper
is to establish a formal foundation for further research regarding
database support for OLAP applications.

1 Introduction

Recently, database system supportsfor businessdataanalysis
have become popular [Ban95]. This trend is evident from
the popularity of many on-lineanalytical processing (OLAP)
systems [CCS93, Dre93] such as Esshase by Arbor Software
and Express by Oracle Based on a multidimensional
conceptual view of data, these systems are specially designed
for data analysis, with characteristics significantly different
from those of relationa databases. The emphasis of OLAP
systemsison flexible datagrouping and efficient aggregation

*Part of research supported by the NSF research initiation award IRI-
94097609.

81

X. Sean Wang
George Mason University
Xywang@isse.gmu.edu

evaluation on obtained groups. The purpose of this paper is
to develop amultidimensiona datamode for OLAP in order
to establish aformal foundation for OLAP applications.

An OLAP system concerns mostly with intuitive user
interface and quick on-line processing. The language used
by an OLAP application must be able to flexibly express
various grouping methods, including grouping by attributes,
by positionsin (time or other) sequences and by aggregation
results on some other groups. Furthermore, most OLAP
systemsare based on the concept of adatawarehouse, storing
materialized views derived from base data that are (or used
to be) located at remote sites. Thisbringsin anew aspect on
optimization, especialy the view maintenance problem.

In this paper, we define a forma multidimensional data
(MDD) mode for OLAP systems. The central component
of an MDD modéd is the notion of a multidimensiona cube,
where each dimension consistsof arelationand thereisadata
value associated with each combination (called a coordinate)
of the tuples, one from each dimension. A cubeissimilar to
the concept of category in most of the SSDB data modelsin
theliterature (e.g., [CM89]).

In our moddl, a multidimensiona database (MDDB)
consists of afinite set of multidimensional cubes and afinite
set of relations. OLAP queriesare posed onthe MDDB using
a grouping algebra, an extension of the relationa algebra
The grouping algebrais based on the observation that atuple
on a dimension of a multidimensiona cube can serve as a
pointer pointing to all the data values that are associated
with al the coordinates containing that tuple. Therefore, a
dimension provides a basic grouping method. We then use
relationa (and other) operations to manipulate these basic
groupings to obtain complex ones, providing a powerful
mechanism for analyzing data.

A novel feature of the grouping algebra is its inclusion
of order-related operations. Order plays an important role
in business data analysis. Examples include retrieving top n
elements from a sequence and grouping over atime sequence
(e.g., cumulative sum). Thegrouping a gebrausesthe notion
of atupleorder to providean ordered view of relations, based
on which order-rel ated grouping and selection are defined.

We also study OLAP systems in a data warehouse
environment. We define a data warehouse as a set of

meaterialized cubes and relations derived from base data. In
order to facilitate such a derivation, we introduce a cube
algebra for manipulating cubes and defining cube views.

The rest of the paper is organized into 7 sections. A
motivating example (aso used as a running example) is
given in Section 2. In Section 3, multidimensional cubes
and grouping relations are defined. The grouping algebrais
introduced in Section 4, and MDDB and MDDB queries are
discussed in Section 5. In Section 6, the multidimensional
cube algebra is presented. Related research is discussed in
Section 7 and the paper is concluded with Section 8.

2 Motivating example

Consider a nation-wide department chain store that owns
member stores located in different geographical regions.
Assume that al the member storesin the chain sell the same
products. Sales dataare collected daily. That is, at the end of
each day, each member storewill report thetotal salesamount
of each product tothenational headquarters. Figurelshowsa
part of the datareported on May 15, 1996. The collected data
may be used by the executives at the national headquarters
to analyze the activities of the chain store.

Store Product Date

Loc [tem | Manu y m d Sales
1 = NewYork Mac | Apple 1996 | May | 15 7000
2 Washington Mac | Apple 1996 | May | 15 3800
3 LosAngeles Mac | Apple 1996 | May | 15 15500
4 NewYork PC IBM 1996 | May | 15 2700
5 Washington PC IBM 1996 | May | 15 3900
6 LosAngeles PC IBM 1996 | May | 15 6530

Figure 1: Data of achain store.

Example 1 Oneindicator of the activities of the chain store
may be the growth trend (in sales) of each member store.
These growthtrends can be obtained viathefollowing query:

(8) For each member store, find out the year-to-date total
sales amounts for each day of this year (i.e, the daily
cumul ative sales amounts over thisyear).

Another indicator may be the current behavior (in sales) of
the last year’'stop selling products:

(b) Find theyear-to-datetotal sales amounts, in each region
(east, west, etc.), of each product whose last year’s
nation-widetotal salesranked among top five. |

A critical step towards database support for data analysis
involves formulating “analysis-oriented” queries as those
given in Example 1. A central requirement for expressing
these queries is the flexible representation of complex data
grouping methods. Consider query (8). Two grouping
methods are involved. One is by attributes (i.e., by store)
and the other by position in a time sequence (i.e.,, by day).
Specifically, for a given member store s and day d, the
corresponding group consistsof al the salesamountsthat are
reported by store s inthisyear uptoday d. For query (b), two
rounds of grouping are performed. The first is grouping by
attributes (i.e., by product). That is, al the sales data (in last

82

year) of aproduct form agroup. A summation is performed
on each group. Theresultsarethen used to select thetop-five
products. The second round uses these computation results.
Specifically, for each region » and each of the five products,
agroup isformed by collecting all itssales amounts reported
thisyear by all the storesin region r.

It is easily seen that the queries in Example 1 cannot
straightforwardly be expressed by using the traditional
relationa query languages such as therelational agebra.

3 Cubesand groupingrelations

In this section, we define n-dimensional cubes. Throughout
of the paper, we assume two digoint sets: a set of attribute
names and a set of dimension names. We use A, B etc. to
denote attribute names, R to denote finite sets of attribute
names, and D to denote dimension names. Each symbol
may be subscripted to denote a different name of the same
kind. Each attribute A is associated with adomain dom(4).
Furthermore, we use V' to denote a set of scalar values
(integers, reals, etc) which includesa specia null value.

Definition Let n be a positive integer. An n-dimensional
cubeschemeisaset {(D1, R1), ..., (Dn, Rn)}, whereDy, .. .,
D,, are distinct dimension names and Ry, ..., R, are s&ts
of attribute names. An n-dimensional cube, or a cube, on
the scheme {(D1, R1), ..., (Dn, Rys)} iSapair (F, u), where
(i) F = {(D1,71),...,(Dp,rs)} with r; being a relation
on R; foreach 1 < ¢ < n, and (ii) is a mapping from
{{(D1,%1), -+, (Dn,tn) | VIL< i< n:t; € r}to).

In the above definition, r; is called the dimension relation
for D;. Thus, a multidimensional cube consists of a set
of dimension relations and a value mapping. The vaue
mapping maps each combination of tuples, one from each
dimension relation, to a scalar value. A special case in the
above definition is that one (or more) dimension relation is
empty. Inthiscase, the value mapping is undefined.

Note that unlike an ordinary array, we use names to label
different dimensions and there is no order among these
dimensions. Operations like “transpose” are of no meaning
to acube. However, for convenience and when no confusion
arises, we will assume that there is an order among the
dimension names in a cube. That is, we will assume that

a cube scheme is a list {(D1, R1),...,(Dn, Ry)), and we
will write a cube on the scheme ((D1, R1), ..., (Dn, R»n))
as (r1,...,rn, /), @suming that »; is a relation on R;

for eech 1 < i < n, and that px is a mapping from
{(t1,...,ty) | t; € r;foreachl < i < n} totheset V of
scalar values. Each (¢4, . .., t,) hereiscalled acoordinate.

Example 2 Consider the chain store example we gave in Ex-
ample 1. A 3-dimensional cube can be used to formalize the
sales of the chain store: SALES = (rs, rp, rq, amount) On
the cube scheme ((Store, Rs), (Prod, Rp), (Date, Ry)),
where g = {loc} (location), Rp = {p, m} (item and man-
ufacturer) and Rq = {y,m, d} (year, month, day). Thevalue

amount(ts,tp,tq) isthesaesamount of product ¢, reported
by storetg onday ¢4. |

One may view that a dimension relation gives all the
possible values (tuples) for the corresponding dimension. A
more important point of view, however, isthat thedimension
relation actually providesa“basic” way of grouping. Indeed,
for agiven dimension D, each tuplet of the dimension can be
taken as the“name”’ of a group and the datain the group are
all the values mapped from al the possible combinations of
t (from dimension D) with tuples from the other dimensions.
That is, dimension D has the fixed value ¢ while &l the
other dimensions take al the possible values. In the above
example, astore (represented by itslocation) givesthe group
of dl the sales data of al the products ever reported by the
store. A day on the Dat e dimension gives the group of the
sales datareported by all the stores of al the products on that
day. The above intuition of using a relation to group data
in a cube is extended to an arbitrary relation, leading to the
notion of a“grouping relation”. First, we have:

Definition A dimension attribute is a pair of a dimension
name and an attribute name. A grouping (relation) scheme
isafinite set of dimension attributes and attribute names.

Hence, a grouping scheme (denoted by) is simply a
traditional relation onordinary attributesaswell asdimension
attributes. In the sequel, we shal use the notation D. A
to denote a dimension attribute. The difference between
a dimension attribute and an ordinary attribute is that the
dimension attribute is prefixed with a dimension name. In
order to simplify the presentation, we assume there exists a
dummy “dimension name”’ and each ordinary attribute A is
viewed as a dummy dimension attribute. Hence, when we
refer to dimension attributes, it may refer to a dimension
name and attribute name pair or an attribute name (prefixed
by the dummy dimension name).

A grouping relation on a grouping scheme G is smply
a relation on G by ignoring the dimension names. That
is, a(grouping) tuple on G is an “ordinary” tuple such that
t[D.A] € dom(A) foreachD. A in G, and agrouping relation
is a set of grouping tuples. The symbol ¢, possibly with a
subscript, is used to denote a grouping relation.

Note that a grouping relation is basically a traditiona
relation with dimension attributes, athough dimension
attributes carry useful information. Hence, all the traditional
relationa operations are applicable, except for the rename
and cross product operations(explained | ater). Therelational
operations simply take the dimension attribute D.A as an
ordinary attribute with a complex name.

Let C (r1,...,rn,) be a cube on the scheme
((D1, R1),...,(Dn, Ry)). Then each r; gives a grouping
relation ¢; that consists of all the tuplesin »;. The only
difference is that the (dimension) attributes of ¢; are the
attributes of r; prefixed with the dimension name D;. It will
become clear when we define the semantics of a grouping

83

rel ation bel ow, that the information carried by the dimension
name isimportant. First, we have:

Definition Let S = {(D1, R1),...,(Dn, Ry)} be a cube
scheme and G agrouping relation scheme. Then ¢ issaid to
beapplicableto S'if for each non-dummy dimension attribute
D.A€ G, A€ R, andD; = D for some .

Thus, if agrouping relation scheme G isapplicableto acube
scheme, then for each non-dummy dimension attribute D. A
appearing in &G, D must be a dimension name in the cube
scheme, and A must bein the relation scheme for dimension
D. Intuitively, a tuple (with dummy dimension attributes
taken out) on G can be extended to be a set of coordinates of
acubeon S.

Let ¢ be a grouping relation on G and C' a cube on S,
where GG is applicable to S. Then each tuplet of ¢ givesa
group of coordinates from C' that are “extensions’ of ¢. For
example, each tuplet in g4 (¢4 isthe basic grouping relation
copied from r4 in the cube SALES) gives all the coordinates
of SALES whose Dat e dimension is¢. These coordinates
correspond to the sales data reported by al the stores for
all the products on day ¢. This observation is the basis of
the following definition. However, we carry this observation
one step further: We combine the SQL “group by” into our
grouping mechanism.

Definition Let ¢ be a grouping scheme, X a subset of &
and S = ((D1, R1), ..., (Dn, Rn)) acube scheme such that
G isapplicableto S. Let ¢ be agrouping relation on &G and
C = (r1,...,rn, p)acubeonS. Theneach tuplet inwx ()
givesthe following set of coordinates, denoted by F)C(’g (t):
{(t1,.. ., tn) | ti€rforeachl < i< nand
thereexistst’ in ox=(r) such that
U[RNR;]=t[RNR;]foreach1 < i < n}.

In the above definition, the set X first partitions the
relation r into subrelations such that two tuples belong to
one subrelation iff they have the same X values. Thisis
the same as the “group by” clause in SQL. Each subrelation
then gives a group of coordinates which is a union of the
coordinates obtained by each tuple (as explained earlier) in
the subrelation.

o = For t = (East), Fiég?iﬁr(t)
Region Store.loc gives the coordinates in Sal es
East NewYork corresponding to the tuples 1, 2,
East Washington 4 and 5 in Figure 1 since these
West LosAngeles | coordinateshavetheSt or e. | oc

value NewYork or Washington.

Figure 2: Grouping using regions on SALES.

The"group by” extension hereisrather useful. A grouping
relation g, on the scheme G = {Region, Store.loc} may
be intuitively used to group stores into regions. Clearly,

SALESg, ; ; i
rRegiOI:(L] (), where t is atuple of scheme (Region) (i.e,

representing a region), yields al the data reported by all
the stores in region ¢. (Figure 2 shows an example of g,
and a corresponding grouping on the cube SALES.) This
expressiveness is from the combination of the “group by”
and the grouping relations. Note that the above grouping
mechanism includesa“group by” component and isdifferent
fromthe" group by”. The grouping mechanism here usestwo
levelsof grouping: Thefirstisfromtherelationitself (similar
to the SQL “group by”), and the second from the cube.

4 Groupingalgebra

Relational operations provide a powerful grouping mecha-
nism to derive grouping rel ationsfrom basic ones. However,
these operationsare still limited for many purposesin OLAP
applications. In this section, we extend the relationa a-
gebra to include order-oriented operations, and aggregati on
operations.

Relational operations

As mentioned earlier, each traditional relational operation,
except for the rename operation, can be applied to grouping
relations. Dueto the special semantics of grouping relations,
we revise the rename operation as follows:

Operation (rename) Let D.A be a dimension attribute (D
could be dummy) and B an attribute name. Let ¢ be a
grouping relation on scheme ¢ such that D.A € ¢ and
B ¢ G. Then renp 4 p(g) is the operation that changes
the attributeD. A in g to B. |

By definition, a rename operation can change a regular
attribute to a regular one or change a dimension attribute
to a regular one. This restriction is due to our intention
that grouping relations represent groups formed from the
basic groups given by cubes. This is what we call the
“property of non-empty reference’. Asan example, consider
the relation ¢ = {(1, 1995, Fairfax), (2, 1996, Fairfax)}
on the scheme {Group, Year, Store.loc}. Suppose we
rename year (aregular attribute) to Date.y (denoting the
renamed grouping relation as ¢’), and suppose that the
Dat e dimension of cube SALES does not contain any
tuple with year 1995. Then the sum of the data for the
coordinatesin MSALES o (1) would return zero, and the sum

Group
SALES,y’
of FGroup (2) would be the total sales amount of the

Fairfax storein year 1996. This will cause confusion since
the result zero could be interpreted as (i) “there is no sales
data by the storein 1995” or (ii) “the salesin 1995 is zero”.

A similar restriction appliesto the cross product operation.
In order to maintain the non-empty reference property, the
two operands of the cross product must not contain the same
non-dummy dimension name.

Order-oriented operations

In order to express groupingsthat are order related, we first
introduce the concept of a “tuple order” on relations. By
using the tuple order, we define the ordered roll operations
on groupings. We assume there exists a total order on the

84

domain of each attribute name. And we use the notation
X, where X isaset of (dimension) attributes, to denote a
permutation of the attributesin X.

Definition Let X be aset of dimension attributesand X =
Dy.A1,...,Dg.A; apermutation of X. Then O = (X, 6),
where 6 isa symbol intheset {desc, asc}, iscaled atuple
order on X and gives a total order <5 on the tuples on
scheme X asfollows: For tuplest; and ¢, on X, t1 <o 12
iff either {1 = ¢y, or there existssa 1l < j < k such that
(@D} tl[Di.A]_, .. "Dj AJ] = tz[Di.A]_, .. "Dj AJ] and (2) if
@ = desc, then tl[Dj+1'Aj+l] > tZ[Dj+1'Aj+l]' and if
= asc, then tl[Dj+1'Aj+l] < tZ[Dj+1'Aj+l]'

That is, the tuples on X are ordered lexicographically,
descendingly (desc) or ascendingly (asc), by looking at the
attributes in the order given by the permutation X. For
example, if X = A, B and 6 = asc, then thetuple (1, 2) is
before the tuple (1, 3). It is clear that each tuple order isa
total order. And hence, for each relation on X, it is easily
seen that a tuple order on X induces a sequence of al the
tuplesin therelation as follows:

Definition Let O = (X,0) be atotal order on X and g a
grouping relation on scheme X. We use Olg] to denote the
sequencety, . .., t,, wheret; <o ¢; foral ¢ < jandiy, ...,
t, aredl thetuplesing.

The sequence O[g] issimply a“sorted” relation by using the
attribute order specified in O. Clearly, thisis similar to the
“Ordered by” clausein SQL.

We now define the operations that generate interva
groupings. In order to do so, we need the following notation
regarding attribute name conversions. For each attribute
name A (not a dimension attribute), we aways assume that
T-A, where T is an arbitrary symbol, isanew attribute name
that have the same domain as A. Also, for a given set
X = {Dq.A1,...,Dr. Ay} of dimension attributes, let T-X
be the set of “regular” attributes {T-4;,...,T-A;}. Weare
now ready to define our roll operation:

Operation(roll) Let b (begin), s (step) and [(length) be
positiveintegers(s can be0), ¢ agroupingrelationon scheme
G, X asubset of (G such that no (regular) attribute name
appearing more than once in X and O a tuple order on
X. Assume O[rx(g)] = t1,...,t,. Let m > 0 and let
im=b+s*xmandj, =i, +1 Ifi, <j, <n,then
for each i,,, < k < jn, lett,,;; bethetuple on the scheme
start-X U end-X U X such that ¢,,;[start-X] = ¢;,_,
tmplend-X] = t;, andt,;[X] = t5. Let ¢’ bethereation
consisting of al ¢,,; defined above. Finally let %" (g),
caled aroll of g, be the grouping relation ¢ = ¢'. |

Thus, a roll operation first sorts the tuples in #x(g)
by the given tuple order. Then it generates groups by
taking interval sfrom the sequence (the result of the sorting).
Specifically, tuples from the positions between b and b + [
are grouped together, tuples from the positions between

A e A1 | 4 | A

4 A1 a b a 4 c

“ ¢ a a b a 4 h
a 4 h

b a b b |2 |b
b 2 |b

1 d c b c b 2 b

¢ b ¢ c |1 |d

(i) relation ¢ (i) O[¢] with tupleorder O = (A1, asc) (i) p5"4(9)
Figure 3: Example of tuple order order and roll operation
[b+ s,b+ s +] are grouped together, and so on. (Here, e, tn) | (t1,. .., t0) € F)C(’g(t[X])]}. O

b is the beginning position of the first interval, and s is the
step length, i.e., the distance between the beginning of each
two neighbor intervals, and [is the length of each interval.)
Finally, each interval group generates a resulting group by
joining to the original relation. Figure 3 shows an example
of tuple order and roll operation.

As another example, assume ¢ is a grouping relation on
the scheme {y,m,d}. Then p(l;’gsc)(g) creates a grouping
relation that collects every threeyears (non-overlapping) into
agroup; p(l;}?l,asc)(g) creates a grouping that collects every
three months (i.e., aquarter) into a group.

The roll operation is extended to the form pl;**(¢) which
is the union of p’g”(g) for al | < |g|. (The symbol |g|
denotes the number of tuplesin ¢). The most often used roll
operations in OLAP applicationsinclude the following:

o Overlapped moving of length &: pgl’k ;

o Non-overlapped moving of length &: pgk,k;
« Forward cumulation: p5%*; and

o Allintervals: p5b*.

Backward cumulation can be achieved simply by reversing
the tuple order O in aforward cumulation, i.e., change asc
in O to desc or viseversa

The roll operation is very powerful and can be used to
derive other interesting operations. The roll operation with
a projection operation 7x(p%”¢(g)) selects the b-th to e-th
itemsin ¢ along the order given by O. Other complex order-
related selection is aso possible by using the roll operation.
For instance, selecting every other tuple from a sequence
obtained by atuple order: prgz’l(g).

Aggregation operation

The final operation in our extension is the aggregation
operation. We define an aggregation function as a mapping
from the multi-subsets of V' to V. For example, sum, avg,
min and count are the often used ones.

Operation(aggregation) Let ¢ be a grouping relation on
scheme ' and C' a cube on scheme S, such that G is
applicable to S. Let f be an aggregation function, and
A an atribute name not appearing in G. Then f& ,(g),
caled an aggregation operation, is the grouping relation
g" on X U {A} such that 7x(¢’) = wx(g) and for each
t € ¢, t[A] is the result of applying f to the multiset

85

Intuitively, the aggregation operation fZ ,(g) uses X
and ¢ to group the coordinates in C', and then apply the
aggregation function f on the data from each group. The
result is a grouping relation on X U {A}, where A holds
the aggregation values for each group. To illustrate, let ¢ be
the grouping relation on Date.y. Then each tuple (y,tol)

gz;;gt ota1(9) describes the national total sdes

amount tol of year y.

in sum

5 MDDB and MDDB queries

In this section, we present the notion of a multidimensional
database (MDDB) and its query language.

A multidimensional database is a finite set of multidi-
mensional cubes and a finite set of grouping relations. The
cubes register basic values (such as sales amounts) with ba
sic groupings (provided by the dimension relations), and the
grouping relations give certain “built-in groupings’. In ad-
dition, the cubes in an MDDB “share” dimension relations.
That is, if two cubes have the same dimension name, the
dimension relation on the dimension must be the same. This
assumption not only saves storage, but also models realistic
situations. Indeed, theremay be many different datacollected
(as cubes), where “products’ is one dimension in different
cubes. The valuesfor the “products’ dimension for all these
cubes should be the same.

The other restriction is that if ¢ is a built-in grouping
relation, thenthevaluesin g under a(non-dummy) dimension
attribute must appear in the corresponding dimension. This
requirement isto ensure the property of non-empty reference
(see Section 4). As an example, suppose ¢ is a built-in
grouping relation on attributes {Region, Store.loc}. Then
each value under Store.loc in g must appear intherelation
rg, 1.€., therelation for the store dimension. The non-empty
reference property is to ensure unambiguous semantics of
grouping relations. Indeed, if this property is not satisfied
and the summation on a group returns a zero value, then it
could be either that the summation does have avalue zero, or
that the dimension attribute values in the grouping relation
do not appear in the cube. In order to distinguish the two
cases, run-time checking would be necessary. In this paper,
we advocate static checking. That is, if the MDDB itself has
the non-empty reference property, then through a syntactical

restriction on query expressions, we can ensurethat theresult
of the query has the non-empty reference property.
Grouping algebra expressions and their corresponding
semantics on MDDB can now be defined by using the
operations introduced so far. Due to space limitation, we
omit the details here but give some query examples bel ow.

Example 3 We now usefour query examplestoillustratethe
groupingalgebra. Supposewe havean MDDB onthescheme
(D, C, G)withD = {Date,Prod, Store}, C = {SALES}
and G = {Region}. The schemes of the dimensions
Date, Prod, Store, aswell asthe scheme of thecube SALES,
are as in Example 2. The grouping relation for the built-in
grouping relation Regi on ison scheme {reg, Store.loc}

Q.1 Find out the the names of the last year’s (1994) top 5

salling product (including all manufacturers)

Tey = 1,0,5 Prod.p

5+ = Tprod p(Protral desc(SUMSALES totall
TDate y=1004(Prod >a Date))))
Notethat theresult may contain morethan five productssince
there may be more than one product having the same total
0,5

sales amount. If we used ptotal Prod p desc in the above

expression instead of pl’o >

total desc’ V€ will get a most five
products.

Q.2 For each member store, find out the year-to-date total
salesamountsfor each daythisyear (i.e., thedaily cumulative

sales amounts over 1995)
end-m end-d Store. loc(

1,0,
SUME 41 ES total (

P (Date.mdate.d),asc

ODate v—1995Date i Store)))
In this expression, for each day (I (ye day end-d in month

end-m) and each store (i.e, located a Stroe.loc) a
summation is performed and theresult isint ot al .

Q.3 Find the year-to-date total sales amounts, in each
region, of each product whose last year’s nation-wide total

sales amount was ranked among top five.

reg Prodp .
T5+ < SumSAEES tota] (Region > Prod).

Q.4 For all those products that are in the set of products
manufactured by m; and my, find the total sales amounts of
thisyear (1995).

Prod.p

SUNMk1ES total(™Prod p(UProd f=m1vProd mem,(Prod)))

The result relation of this expression is a set of pairs
{(p,tot)}, witheach tuplep being aproduct thatison thelist
of products manufactured by m and/or m; and tot istheto-
tal sales of p inthe chain store, which may include those that
are not manufactured by m; and m». (For example, suppose
my and my both produce telephone sets. Then the above
query will retrieve total sales of telephone sets, regardiess
the manufacturer.) |

6 Multidimensional cubealgebra

As mentioned in the introduction, in a data warehouse
environment, multidimensiona cubes in anh MDDB are

86

materialized views expressed in a query language, which
retrieve datafrom distributed local databases. In thissection,
we present amultidimensional cube agebrathat can be used
as such aquery language.

The cube algebra consists of six operations that are
mappings from cubes to cubes, as well as from relations to
cubes. The purposeisto construct datafrom local databases
into suitable multidimensional cubes. The first operation
is the “add dimension” operation that adds an additiona
dimension to a cube. Due to space limitation, we only give
an informal description of the cube al gebra operations.

Operation(add dimension) The add dimension operation
ap(C) generates anew cube C” from theinput cube C'. Cube
(' has a new dimension named D whose relation scheme is
the empty set, and therelation for the dimension hasonly one
tuple, namely theempty tuple[]. Thevauefor thecoordinate
(t1,...,tn,[]), with thelast dimension being D, in C’ isthe
valuefor the coordinate (¢1, . ..,%,) inC. O

One use of this operation is to make the input cube
to have the same dimensions as another one to make the
union (an operation on cubes defined later) of the two cubes
possible. Note that the new dimension appearing as the
last dimension is for notational convenience. Indeed, as
mentioned earlier, theorder of the dimensionsdoesnot matter
in a multidimensional cube. This comment applies to the
definitions of the other operationsin this section.

The second operation is the transfer operation that
rearranges the dimensions of a cube.

Operation(transfer) The transfer operation TII))Z’A (C) gen-

erates a new cube by transferring attribute A of dimension
D; to be a (new) attribute B on dimension D,. More specifi-

caly, the transfer operation projects out the values under an
attribute (A4) from the first dimension, and put these values
into the second dimension (via a Cartesian product). The
new value mapping changes accordingly as follows: Given
tuples] and ¢/, from the first and second dimensions of the
new cube, the the value mapping tries to see if these two
tuplesare formed from ¢; and ¢, (tuplesfrom thefirst and the
second dimensions of the original cube) such that | and ¢},
can beobtained by “transferring” A valueint; intoa B value
int, (whiletheother attributevaluesdo not change). If thisis
the case, then the new val ue mapping uses thevalue from the
origina vaue mapping. Otherwise, the new value mapping
hasto usethe null value. Figure 4 showsaparticular transfer
operation. |

To illustrate the usage of the transfer operation, consider
amultidimensional cube C' consisting of aDat e dimension,

with attributes y,m, d. Let ' = %Y (aygqr(C)).

Then cube ¢ “extracts’ out the year mformar[ion into a
new dimension. This may be necessary in order for C
to be combined with another cube into a cube view. As
a further example, suppose that C' has another dimension
caled St or e. We may transfer the year attribute into store
dimension. The result may be more intuitiveto a user who

D(A]_,Az)
(b,3) 55 6.6]
" Ay
(,3) 33 44 D
(a,2) 11 22 A
(1) (2
D':(Ag)

D:(Az)
(3) 33 55 44 6.6
(2) 11 null 22 null
‘ (L,a) (1,6) (2,a) (2,b)
D/:(Ag, Al)

Figure4: Example of transfer operations.

wants to view the behavior of store together with the year.
The third operation combines two cubes into one.

Operation(union) The union of cubes C; and C> aong the
dimensionD; isdenoted by €'y W, C>. The cubes C7 and C?
must have the same schemes and must not share any tuple
on dimension D;. The union operation simply unions all
the coordinates of the two given cubes together, and each
coordinate get its original value. In the process, there may
be new coordinates generated. The null value is used on
these new coordinates. Note that union of two cubes require
that at least one dimension are digoint (i.e., D; in the above
definition). This guarantees that each coordinate in the new
cube have at most one origin, either from thefirst cube or the
second, avoiding any ambiguity. |

The fourth operation is the cube aggregation.
Operation(cube aggregahon) For a given aggregate func-

tion £, the cube aggregation fD e ’R”"((') givesacube ¢’

on the scheme ((D“,R’) . (Dzm,RQm)). Cube C' isob-
tained by “compressing” the cube into a smaller one. Each
coordinate (t; ,...,t;) in C’ corresponds to al the coor-
dinates in the original cube that match the partial tuplest; ,
..., t; . The data a the coordinate (t; ,...,t;) inthe
compressed cube isthe aggregation value (via f) of the data
in the original cube at the coordinates that are extensions of

(t4,,...,t.). Figure5 showsan example. o
D
(2) |22 44 66
(1) |11 33 55 = 11 1b2.1 -
(0,2) (a,3) (b,3) (a) (b) (A1)
D (A1, Ap)

Figure5: Cube aggregation sumgl.

Notethat cube aggregation operations, together with other
operations, can be used to “project out” attributes from a
dimension relation in a cube. (Note that a direct projection
on a dimension relation may cause semantic ambiguity,
since each coordinate after the projection may correspond
to more than one coordinate in the original cube.) Indeed,
let C' beacubeon (D1, R1U {A}), (D2, R2)), and ¢’ =

sunfy" (75 ¥ (ap,(C)). (That is, € is obtained first by
addmg a temporary dimension D’ and the transferring A to
this temporal dimension. Then D’ is compressed out via
sum.) Itisclear that the difference between C' and C” isthe

the attribute A is dropped from €', and al the data at the

87

coordinatesthat have thesame A value (indimensionD;) are
summed together.

The next two operations deal with the interaction between

(regular) relationsand cubes. Webedlievetheseoperationsare
important especialy if in the data warehouse environment,
somelocal databasesarerelational. Thefirst such operationis
ajoinoperationthat joinsa(regular) relationintoadimension
relation.
Operation(rc-join) An rc-join rip, C' joins the relation r
into dimension D; of cube C'. The result is a new cube with
dimension D; having the join result of » of the dimension
Dy relation of C'. The cell dataon (¢4, ...,t,) for the new
cube (assuming D; is the first dimension) isthe cell data on
(1, ..., t,) witht] being the projectionof ¢; ontheattributes
of D1 inC.]

Finally, we can construct a cube from a relation:

Operation(construct) The construct operation 53(7“) gen-
erates a cube from relation » such that the new cube is one
dimensional (with the only dimension D) whose dimension
relation is r and the cell value for the coordinate (¢) ist[A],
where A isan attribute of r. O

The following example shows two cube views using the
multidimensional cube agebra

Example 4 Consider in our store chain example. Suppose
each store reports a cube C; = (rg, rp, amount;) to the
headquarters. These cubes and some other locdized rela
tionslike region relation rg on the scheme {reg, loc}, €tc.,
are used to construct cubes in the chain store headquarters
data warehouse. Two of the cubes are given below as cube
algebra expressions:

SALES = (agtore(C1)™gtoret(loct)}) Wstore - -

_ Wstore(@Store(Cm)NStore{<1°Cm>})
where m isthe number of member stores, 1oc; isthelocation

of theith storeand (1oc¢;) isaunary “constant” tuple; and

Rp, {reg}
R_SALES = SurnProd Reglon(SALESNStorerg)

Thecube SALES istheview of daily sales per product of each

store, while R_SALES is the up-to-date sales of each product
in each region. |

7 Related research

In database research, systems similar to OLAP systems
have been studied in the domain of statistical and scientific
databases (SSDB) [Mic91]. Sharing many features with
OLAP systems, SSDB systems typically contain a large

amount of data, and are designed for hel ping apply statistical
data analysis to the stored data. Tremendous progress has
been made in this area. Specia data models have been
proposed and query languages introduced [Su83, OOM85,
RR93]. Optimization techniques, in particular efficient
physica storage management [SW94, NR94, SS93] and
pre-aggregation [CM89], have been investigated. Many of
these results, especially the optimization techniques, can be
directly used in OLAP systems. In this paper, we focused
on providing a data model and agebraic query languages
directly related to OLAP applications.

There are other researches related to OLAP applications.
The paper [GBLP96] introduced a new grouping operation
CUBE for the SQL group-by clause. (Note that CUBE isthe
name of an operationwhilewe usetoterm*cube”’ torefertoa
data“unit” likea“relation”.) Thebasicideaisthat for agiven
relation containing the attributes A4, . . ., A, the group-by-
cube will group data (in the standard SQL group-by sense)
using al possible proper subsets of these £ attributes (totally
2% —1inal includingthe empty set excluding thewhol e set).
The CUBE clauseisaimed at the OL AP querieswhich require
simultaneous aggregation over different combinations. It
is easily seen that the model presented in this paper can
also be extended with such a group-by-cube clause. There
are other extensions made to SQL to accommodate OLAP.
For example, Red Brick’s RI-SQL [Red95] includes certain
order related aggregation functions such Movi ngAvg(n)
and Curmre (cumulative total). In contrast, this paper tried to
introduce a general framework to express these functions.

Recently, [AGS96] introduced a data model for multidi-
mensional databases. Basically, [AGS96] uses a similar no-
tion of cubesand givesanumber of operationson cubes. The
operations are similar to the six cube operations introduced
here but with somewhat different capabilities. However,
[AGS96] does not consider the grouping queries. Another
difference isthat the data model of [AGS96] only has cubes
and does not include “regular” relations which we consider
important in this paper.

Optimizing OLAP queries is another important research
area that is beyond the scope of this paper, where pre-
computation isa promising idea. Certain cube aggregations
can be pre-computed to expedite query processing. However,
due to storage limitation, the system needs to select a subset
of these aggregations. The paper [HRU96] provided an
algorithm that efficiently selects such a subset under system
restrictions.

8 Conclusion

This paper formalized an MDDB data model and introduced
a grouping algebra as its query language. The query
language is flexible in expressing many intuitive OLAP
queries, including order-related queries. We then presented
a cube agebra which we used to define cube views
in a data warehouse environment. The purpose was
to provide agebraic query languages to support OLAP

88

applications. There are many issues worth further studying.
For example, the model with its languages should be
studied for its expressiveness, and properties of the
introduced operations should be investigated. Furthermore,
optimization techniques for the queries in the algebras need
to be considered. Finally, the extension of the model may be
considered. For example, one may extend the cubes to have
cell values being atuple or even arelation.

References

[AGS96] R. Agrawal, A. Gupta, and S. Sarawagi. “A framework
for research in multidimensional databases.” Personal
communication. 1996.

[Ban95] S. K. Bansal. Real world requirements for decision
support - implications for RDBMS. SSGMOD, 1995.

[CCS93] E.F.Codd, S.B. Codd, andC. T. Salley. Beyond decision
support. Computerworld, 27, 26 July 1993.

[CM89] M. C. Chen and L. P. McNamee. On the data model
and accessmethod of summary data management. IEEE
TKDE, 1(4), 1989.

[Dre93] H. Dresner. Multidimensionality: Ready or not, here

it comes, 1993. Office Infor. Syst. Research Notes. The
Gartner Group. File: Technology, T-MD-1137.

[GBLP96] J.Gray, A.Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-total. Proc. of the 12th
International Conference on Data Engineering, 1996.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman.

Implementing data cubes efficiently. SGMOD, 1996.

[Mic91] Z. Michalewicz, editor. Satistical And Scientific
Databases. Elli Horwood, 1991.
[NR94] W. Ng and C. Ravishankar. A physical storage model

for efficient statistical query processing. Statistical and
Scientific Database Management, 1994.

[OOM85] G. Ozsoyoglu,Z. M. Ozoyoglu, andF. Mata. A language
and a physical organization technique for summary
tables. PODS, 1985.

Red Brick Systems White Paper. Decision-Makers,
Business Data and RI-SQL. RedBrick Systems, Los
Gatos, CA, 1995.

M. Rafanelli and F. L. Ricci. Mefisto: A function model
for statistical entities. IEEE TKDE, 5(4), 1993.

S. Sarawagi and M. Stonebraker. Efficient organization
of large multidimensional arrays. Technical Report S2K -
93-32, U.C. Berkeley, 1993.

S. Y. W. Su. Sam*: A semantics association model for
corporateand scientific/statistical databases. Information
Science, 29, 1983.

K. Seamonsand M. Winslett. Physical schemefor large
multidimensional arraysin scientific computing applica-
tions. Satistical and Scientific Database Management,
pages 218227, 1994.

[Red95]

[RR93]

[SS93]

[Su83]

[SW94]

