
A Data Model for Supporting On-Line Analytical Processing�
Chang Li

George Mason University

cli@isse.gmu.edu

X. Sean Wang
George Mason University

xywang@isse.gmu.edu

Abstract
A database application, called “on-line analytical processing” (or
OLAP) and aimed at providing business intelligence through on-line
multidimensional data analysis, has become increasingly important
due to the existence of huge amounts of on-line data. This paper
formalizes a multidimensional data (MDD) model for OLAP, and
develops an algebraic query language called grouping algebra.
The basic component of the MDD model is a multidimensional
cube, consisting of a number of relations (called dimensions)
and for each combination of tuples (called a coordinate), one
from each dimension, there is an associated data value. Each
dimension is viewed as a basic grouping, i.e., each tuple in
the dimension corresponds to the group consisting of all the
coordinates that contain this tuple. In order to express user
queries, relational algebra expressions are then extended to those on
basic groupings for obtaining complex groupings, including order-
oriented groupings (for expressing, e.g., cumulative sum). The
paper then considers the environment where the multidimensional
cubes are materialized views derived from base data situated at
remote sites. A multidimensional cube algebra is introduced in
order to facilitate the data derivation. The purpose of the paper
is to establish a formal foundation for further research regarding
database support for OLAP applications.

1 Introduction

Recently, database system supports for business data analysis
have become popular [Ban95]. This trend is evident from
the popularity of many on-line analytical processing (OLAP)
systems [CCS93, Dre93] such as Essbase by Arbor Software
and Express by Oracle. Based on a multidimensional
conceptual view of data, these systems are specially designed
for data analysis, with characteristics significantly different
from those of relational databases. The emphasis of OLAP
systems is on flexible data grouping and efficient aggregation�Part of research supported by the NSF research initiation award IRI-
9409769.

evaluation on obtained groups. The purpose of this paper is
to develop a multidimensional data model for OLAP in order
to establish a formal foundation for OLAP applications.

An OLAP system concerns mostly with intuitive user
interface and quick on-line processing. The language used
by an OLAP application must be able to flexibly express
various grouping methods, including grouping by attributes,
by positions in (time or other) sequences and by aggregation
results on some other groups. Furthermore, most OLAP
systems are based on the concept of a data warehouse, storing
materialized views derived from base data that are (or used
to be) located at remote sites. This brings in a new aspect on
optimization, especially the view maintenance problem.

In this paper, we define a formal multidimensional data
(MDD) model for OLAP systems. The central component
of an MDD model is the notion of a multidimensional cube,
where each dimension consists of a relation and there is a data
value associated with each combination (called a coordinate)
of the tuples, one from each dimension. A cube is similar to
the concept of category in most of the SSDB data models in
the literature (e.g., [CM89]).

In our model, a multidimensional database (MDDB)
consists of a finite set of multidimensional cubes and a finite
set of relations. OLAP queries are posed on the MDDB using
a grouping algebra, an extension of the relational algebra.
The grouping algebra is based on the observation that a tuple
on a dimension of a multidimensional cube can serve as a
pointer pointing to all the data values that are associated
with all the coordinates containing that tuple. Therefore, a
dimension provides a basic grouping method. We then use
relational (and other) operations to manipulate these basic
groupings to obtain complex ones, providing a powerful
mechanism for analyzing data.

A novel feature of the grouping algebra is its inclusion
of order-related operations. Order plays an important role
in business data analysis. Examples include retrieving top n
elements from a sequence and grouping over a time sequence
(e.g., cumulative sum). The grouping algebra uses the notion
of a tuple order to provide an ordered view of relations, based
on which order-related grouping and selection are defined.

We also study OLAP systems in a data warehouse
environment. We define a data warehouse as a set of

81

materialized cubes and relations derived from base data. In
order to facilitate such a derivation, we introduce a cube
algebra for manipulating cubes and defining cube views.

The rest of the paper is organized into 7 sections. A
motivating example (also used as a running example) is
given in Section 2. In Section 3, multidimensional cubes
and grouping relations are defined. The grouping algebra is
introduced in Section 4, and MDDB and MDDB queries are
discussed in Section 5. In Section 6, the multidimensional
cube algebra is presented. Related research is discussed in
Section 7 and the paper is concluded with Section 8.

2 Motivating example
Consider a nation-wide department chain store that owns
member stores located in different geographical regions.
Assume that all the member stores in the chain sell the same
products. Sales data are collected daily. That is, at the end of
each day, each member store will report the total sales amount
of each product to the national headquarters. Figure 1 shows a
part of the data reported on May 15, 1996. The collected data
may be used by the executives at the national headquarters
to analyze the activities of the chain store.

Store Product Date
Loc Item Manu y m d Sales

1 NewYork Mac Apple 1996 May 15 7000
2 Washington Mac Apple 1996 May 15 3800
3 LosAngeles Mac Apple 1996 May 15 15500
4 NewYork PC IBM 1996 May 15 2700
5 Washington PC IBM 1996 May 15 3900
6 LosAngeles PC IBM 1996 May 15 6530

Figure 1: Data of a chain store.

Example 1 One indicator of the activities of the chain store
may be the growth trend (in sales) of each member store.
These growth trends can be obtained via the following query:

(a) For each member store, find out the year-to-date total
sales amounts for each day of this year (i.e., the daily
cumulative sales amounts over this year).

Another indicator may be the current behavior (in sales) of
the last year’s top selling products:

(b) Find the year-to-date total sales amounts, in each region
(east, west, etc.), of each product whose last year’s
nation-wide total sales ranked among top five. 2

A critical step towards database support for data analysis
involves formulating “analysis-oriented” queries as those
given in Example 1. A central requirement for expressing
these queries is the flexible representation of complex data
grouping methods. Consider query (a). Two grouping
methods are involved. One is by attributes (i.e., by store)
and the other by position in a time sequence (i.e., by day).
Specifically, for a given member store s and day d, the
corresponding group consists of all the sales amounts that are
reported by store s in this year up to day d. For query (b), two
rounds of grouping are performed. The first is grouping by
attributes (i.e., by product). That is, all the sales data (in last

year) of a product form a group. A summation is performed
on each group. The results are then used to select the top-five
products. The second round uses these computation results.
Specifically, for each region r and each of the five products,
a group is formed by collecting all its sales amounts reported
this year by all the stores in region r.

It is easily seen that the queries in Example 1 cannot
straightforwardly be expressed by using the traditional
relational query languages such as the relational algebra.

3 Cubes and grouping relations
In this section, we define n-dimensional cubes. Throughout
of the paper, we assume two disjoint sets: a set of attribute
names and a set of dimension names. We use A, B etc. to
denote attribute names, R to denote finite sets of attribute
names, and D to denote dimension names. Each symbol
may be subscripted to denote a different name of the same
kind. Each attribute A is associated with a domain dom(A).
Furthermore, we use V to denote a set of scalar values
(integers, reals, etc) which includes a special null value.

Definition Let n be a positive integer. An n-dimensional
cube scheme is a set f(D1; R1); : : : ; (Dn; Rn)g, where D1, : : : ,Dn are distinct dimension names and R1, : : : , Rn are sets
of attribute names. An n-dimensional cube, or a cube, on
the scheme f(D1; R1); : : : ; (Dn; Rn)g is a pair (F; �), where
(i) F = f(D1; r1); : : : ; (Dn; rn)g with ri being a relation
on Ri for each 1 � i � n, and (ii) � is a mapping fromff(D1; t1); � � � ; (Dn; tn)g j 81 � i � n : ti 2 rig to V.

In the above definition, ri is called the dimension relation
for Di. Thus, a multidimensional cube consists of a set
of dimension relations and a value mapping. The value
mapping maps each combination of tuples, one from each
dimension relation, to a scalar value. A special case in the
above definition is that one (or more) dimension relation is
empty. In this case, the value mapping is undefined.

Note that unlike an ordinary array, we use names to label
different dimensions and there is no order among these
dimensions. Operations like “transpose” are of no meaning
to a cube. However, for convenience and when no confusion
arises, we will assume that there is an order among the
dimension names in a cube. That is, we will assume that
a cube scheme is a list h(D1; R1); : : : ; (Dn; Rn)i, and we
will write a cube on the scheme h(D1; R1); : : : ; (Dn; Rn)i
as (r1; : : : ; rn; �), assuming that ri is a relation on Ri
for each 1 � i � n, and that � is a mapping fromf(t1; : : : ; tn) j ti 2 ri for each 1 � i � ng to the set V of
scalar values. Each (t1; : : : ; tn) here is called a coordinate.

Example 2 Consider the chain store example we gave in Ex-
ample 1. A 3-dimensional cube can be used to formalize the
sales of the chain store: SALES = (rs; rp; rd; amount) on
the cube scheme h(Store; Rs); (Prod; Rp); (Date; Rd)i,
where Rs = flocg (location), Rp = fp; mg (item and man-
ufacturer) and Rd = fy; m; dg (year, month, day). The value

82

amount (ts; tp; td) is the sales amount of product tp reported
by store ts on day td. 2

One may view that a dimension relation gives all the
possible values (tuples) for the corresponding dimension. A
more important point of view, however, is that the dimension
relation actually provides a “basic” way of grouping. Indeed,
for a given dimension D, each tuple t of the dimension can be
taken as the “name” of a group and the data in the group are
all the values mapped from all the possible combinations oft (from dimension D) with tuples from the other dimensions.
That is, dimension D has the fixed value t while all the
other dimensions take all the possible values. In the above
example, a store (represented by its location) gives the group
of all the sales data of all the products ever reported by the
store. A day on the Date dimension gives the group of the
sales data reported by all the stores of all the products on that
day. The above intuition of using a relation to group data
in a cube is extended to an arbitrary relation, leading to the
notion of a “grouping relation”. First, we have:

Definition A dimension attribute is a pair of a dimension
name and an attribute name. A grouping (relation) scheme
is a finite set of dimension attributes and attribute names.

Hence, a grouping scheme (denoted by G) is simply a
traditional relation on ordinary attributes as well as dimension
attributes. In the sequel, we shall use the notation D:A
to denote a dimension attribute. The difference between
a dimension attribute and an ordinary attribute is that the
dimension attribute is prefixed with a dimension name. In
order to simplify the presentation, we assume there exists a
dummy “dimension name” and each ordinary attribute A is
viewed as a dummy dimension attribute. Hence, when we
refer to dimension attributes, it may refer to a dimension
name and attribute name pair or an attribute name (prefixed
by the dummy dimension name).

A grouping relation on a grouping scheme G is simply
a relation on G by ignoring the dimension names. That
is, a (grouping) tuple on G is an “ordinary” tuple such thatt[D:A] 2 dom(A) for each D:A in G, and a grouping relation
is a set of grouping tuples. The symbol g, possibly with a
subscript, is used to denote a grouping relation.

Note that a grouping relation is basically a traditional
relation with dimension attributes, although dimension
attributes carry useful information. Hence, all the traditional
relational operations are applicable, except for the rename
and cross product operations (explained later). The relational
operations simply take the dimension attribute D:A as an
ordinary attribute with a complex name.

Let C = (r1; : : : ; rn; �) be a cube on the schemeh(D1; R1); : : : ; (Dn; Rn)i. Then each ri gives a grouping
relation gi that consists of all the tuples in ri. The only
difference is that the (dimension) attributes of gi are the
attributes of ri prefixed with the dimension name Di. It will
become clear when we define the semantics of a grouping

relation below, that the information carried by the dimension
name is important. First, we have:

Definition Let S = f(D1; R1); : : : ; (Dn; Rn)g be a cube
scheme and G a grouping relation scheme. Then G is said to
be applicable toS if for each non-dummy dimension attributeD:A 2 G, A 2 Ri and Di = D for some i.
Thus, if a grouping relation scheme G is applicable to a cube
scheme, then for each non-dummy dimension attribute D:A
appearing in G, D must be a dimension name in the cube
scheme, and A must be in the relation scheme for dimensionD. Intuitively, a tuple (with dummy dimension attributes
taken out) on G can be extended to be a set of coordinates of
a cube on S.

Let g be a grouping relation on G and C a cube on S,
where G is applicable to S. Then each tuple t of g gives a
group of coordinates from C that are “extensions” of t. For
example, each tuple t in gd (gd is the basic grouping relation
copied from rd in the cube SALES) gives all the coordinates
of SALES whose Date dimension is t. These coordinates
correspond to the sales data reported by all the stores for
all the products on day t. This observation is the basis of
the following definition. However, we carry this observation
one step further: We combine the SQL “group by” into our
grouping mechanism.

Definition Let G be a grouping scheme, X a subset of G
and S = h(D1; R1); : : : ; (Dn; Rn)i a cube scheme such thatG is applicable to S. Let g be a grouping relation on G andC = (r1; : : : ; rn; �) a cube on S. Then each tuple t in �X (g)
gives the following set of coordinates, denoted by ΓC;gX (t):f(t1; : : : ; tn) j ti 2 ri for each 1 � i � n and

there exists t0 in �X=t(r) such thatt0[R \Ri] = ti[R\Ri] for each 1 � i � ng:
In the above definition, the set X first partitions the

relation r into subrelations such that two tuples belong to
one subrelation iff they have the same X values. This is
the same as the “group by” clause in SQL. Each subrelation
then gives a group of coordinates which is a union of the
coordinates obtained by each tuple (as explained earlier) in
the subrelation.gr =

Region Store.loc
East NewYork
East Washington
West LosAngeles

For t = hEasti, ΓSALES;grRegion (t)
gives the coordinates in Sales
corresponding to the tuples 1, 2,
4 and 5 in Figure 1 since these
coordinates have the Store.loc
value NewYork or Washington.

Figure 2: Grouping using regions on SALES.

The “group by” extension here is rather useful. A grouping
relation gr on the scheme G = fRegion; Store:locg may
be intuitively used to group stores into regions. Clearly,

ΓSALES;grRegion (t), where t is a tuple of scheme hRegioni (i.e.,

83

representing a region), yields all the data reported by all
the stores in region t. (Figure 2 shows an example of gr
and a corresponding grouping on the cube SALES.) This
expressiveness is from the combination of the “group by”
and the grouping relations. Note that the above grouping
mechanism includes a “group by” component and is different
from the “group by”. The grouping mechanism here uses two
levels of grouping: The first is from the relation itself (similar
to the SQL “group by”), and the second from the cube.

4 Grouping algebra
Relational operations provide a powerful grouping mecha-
nism to derive grouping relations from basic ones. However,
these operations are still limited for many purposes in OLAP
applications. In this section, we extend the relational al-
gebra to include order-oriented operations, and aggregation
operations.

Relational operations
As mentioned earlier, each traditional relational operation,
except for the rename operation, can be applied to grouping
relations. Due to the special semantics of grouping relations,
we revise the rename operation as follows:

Operation (rename) Let D:A be a dimension attribute (D
could be dummy) and B an attribute name. Let g be a
grouping relation on scheme G such that D:A 2 G andB 62 G. Then renD:A;B(g) is the operation that changes
the attribute D:A in g to B. 2

By definition, a rename operation can change a regular
attribute to a regular one or change a dimension attribute
to a regular one. This restriction is due to our intention
that grouping relations represent groups formed from the
basic groups given by cubes. This is what we call the
“property of non-empty reference”. As an example, consider
the relation g = f(1; 1995; Fairfax); (2; 1996; Fairfax)g
on the scheme fGroup; Year; Store:locg. Suppose we
rename year (a regular attribute) to Date:y (denoting the
renamed grouping relation as g0), and suppose that the
Date dimension of cube SALES does not contain any
tuple with year 1995. Then the sum of the data for the

coordinates in ΓSALES;g0Group (1) would return zero, and the sum

of ΓSALES;g0Group (2) would be the total sales amount of the

Fairfax store in year 1996. This will cause confusion since
the result zero could be interpreted as (i) “there is no sales
data by the store in 1995” or (ii) “the sales in 1995 is zero”.

A similar restriction applies to the cross product operation.
In order to maintain the non-empty reference property, the
two operands of the cross product must not contain the same
non-dummy dimension name.

Order-oriented operations
In order to express groupings that are order related, we first
introduce the concept of a “tuple order” on relations. By
using the tuple order, we define the ordered roll operations
on groupings. We assume there exists a total order on the

domain of each attribute name. And we use the notation~X , where X is a set of (dimension) attributes, to denote a
permutation of the attributes in X.

Definition Let X be a set of dimension attributes and ~X =D1:A1; : : : ; Dk:Ak a permutation of X. Then O = (~X; �),
where � is a symbol in the set fdesc; ascg, is called a tuple
order on X and gives a total order �O on the tuples on
scheme X as follows: For tuples t1 and t2 on X, t1 �O t2

iff either t1 = t2, or there exists a 1 � j < k such that
(1) t1[D1:A1; : : : ; Dj:Aj] = t2[D1:A1; : : : ; Dj:Aj] and (2) if� = desc, then t1[Dj+1:Aj+1] > t2[Dj+1:Aj+1], and if� = asc, then t1[Dj+1:Aj+1] < t2[Dj+1:Aj+1].
That is, the tuples on X are ordered lexicographically,
descendingly (desc) or ascendingly (asc), by looking at the
attributes in the order given by the permutation ~X . For
example, if ~X = A;B and � = asc, then the tuple (1; 2) is
before the tuple (1; 3). It is clear that each tuple order is a
total order. And hence, for each relation on X, it is easily
seen that a tuple order on X induces a sequence of all the
tuples in the relation as follows:

Definition Let O = (~X; �) be a total order on X and g a
grouping relation on scheme X. We use O[g] to denote the
sequence t1; : : : ; tn, where ti �O tj for all i < j and t1, : : : ,tn are all the tuples in g.

The sequence O[g] is simply a “sorted” relation by using the
attribute order specified in O. Clearly, this is similar to the
“Ordered by” clause in SQL.

We now define the operations that generate interval
groupings. In order to do so, we need the following notation
regarding attribute name conversions. For each attribute
name A (not a dimension attribute), we always assume thatT-A, where T is an arbitrary symbol, is a new attribute name
that have the same domain as A. Also, for a given setX = fD1:A1; : : : ; Dk:Akg of dimension attributes, let T-X
be the set of “regular” attributes fT-A1; : : : ; T-Akg. We are
now ready to define our roll operation:

Operation(roll) Let b (begin), s (step) and l (length) be
positive integers (s can be 0), g a grouping relation on schemeG, X a subset of G such that no (regular) attribute name
appearing more than once in X and O a tuple order onX. Assume O[�X(g)] = t1; : : : ; tn. Let m � 0 and letim = b + s �m and jm = im + l. If im � jm � n, then
for each im � k � jm, let tmk be the tuple on the schemestart-X [end-X [X such that tmk[start-X] = tim ,tmk[end-X] = tjm and tmk[X] = tk. Let g0 be the relation
consisting of all tmk defined above. Finally let �b;s;lO (g),
called a roll of g, be the grouping relation g ./ g0. 2

Thus, a roll operation first sorts the tuples in �X (g)
by the given tuple order. Then it generates groups by
taking intervals from the sequence (the result of the sorting).
Specifically, tuples from the positions between b and b + l
are grouped together, tuples from the positions between

84

A1 A2 A3a 4 ca 4 hb 2 bc 1 d A1abc start-A1 end-A1 A1 A2 A3a b a 4 ca b a 4 ha b b 2 bb c b 2 bb c c 1 d
(i) relation g (ii) O[g] with tuple order O = (A1; asc) (iii) �1;1;2O (g)

Figure 3: Example of tuple order order and roll operation[b + s; b + s + l] are grouped together, and so on. (Here,b is the beginning position of the first interval, and s is the
step length, i.e., the distance between the beginning of each
two neighbor intervals, and l is the length of each interval.)
Finally, each interval group generates a resulting group by
joining to the original relation. Figure 3 shows an example
of tuple order and roll operation.

As another example, assume g is a grouping relation on
the scheme fy; m; dg. Then �1;3;3(y;asc)(g) creates a grouping
relation that collects every three years (non-overlapping) into
a group; �1;3;3(y;m;asc)(g) creates a grouping that collects every
three months (i.e., a quarter) into a group.

The roll operation is extended to the form �b;s;�O (g) which
is the union of �b;s;lO (g) for all l � jgj. (The symbol jgj
denotes the number of tuples in g). The most often used roll
operations in OLAP applications include the following:� Overlapped moving of length k: �1;1;kO ;� Non-overlapped moving of length k: �1;k;kO ;� Forward cumulation: �1;0;�O ; and� All intervals: �1;1;�O .
Backward cumulation can be achieved simply by reversing
the tuple order O in a forward cumulation, i.e., change asc
in O to desc or vise versa.

The roll operation is very powerful and can be used to
derive other interesting operations. The roll operation with
a projection operation �R(�b;0;eO (g)) selects the b-th to e-th
items in g along the order given by O. Other complex order-
related selection is also possible by using the roll operation.
For instance, selecting every other tuple from a sequence
obtained by a tuple order: �R�1;2;1O (g).
Aggregation operation

The final operation in our extension is the aggregation
operation. We define an aggregation function as a mapping
from the multi-subsets of V to V. For example, sum, avg,
min and count are the often used ones.

Operation(aggregation) Let g be a grouping relation on
scheme G and C a cube on scheme S, such that G is
applicable to S. Let f be an aggregation function, andA an attribute name not appearing in G. Then fXC;A(g),
called an aggregation operation, is the grouping relationg0 on X [fAg such that �X(g0) = �X(g) and for eacht 2 g0, t[A] is the result of applying f to the multiset

ff�(t1; : : : ; tn) j (t1; : : : ; tn) 2 ΓC;gX (t[X])gg: 2
Intuitively, the aggregation operation fXC;A(g) uses X

and g to group the coordinates in C, and then apply the
aggregation function f on the data from each group. The
result is a grouping relation on X [fAg, where A holds
the aggregation values for each group. To illustrate, let g be
the grouping relation on Date:y. Then each tuple (y; tol)
in sumDate:ySALES;total(g) describes the national total sales
amount tol of year y.

5 MDDB and MDDB queries

In this section, we present the notion of a multidimensional
database (MDDB) and its query language.

A multidimensional database is a finite set of multidi-
mensional cubes and a finite set of grouping relations. The
cubes register basic values (such as sales amounts) with ba-
sic groupings (provided by the dimension relations), and the
grouping relations give certain “built-in groupings”. In ad-
dition, the cubes in an MDDB “share” dimension relations.
That is, if two cubes have the same dimension name, the
dimension relation on the dimension must be the same. This
assumption not only saves storage, but also models realistic
situations. Indeed, there may be many different data collected
(as cubes), where “products” is one dimension in different
cubes. The values for the “products” dimension for all these
cubes should be the same.

The other restriction is that if g is a built-in grouping
relation, then the values in g under a (non-dummy)dimension
attribute must appear in the corresponding dimension. This
requirement is to ensure the property of non-empty reference
(see Section 4). As an example, suppose g is a built-in
grouping relation on attributes fRegion; Store:locg. Then
each value under Store:loc in g must appear in the relationrs, i.e., the relation for the store dimension. The non-empty
reference property is to ensure unambiguous semantics of
grouping relations. Indeed, if this property is not satisfied
and the summation on a group returns a zero value, then it
could be either that the summation does have a value zero, or
that the dimension attribute values in the grouping relation
do not appear in the cube. In order to distinguish the two
cases, run-time checking would be necessary. In this paper,
we advocate static checking. That is, if the MDDB itself has
the non-empty reference property, then through a syntactical

85

restriction on query expressions, we can ensure that the result
of the query has the non-empty reference property.

Grouping algebra expressions and their corresponding
semantics on MDDB can now be defined by using the
operations introduced so far. Due to space limitation, we
omit the details here but give some query examples below.

Example 3 We now use four query examples to illustrate the
grouping algebra. Suppose we have an MDDB on the scheme(D;C;G) with D = fDate; Prod; Storeg, C = fSALESg
and G = fRegiong. The schemes of the dimensionsDate; Prod; Store, as well as the scheme of the cube SALES,
are as in Example 2. The grouping relation for the built-in
grouping relation Region is on scheme freg; Store:locg
Q.1 Find out the the names of the last year’s (1994) top 5
selling product (including all manufacturers)T5+ = �Prod:p(�1;0;5total;desc(sumProd:pSALES;total(�Date:y=1994(Prod ./ Date))))
Note that the result may contain more than five products since
there may be more than one product having the same total
sales amount. If we used �1;0;5total;Prod:p;desc in the above

expression instead of �1;0;5total;desc, we will get at most five

products.

Q.2 For each member store, find out the year-to-date total
sales amounts for each day this year (i.e., the daily cumulative
sales amounts over 1995)
sumend-m;end-d;Store:locSALES;total (�1;0;�hDate:m;date:di;asc(�Date:y=1995(Date ./ Store)))

In this expression, for each day (i.e., day end-d in monthend-m) and each store (i.e., located at Stroe:loc) a
summation is performed and the result is in total.

Q.3 Find the year-to-date total sales amounts, in each
region, of each product whose last year’s nation-wide total
sales amount was ranked among top five.T5+ ./ sumreg;Prod:pSALES;total(Region ./ Prod):
Q.4 For all those products that are in the set of products
manufactured by m1 and m2, find the total sales amounts of
this year (1995).

sum
Prod:pSALES;total(�Prod:p(�Prod:m=m1_Prod:m=m2

(Prod)))
The result relation of this expression is a set of pairsf(p; tot)g, with each tuple p being a product that is on the list
of products manufactured by m1 and/or m2 and tot is the to-
tal sales of p in the chain store, which may include those that
are not manufactured by m1 and m2. (For example, supposem1 and m2 both produce telephone sets. Then the above
query will retrieve total sales of telephone sets, regardless
the manufacturer.) 2
6 Multidimensional cube algebra
As mentioned in the introduction, in a data warehouse
environment, multidimensional cubes in an MDDB are

materialized views expressed in a query language, which
retrieve data from distributed local databases. In this section,
we present a multidimensional cube algebra that can be used
as such a query language.

The cube algebra consists of six operations that are
mappings from cubes to cubes, as well as from relations to
cubes. The purpose is to construct data from local databases
into suitable multidimensional cubes. The first operation
is the “add dimension” operation that adds an additional
dimension to a cube. Due to space limitation, we only give
an informal description of the cube algebra operations.

Operation(add dimension) The add dimension operation�D(C) generates a new cubeC 0 from the input cube C. CubeC 0 has a new dimension named D whose relation scheme is
the empty set, and the relation for the dimension has only one
tuple, namely the empty tuple []. The value for the coordinate(t1; : : : ; tn; []), with the last dimension being D, in C 0 is the
value for the coordinate (t1; : : : ; tn) in C. 2

One use of this operation is to make the input cube
to have the same dimensions as another one to make the
union (an operation on cubes defined later) of the two cubes
possible. Note that the new dimension appearing as the
last dimension is for notational convenience. Indeed, as
mentioned earlier, the order of the dimensions does not matter
in a multidimensional cube. This comment applies to the
definitions of the other operations in this section.

The second operation is the transfer operation that
rearranges the dimensions of a cube.

Operation(transfer) The transfer operation �D2;BD1;A (C) gen-
erates a new cube by transferring attribute A of dimensionD1 to be a (new) attribute B on dimension D2. More specifi-
cally, the transfer operation projects out the values under an
attribute (A) from the first dimension, and put these values
into the second dimension (via a Cartesian product). The
new value mapping changes accordingly as follows: Given
tuples t01 and t02 from the first and second dimensions of the
new cube, the the value mapping tries to see if these two
tuples are formed from t1 and t2 (tuples from the first and the
second dimensions of the original cube) such that t01 and t02
can be obtained by “transferring”A value in t1 into a B value
in t2 (while the other attribute values do not change). If this is
the case, then the new value mapping uses the value from the
original value mapping. Otherwise, the new value mapping
has to use the null value. Figure 4 shows a particular transfer
operation. 2

To illustrate the usage of the transfer operation, consider
a multidimensional cube C consisting of a Date dimension,

with attributes y; m; d. Let C 0 = �Year;yDate;y (�Year(C)).
Then cube C 0 “extracts” out the year information into a
new dimension. This may be necessary in order for C
to be combined with another cube into a cube view. As
a further example, suppose that C has another dimension
called Store. We may transfer the year attribute into store
dimension. The result may be more intuitive to a user who

86

D:(A1; A2)(b; 3) 5:5 6:6(a; 3) 3:3 4:4(a; 2) 1:1 2:2(1) (2)D0:(A3) �D0;A1D;A1== D:(A2)(3) 3.3 5.5 4.4 6.6(2) 1.1 null 2.2 null(1; a) (1; b) (2; a) (2; b)D0:(A3; A1)
Figure 4: Example of transfer operations.

wants to view the behavior of store together with the year.

The third operation combines two cubes into one.

Operation(union) The union of cubes C1 and C2 along the
dimension D1 is denoted by C1]D1

C2. The cubes C1 and C2

must have the same schemes and must not share any tuple
on dimension D1. The union operation simply unions all
the coordinates of the two given cubes together, and each
coordinate get its original value. In the process, there may
be new coordinates generated. The null value is used on
these new coordinates. Note that union of two cubes require
that at least one dimension are disjoint (i.e., D1 in the above
definition). This guarantees that each coordinate in the new
cube have at most one origin, either from the first cube or the
second, avoiding any ambiguity. 2

The fourth operation is the cube aggregation.

Operation(cube aggregation) For a given aggregate func-

tion f , the cube aggregation fR0i1
;:::;R0imDi1 ;:::;Dim (C) gives a cube C 0

on the scheme h(Di1 ; R0i1
); : : : ; (Dim ; R0im)i. Cube C 0 is ob-

tained by “compressing” the cube into a smaller one. Each
coordinate (t0i1

; : : : ; t0im) in C 0 corresponds to all the coor-
dinates in the original cube that match the partial tuples t0i1

,: : : , t0im . The data at the coordinate (t0i1
; : : : ; t0im) in the

compressed cube is the aggregation value (via f) of the data
in the original cube at the coordinates that are extensions of(t0i1

; : : : ; t0im). Figure 5 shows an example. 2
D0(2) 2:2 4:4 6.6(1) 1:1 3:3 5.5(a; 2) (a; 3) (b; 3)

D: (A1;A2) ==> 11 12:1(a) (b) D: (A1)
Figure 5: Cube aggregation sumA1D .

Note that cube aggregation operations, together with other
operations, can be used to “project out” attributes from a
dimension relation in a cube. (Note that a direct projection
on a dimension relation may cause semantic ambiguity,
since each coordinate after the projection may correspond
to more than one coordinate in the original cube.) Indeed,
let C be a cube on h(D1; R1 [fAg); (D2; R2)i, and C 0 =sumR1;R2D1;D2

(�D0;BD1;A (�D0(C))). (That is, C 0 is obtained first by

adding a temporary dimension D0 and the transferring A to
this temporal dimension. Then D0 is compressed out via
sum.) It is clear that the difference between C and C 0 is the
the attribute A is dropped from C, and all the data at the

coordinates that have the same A value (in dimension D1) are
summed together.

The next two operations deal with the interaction between
(regular) relations and cubes. We believe these operations are
important especially if in the data warehouse environment,
some local databases are relational. The first such operation is
a join operation that joinsa (regular) relation into a dimension
relation.

Operation(rc-join) An rc-join r.̂/D1
C joins the relation r

into dimension D1 of cube C. The result is a new cube with
dimension D1 having the join result of r of the dimensionD1 relation of C. The cell data on (t1; : : : ; tn) for the new
cube (assuming D1 is the first dimension) is the cell data on(t01; : : : ; tn)with t01 being the projection of t1 on the attributes
of D1 in C. 2

Finally, we can construct a cube from a relation:

Operation(construct) The construct operation �AD (r) gen-
erates a cube from relation r such that the new cube is one
dimensional (with the only dimension D) whose dimension
relation is r and the cell value for the coordinate (t) is t[A],
where A is an attribute of r. 2

The following example shows two cube views using the
multidimensional cube algebra.

Example 4 Consider in our store chain example. Suppose
each store reports a cube Ci = (rd; rp; amount i) to the
headquarters. These cubes and some other localized rela-
tions like region relation rg on the scheme freg; locg, etc.,
are used to construct cubes in the chain store headquarters
data warehouse. Two of the cubes are given below as cube
algebra expressions:SALES = (�Store(C1).̂/Storefhloc1ig)]Store : : :]Store(�Store(Cm).̂/Storefhlocmig);
wherem is the number of member stores, loci is the location
of the ith store and hlocii is a unary “constant” tuple; andR SALES = ˆsumRp;freggProd;Region(SALES.̂/Storerg)
The cube SALES is the view of daily sales per product of each
store, while R SALES is the up-to-date sales of each product
in each region. 2
7 Related research

In database research, systems similar to OLAP systems
have been studied in the domain of statistical and scientific
databases (SSDB) [Mic91]. Sharing many features with
OLAP systems, SSDB systems typically contain a large

87

amount of data, and are designed for helping apply statistical
data analysis to the stored data. Tremendous progress has
been made in this area. Special data models have been
proposed and query languages introduced [Su83, OOM85,
RR93]. Optimization techniques, in particular efficient
physical storage management [SW94, NR94, SS93] and
pre-aggregation [CM89], have been investigated. Many of
these results, especially the optimization techniques, can be
directly used in OLAP systems. In this paper, we focused
on providing a data model and algebraic query languages
directly related to OLAP applications.

There are other researches related to OLAP applications.
The paper [GBLP96] introduced a new grouping operation
CUBE for the SQL group-by clause. (Note that CUBE is the
name of an operation while we use to term “cube” to refer to a
data “unit” like a “relation”.) The basic idea is that for a given
relation containing the attributes A1, : : : , Ak, the group-by-
cube will group data (in the standard SQL group-by sense)
using all possible proper subsets of these k attributes (totally
2k�1 in all including the empty set excluding the whole set).
The CUBE clause is aimed at the OLAP queries which require
simultaneous aggregation over different combinations. It
is easily seen that the model presented in this paper can
also be extended with such a group-by-cube clause. There
are other extensions made to SQL to accommodate OLAP.
For example, Red Brick’s RI-SQL [Red95] includes certain
order related aggregation functions such MovingAvg(n)
and Cume (cumulative total). In contrast, this paper tried to
introduce a general framework to express these functions.

Recently, [AGS96] introduced a data model for multidi-
mensional databases. Basically, [AGS96] uses a similar no-
tion of cubes and gives a number of operations on cubes. The
operations are similar to the six cube operations introduced
here but with somewhat different capabilities. However,
[AGS96] does not consider the grouping queries. Another
difference is that the data model of [AGS96] only has cubes
and does not include “regular” relations which we consider
important in this paper.

Optimizing OLAP queries is another important research
area that is beyond the scope of this paper, where pre-
computation is a promising idea. Certain cube aggregations
can be pre-computed to expedite query processing. However,
due to storage limitation, the system needs to select a subset
of these aggregations. The paper [HRU96] provided an
algorithm that efficiently selects such a subset under system
restrictions.

8 Conclusion

This paper formalized an MDDB data model and introduced
a grouping algebra as its query language. The query
language is flexible in expressing many intuitive OLAP
queries, including order-related queries. We then presented
a cube algebra which we used to define cube views
in a data warehouse environment. The purpose was
to provide algebraic query languages to support OLAP

applications. There are many issues worth further studying.
For example, the model with its languages should be
studied for its expressiveness, and properties of the
introduced operations should be investigated. Furthermore,
optimization techniques for the queries in the algebras need
to be considered. Finally, the extension of the model may be
considered. For example, one may extend the cubes to have
cell values being a tuple or even a relation.

References
[AGS96] R. Agrawal, A. Gupta, and S. Sarawagi. “A framework

for research in multidimensional databases.” Personal
communication. 1996.

[Ban95] S. K. Bansal. Real world requirements for decision
support - implications for RDBMS. SIGMOD, 1995.

[CCS93] E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision
support. Computerworld, 27, 26 July 1993.

[CM89] M. C. Chen and L. P. McNamee. On the data model
and access method of summary data management. IEEE
TKDE, 1(4), 1989.

[Dre93] H. Dresner. Multidimensionality: Ready or not, here
it comes, 1993. Office Infor. Syst. Research Notes. The
Gartner Group. File: Technology, T-MD-1137.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-total. Proc. of the 12th
International Conference on Data Engineering, 1996.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman.
Implementing data cubes efficiently. SIGMOD, 1996.

[Mic91] Z. Michalewicz, editor. Statistical And Scientific
Databases. Elli Horwood, 1991.

[NR94] W. Ng and C. Ravishankar. A physical storage model
for efficient statistical query processing. Statistical and
Scientific Database Management, 1994.

[OOM85] G. Ozsoyoglu,Z. M. Ozoyoglu, and F. Mata. A language
and a physical organization technique for summary
tables. PODS, 1985.

[Red95] Red Brick Systems White Paper. Decision-Makers,
Business Data and RI-SQL. RedBrick Systems, Los
Gatos, CA, 1995.

[RR93] M. Rafanelli and F. L. Ricci. Mefisto: A function model
for statistical entities. IEEE TKDE, 5(4), 1993.

[SS93] S. Sarawagi and M. Stonebraker. Efficient organization
of large multidimensional arrays. Technical Report S2K-
93-32, U.C. Berkeley, 1993.

[Su83] S. Y. W. Su. Sam�: A semantics association model for
corporate and scientific/statistical databases. Information
Science, 29, 1983.

[SW94] K. Seamons and M. Winslett. Physical scheme for large
multidimensional arrays in scientific computing applica-
tions. Statistical and Scientific Database Management,
pages 218–227, 1994.

88

