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Abstract

We present a coherent modeling and reasoning methodology
to extend object-oriented databaaee towards taxonomic and

uncertain integrity constraints. Our so-called TOP database
model enriches current ISA-hierarchies by more general t-
claeses to improve conceptual modeling. The t-classes them-
selves are then integrated with probabilistic constraints to
express uncertainty. We give art efficient algorithm for check-
ing the modeling-consistency of a probabilistic knowledge-
baae. As a typical application domain for TOP, we exemplify
how various aspects of a portfolio management system can
be modeled. We also demonstrate that recent probabilistic

inference methods, relying on a careful interaction between
taxonomic and uncertain knowledge, can be applied in this
context.

1 Introduction

The evolution of database technology from the relational
model into object-oriented databases (OODBS) and deduc-
tive databases has been pushed forward to a state where
stable and usable systems are becoming widely available;
also an integration of both paradigms into so-called DOOD-
systems is taking place. Such systems can deal with var-
ious kinds of objects and query mechanisms, however, ex-
cept for attempts to deal with null-values, only the specifi-
cation and processing of certain (true/false) information is
supported so far. But uncertainty pervades the real world

and it seems mandatory for future advanced data models
to capture it explicitly and appropriately. Being a topic of

interest in AI for quite some period of time, it is picked

up by database researchers recently. There is e.g. work in
the relational context by Barbar& et al. [BGMP92] and for
deductive databases by Ng and Subramanian [NS92], Laksh-

manan and Sadri [LS94]. Our own previous work comprises
a major project with the so-called DUCK-system for reason-
ing under a conditional probability model (see e.g. [GKT91],
[TKG95]).

Before extending current 00DBs towards uncertainty,
the following aspects must be considered: Since uncertain
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knowledge comes in a variety of flavors in the real world,
which of its facets should we provide? (See [Pea88], [Som90]

for a discussion.) Like other database researchers we decided
on the probabilistic model of uncertainty, which canoni-
cally extends the taxonomic interpretation of subtyping in

OODBS as e.g. proposed by the ODMG-93 standard [Cat94].
The ODMG-93 standard optionally supports ISA-hierarchies,
i.e. subtyping can be combined with art extensional inter-
pretation of class-hierarchies yielding a set-inclusion order
on the sets of objects assigned to all classes. This allows
limited forms of classification by subclass-relationships, but
not reaching the expressiveness of taxonomic classification

found in terminological systems (see e.g. [Bra91]). On the
other hand it is naturaf to understand taxonomic integrity
constraints as special case of probabilistic knowledge. Con-
sider the sentences “all dogs are domestic animals” and “at
least 70% of all domestic animals are dogs” as examples of
taxonomic and probabilistic knowledge, respectively.

Guided by these considerations, we propose an extension
of 00DBs towards the so-called TOP database model

TOP = Taxonomy + Object-Orientation + Probability

The TOP-model shall provide a coherent knowledge rep-
resentation schema which is compatible with the taonomic
view of OODB technology. Preliminary ideaa of the TOP-

model have been presented in [KLKG94]. In this paper we
elaborate in more detail the integration of TOP-modelirtg

aspects with recent theoretical results from the field of prob-
abilistic deduction ([Luk95]).

The rest of this paper is organized as follows: Section 2

and 3 are concerned with the modeling aspects of TOP, in-
troducing the notion of t-classes for formulating taxonomic
and uncertain integrity constraints. Section 4 is dealing with

a portfolio management application of the TOP database
model. Section 5 applies recent results from the complex
area of probabilistic deduction, highlighting the interplay
with taxonomic deduction. Section 6 compares our results
to related work and finally Sec. 7 gives a summary and an
outlook on ongoing work.

2 Taxonomic integrity constraints

Tazonomic knowledge and reasoning is a widely explored
field. One of its uses is in terrninological reasoning to art-
swer typical questions like “is a class of objects subset of or
equal to some other classes of objects”. KSA-hierarchies in
00DBs express similar constraints on the extenta of classes.
However, except for the acyclic ISA-graphs supported, more
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general features to express taxonomic integrity constraints

are missing so far.

2.1 Syntax and semantics of taxonomic constraints

We start out with the definition of an expressive language
for taxonomic classes, cafled t-classes.

Definition 2.1

a)

b)

c)

We consider an alphabet A := {O, O, Bl,..., B4} of
constants. 0 is called empty t-class term, 0 is called

unwer9al t-class term. 23 :={ B,,..., Bk } denotes the
set of baste t-class terms.

The set C of all conjunctive t-class tewns is the minimal
setwith .4~Cand C, DGC* (CD) CC.

The set L7of all general t-class terms is the minimaf set

with A ~Gand C,D G G* (CD), (C U12), (F) C G.

o

For convenience we apply the usual preference rules to
omit unnecessary parentheses.

Definition 2.2 Let D be the (not necessarily finite) set of
admissible objects of an 00DB schema S. An interpretation

Y := (0, J) of the set of generaf t-class terms ~ consists of:

4

b)

A finite set of objects 0 ~ D of an 00DB over S.

A mapping J : B * 2°.

A bssic t-class term Bi is interpreted as a class ex-
tension .J(B, ) = {01, . . ., Ot} for objects oi c O and
l~o!
J is extended to G by J(O) := 0, J(0) :=0, J(CD) :=

J(C) n J(D), J(CU D) := .7(C) u J(D) and J(E):=
O\ J(C).

In the sequel, we identify 0 with D, o with 0 and B,

with J(Bi). o

Classification among conjunctive t-classes can now be
achieved by formulating taxonom~c constraints in the fol-

lowing language.

Definition 2.3 Let Dly.., ,D~, D, C c C.

a) C ~ D is called a subclass constraint,

b) C = D is called an equality constraint,

c) D1 II . . . II D- is called a d~sjotntraess constraint,

d) Dill... llD~ = D is called a partition constraint.

The set of aIl taxonomic constraints is denoted TC. O

Definition 2.4 An interpretation ~ = (O, J) of G is ex-
tended to an interpretation of TC into {he, ~alse} M fol-
lows:

a) J 1= C q D, if J(C) G J(D),

b)J~C=D,itT~~C~Dand~ +D~C,

c).7#Dl l\. ..ll D~, iff
$& D, DJ=Ofor aUi, jE[l:m] with i<~,

d) J’+Dl[l . ..ll D~=D. iff

$~Dl([...[lD~ad3~DlUD~.UD~ =D. O

The notions of models, satisfiability and loglcal conse-
quence are defined as usual.

Definition 2.5

a) A tazonomic knowledge-base consists of a set of taxo-
nomic constraints.

b) Let V be an infinite set of variables, let F E ‘TC and

A, BE CUV.

The expressions ?F, ?A ~ B and ?A B = 0 are cafled
tazonomzc quertes. c1

Since the interpretation (0, {( B,, 0) I i E [1 : k]}) is al-
ways a model, every taxonomic knowledgebase is satisfiable.

But in the context of 00DB modeLing it is desirable to as-
sure that the extension of every basic t-class can be diiferent
from 0 and 0.

Definition 2.6 A taxonomic knowledge-base T is called
modelmg-consistent, iff there exists a model (O, J) of T with

J(Bi) # 0 and J(B, ) # 0 for all B, E B. D

2.2 Extending 00DBs by taxonomic constraints

From the various 00 DB-features, our interest here is fo-
cused on class hierarchies under the set-inclusion seman-
tics. Other 00DB-features such as aspects of attribute and
method inheritance are not impacted by our subsequent con-
siderations. Under our interpretation the relationship B, tsa

B, for two chuwes Bi and 13~ of an 00DB schema is equiva-
lent to a subclass constraint B, ~ B, with B, and Bj as baaic
t-class terms. To make full taxonomic reasoning available as
an extension of existing 00DB technology, we propose the
following two-step procedure:

Step 1: ISA-hierarchies of a conventional 00DB schema are
translated into 7_C according to Fig. 1. The diagrams are
given in EER-notation, neglecting attributes and methods.

Step 2 {optsonal): Full TC is made available as a means to
specify additional taxonomic constraints. This has no im-

pact on the inheritance schema fixed before, it solely affects
class extensions.

Example 2.7
Step 1: Let’s consider an airline application and assume that
the persons relevant for an air carrier are passengers and em-
ployees. These groups may not be disjoint, i.e., employees can
be passengers as well. Employees are distinguished in pilots,
grourrdstaff, flight-attenda nts and the remaining personnel.
Subgroups of the ground staff are doctors and nurses. They
are not necessarily disjoint, since there might be doctors who
are nurses as well.

After designing relevant attributes and methods, assume
that the inheritance hierarchy is fixed (see Fig. 2, upper
part).

Step 2: Additionaf.fy it is required that the group of pilots
should be disjoint to zdl other groups of personnel. This is
modeled by extra taxonomic constraints (see Fig. 2, lower
part). c1

It is crucial to observe that these two disjointness con-

straints could have been implemented by changing the orig-
inal ISA-hierarchy rsdicisfly by introducing an “artificial”
superclass for ff ight=ttenda nts and grou nd~taff. Obviously
this procedure becomes very clumsy for larger numbers of
subclasses and would render the conceptual model hard to
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a) ISA:

I
Bj

Bi

~Bi~Bj

c) Disjoint partial:

~

Bj

e) Overlapping partial:

Bj

C/h
o

Bi, ‘-- Bil

- Bi~ U ...UBit~Bj

Bj ,

b) Multiple inheritance:

d) Disjoint total:

A
Bj

d

Bil ‘-- Bil

- Balll.ll Bal=Bj

f) Overlapping total:

A

Bj

o

Bil ‘-- Bil

% Bil U.. .UBil=Bj

Figure 1: Some EER-constructs translated into TC-
constraints

understand. Moreover, the int reduction of those superclasses
does not possess any advantages w,r.t. software reuse, since

by sasumption in Step 1 all cases of useful inheritance had
been fixed before. The TOP approach avoids such problems
by decoupling inheritance and extra extensional taxonomic

constraints carefully.
The conceptual modeling process, i.e., the design of the

ISA-hierarchy and the formulation of additional taxonomic
constraints, should be supported interactively by the sys-
tem, To this end we can use taxonomic deduction to check
the modeling-consistency (i.e., checking whether a class is
forced to be empty) and to allow queries about the conse
quences of postulated taxonomic constraints. For instance,
the user may wonder whether in Ex. 2.7 the groups of pi-
lots and nurses are disjoint and pose the following taxonomic

query:
?nurses pilots = 0 ,

yielding tbe answer Yes.
Another taxonomic query might be

?nurses flight~ttendants = @ ,

Step I: EER-diagrarn

[
o

1

I
A

&
o

doctors nurses

Step 2: extra tarorromic knowledge

pilots[lground=taff

pilotsl[flight=ttenda nts

Figure 2: TOP-modeling of an airline application

3 Uncertain integrity constraints

As announced, the TOP database model combines object-
orientation and ta.xonomies with probability for modeling

uncertainty. To achieve this we assume that we already
have defined a taxonomic knowledgebaae as described by
the two-step procedure before. In a third step we now add
uncertainty capabilities by a probabilistic model.

3.1 Syntax and semantics of probabilistic constraints

Probabilistic reasoning is a tremendously complex task with
many intractability results known. Therefore many research-
ers a priori restrict their attention to tractable subclasses.
In our previous work with the DUCK-approach ([GKT91],
[TKG95]), we have tackled a very large class in which we
subsequently identified important subclasses with sound,
complete and efficient inference procedures. These subclasses
are correlation programs ( [TGK95] ) and Bayesian networks
with probabilistic intervals ( [Tho94] ). In the sequel we will

focus on uncertain and correlation rules as probabilistic con-
straints in combination with taxonomic constraints.

Definition 3.1 Let A,B c C, Z1, Z2, yl, y2 E[o,l]ntQ, Z1 <
q and yl ~ VZ.

a) A ~ B is called an uncertain rule,

yielding the answer No. b) A -&% B is called a con-elation ride,
ml.U2
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We abbreviate A ~ B by A ~ B. The set of all
probabilistic constraints is denoted PC. •1

Definition 3.2 An interpretation J = (0, J, P) of PC con-
sists of an interpretation (0, J) of C7and a probability mea-
sure P : J(g) + [0, 1] for the measure space (O, J(G)).

a).Y~A ~ B, iff

P(J(A)) = O or Z1 ~ P(J(B)IJ(A)) S X2,1

b)j#A-&&B, iff
Y1,Y2

3+A~BandJ’+B~A. ❑

The notions of models, satisfiability and logicaf conse-
quence are defined in the usual way.

Definition 3.3

a) A taxonomic knowledge-base, extended by a non-empty
set of probabilistic constraints, is called a probabiiistzc

knowiedge-base.

b) Let V bean infinite set of variables. For A, B c C U V,

X1, X2 c V, the expression ?A = B is called a
probabilistic query.2 n

Probabilistic knowledge-bases express user-defined (appli-
cation-dependent ) uncertain constraints for the frame of the
“real world” to be modeled in an OODB. Note that in
Def. 3.2 we do not commit ourselves to a specific interpre-
tation of probability. The relative cardinahty is just one

possible interpretation. Its usage is illustrated by the fol-

lowing example.

Example 3.4 (Ex. 2.7 continued)
Step 3: In the EER-diagram of Fig. 2 employees and passen-
gers are notmodeled as disjoint classes, i.e., passengers may
be employees. However, fictitiously assume because of eco-
nomical reaaons that their number should be restricted to
10 per cent. By company policy the number of ground ~aff,
flight-attendants and pilots is restricted to mtimally 30, 20
and 5 per cent of the number of employees, resp., and the
number of doctors and nurses is restricted to maximally 2
and 5 per cent of the number of ground =taff. Additionally

asaume that by legaf regulations there must be at leaat 1
percent of doctors and 1 percent of nurses working in the
ground staff of an airline.

We model these restrictions by the following probabilistic
constraints:

0,0.1
passengers ~ employees,

0,0.05
employees ~ pilots,

0,0.3
employees ~ groundstaff,

0,0.2
employees ~ flightattendants,

0.01,0.02
ground staff ~ doctors,

0.01,0.05
ground~taff ~ nurses.

0

‘ P( J( B)l J(A)) is the conditional probability of J(B) under l(A).
The definition of uncertain rules incorporates the principle of “ex falso

0.7
quodlibet”, e.g. the uncertain rule flying elephants ~ helicopter is

always true, since there are no flying elephants.

2Querie. for correlation rule. are treated similarly.

3.2 Integrating taxonomic and probabilistic constraints

In Sec. 2 we have introduced taxonomic knowledge-bases as
a natural extension of ISA-hierarchies in 00DBs. Prob-
abilistic knowledgebases enable us to represent uncertain
constraints over object-oriented databases. However, we

must be careful to smoothly integrate all pieces of knowl-
edge to come up with a coherent knowledge representation
schema. This is achieved by the following observation. For

practical purpose it is sufficient and desirable to restrict the
interpretation (O, J, P) of PC as follows:

Assumption 3.5 We just consider vaterpretations (0, J, P)
o~PC with P(J(A)) = O - J(A) = 0 for all A ~ C.

This restriction naturally holds for a probabilistic interpre
tation by relative cardinalities. It entails the following corre-
spondence between taxonomic and probabilistic constraints:

Lemma 3.6 Let A,B c C.

a)A-&B-A~B

b) A& Z3= A/113

Example 3.7 (Ex. 3.4 continued) From Fig. 2 we e.g.

know that pilots ~ employees, hence pilots ~ employees

and pilots * employees hold. ❑
0,0.05

An important implication of this simple lemma is that on the
one hand taxonomic constraints can be incorporated in the

probabilistic deduction process and on the other hand that
probabilistic information can have a feedback on taxonomic
constraints.

3.3 Modeling-consistency of taxonomic and probabilistic
constraints

While taxonomic knowledge-bases are always satisfiable, this
generrdly does not hold for probabilistic knowledge-bases. A
probabilistic knowledge-base P is satisfiable, iff D = 0 is not
a logicaf consequence of P. For the context of OODBS we
introduce modeling-consistency as an even stronger notion
of satisfiability. The definition of modeling-consistent prob-
abilistic knowledge-bases naturally follows from the restric-
tion of probabilistic interpretations as introduced in Sec. 3.2
and the ~sumption that the extension of every basic class
can be different from 0 and O (modeling-consistency of tax-
onomic knowledgebaaes).

Definition 3.8 A probabilistic-knowledge-base T is called
modekng-consistent, iff there exists a model (0, J, P) of P
with O < P(J(B, )) <1 for all B, ~ B. ❑

Since in generid a probabilistic knowledge-baae may be

modeling-inconsistent, it is important to elaborate techni-

ques to check its modeling-consistency. This can be achieved
by applying linear programming techniques. It must be
checked, if a corresponding set of inequalities is solvable.
In the sequel we assume that the definition of taxonomic
constraints is extended to general t-class terms.

Definition 3.9 Let I := {Cl . . . ck I C, = Bi or C, =

~, with B, ~ B for i E [1 : k]}. For all taxonomic knowledge-
baaes T and all probabilistic knowledge-bases P with T ~ P

and P\T ~ PC we define the set of linear inequalities DT,P
over the variables {xc [ C c I, ‘T & C = 0} by:

244



a)

b)

c)
*1 *V2

B ~AEP H
U1,U2

&J,T#C=O,~C~Aulxc

~ ZCCI,T*C=O,#CgAB ‘c E DT,V ,

~C@,T#C=@,~C~AB ‘c

s ~c@,7#c=&#C~A ‘2ZC ● DT,P

•1

Theorem 3.10 Let T be a tazonom~c knowledge-base and
P be a probabilistic knowledge-base with T ~ P and P\’T ~
Pc.

a) P is modeling-consistent, iff the following set of linear

b)

c)

mequalzttes is solvable:

D~,p U {O < ~
cGI,WC=0,1=cgJ3 ‘c <1 I B G L3}

(1)

P IS modeling-consistent, iff the following sets of linear
inequalities are solvable for all B E B:

DT,P u {0 < ZC61,T&C=0,*cGB Zc } (2)

D7_,p U {~cEI,7~C=0,+CGB Zc < 1} (3)

The complexity of the modelmg-consistency testis poly.
nomial in the size of D~,P.

Proof:
a) For similar considerations refer to [ADP91], [NS92] or
[CL94].

b) “-”: the claim directly follows from a).
“+”: Letn=l{C ~IIT&C=O}l. For z6 [1:
k] let ~i,o c [0, 1]” be solutions of the k systems of linear

inequalities given by (2). For z 6 [1 : k] let zi,l G [0, 1]” be
solutions of the k systems of linear inequalities given by (3).
A solution of (1) is given by x = ~(~ie[l:kl(z,,o + Zi,l)).

c) We can prove that the systems of linear inequalities given
by (2) and (3) are solvable by maximizing and minimizing

~CEI,T&C=O,+C~B, zc for all B; 6 B subject to DT,P.

The systems of linear inequalities given by (2) and (3) are
solvable, iff the linear optimization problems have a solu-
tion with a maximum greater than O and a minimum leas
than 1, respectively. Thus the modeling-consistency of a
probabilistic knowledge-brrae can be checked by solving 2k
finear optimization problems, each in polynomial time in
the number of variables and the number of constraints (see

e.g. [PSW. ❑

The modeling-consistency test M described in the proof of
Theorem 3.10 c) is illustrated by the following example.

Example 3.11 Let d = {O, O, A, B}, 7 = {A II B = 0},
0.2,0.4 0.6,0.7

P= Tu{U~ A,O~ B}.

‘Aii! ‘~B ~ 0

zA~ + x~B = 1

We get max XAF = 0.4, min z~~ = 0.3, ma ZZB = 0.7 and

m’n %@ = 0.6. Thus P is modeling-consistent. A solution
of (1) IS given by:

(z~F, ZI~) = ;((04, 0.6)+ (0.3, 0.7)+ (0.3, 0.7)+(0.4, 0.6)) .

0

In the same way it can be proved that the probabilistic
knowledge-base of Ex. 3.4 is modeling-consistent (we get a
system of linear inequalities with 24 variables).

Note that for the special case of basic t-classes organized in
a partition hierarchy the number of variables is equal to the
number of basic t-classes in the lowest level of the hierarchy.3

3.4 Checking the taxonomic and probabilistic constraints

Once a modeling-consistent probabilistic knowledge-base is
established, we can easily check the integrity of art 00DB
instance. The integrity of an 00DB instance with respect
to a taxonomic knowledge-base can simply be checked by
testing set-inclusions at runtime. The integrity of an 00DB

instance with respect to a set of probabilistic constraints
can be checked by evaluating the probability measure for

each conjunctive t-class term which occurs in an uncertain
or correlation rule. Taking e.g. the relative cardinality of
classes as probabilistic interpretation, an 00DB instance

satisfies the uncertain rule A ~ B, iff A # 0 implies
that the proportion of the number of objects in A B to the
number of objects in A is contained in the interval [ZI, 22].

4 Portfolio management application

The TOP database model supports applications which can
be characterized by the following criteria:

1) Constraints on the composition of sets must be ex-
pressed.

2) The universe can be described by one or more hierar-
chies.

3) Constraints can be represented by uncertain rules.

4) Constraints occur between different hierarchy levels.

5) Constraints describe a range of values.

Following these criteria, a more complex application of
the TOP database model can be provided within the stock

market field for the administration of stock funds ([Kra95]).
A stock fund consists of different stocks which can be clas-
sified according to economically important criteria. This
classification determines the taxonomic hierarchy (see the
EER-diagram in Fig. 3).

‘e.g. forf3= {B,,j I i~ [1 : m], j C [1 : M,]} u{B, I t E [1 : m]}

and T={ B,,lll. ..ll B,,p, =B, l tC[l:m]} U{ B1ll. ,.ll Bm=C7}

with m ~ 1 and p, >1 for s c [1 : m] we get ~, E[l,ml p, variables.
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101

german korean raw.materials

german german german korea n korean korea n
barrking power~upply raw-materials banking powersupply raw.materials

Figure 3: TOP-modeling of a portfolio management application

The decision of the management staff of a stock fund to
invest between 30 and 35 per cent of the available capital
in banking stocks, to invest between 10 and 40 per cent
in power supply stocks and to invest between 40 and 60 per
cent in raw material stocks can be expressed by the following

probabilistic constraints:

03,035
D ~ banking,

0.1,0.4
o~ powersupply,

04,0.6
u ~ raw-material.

The composition of a stock fund influences the expected
gain and the risk of an investment. Fig. 4 shows the expected
gain p and the risk a for a stock fund of raw material stocks
with respect to different compositions by German and Ko-

rean raw material stocks. The expected gain p and the risk
a can be determined by applying standard methods from
the field of economic analysis. For the German and Korean
raw material stocks we aasume the expected gains pG = 0.07
and KK = 0.085 and the risks aG = 0.052 and a~ = 0.107.
The value z denotes the portion of investment which is made
with respect to the German raw material stocks.

Uncertain constraints on the composition of classes en-
able us to guarantee an upper bound for the risk and a lower
bound for the expected gain of a stock fund. The maximal
risk of 0.05 for German and Korean raw materiaf stocks can
be guaranteed by the following probabilistic constraints:

0.59,0.97
raw.material ~ german raw.material,

0.03,0.41
raw-material ~ korea n raw-material.

The minimal expected gain of 0.075 for German and Korean
raw material stocks can be guaranteed by:

0,0.67
raw-material ~ german raw-material,

0.33,1
raw-m ateria I ———)— korean raw-material.

P

9%

II upper bound for u

8%.

/
lower bound for H

7% -

6% 1
1

4% 6% 8% 1o% u

Figure 4: Expected gain and risk of a stock fund

5 Deduction of uncertain integrity constraints

In addition to the cruciaf problem of proving the modeling-
consistency of a probabilistic knowledge-base, it is interest-

ing to derive taxonomic and uncertain integrity constraints
from a probabilistic knowledge-base. Note that due to the
strong interconnections between taxonomic and uncertain

integrity constraints, it might be sometimes dMicult to judge
the effects that uncertain rules can have on each other.
Therefore it is helpful to support the modeling process of
a probabilistic knowledge-base for an 00DB by deduction
techniques for taxonomic and uncertain knowledge. We con-
sider an approach baaed on local inference rules which nat-
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urally supports explanation tools. In this paper we do not
explore the complex optimization problem for probabilistic

queries in full depth. We just want to highlight the advan-
tages gained by the careful interaction between taxonomic
and probabilistic knowledge.

5.1 Internal representation

In this section we present an internal representation of t-
clrmes which enables us to reduce the search space in prob-
abilistic deduction and to evaluate taxonomic relationships

in the premise of inference rules. For the special case of tax-
onomic knowledg~baaes without partition constraints this
internal representation oft-classes enables us to perform tax-
onomic reasoning in linear time in the size of the taxonomic

knowledge-base. Since there are different t-class terms with
the same interpretation due to the axioms of set theory (e.g.
AA= A, AO=O , . ..) or because of taxonomic constraints
(e.g. A ~ B = Al? = A), we want to identify t-class
terms with an identical interpretation. For this purpose we
define an equivalence relation that t&es into account all
set-theoretic laws and taxonomic integrity constraints.

Definition 5.1 Let T be a taxonomic knowledgebaae and
~ be the set of all general t-class terms.

a)

b)

c)

d)

The equivalence relation --T on G is defined by:

Gl NT Gz :+ T+ GI=G2.

For G c ~ let [G]XT be abbreviated by GT.

Let ~T := {~T I B E B}, CT := {CT I C 6 L!} and

GT := {G’T I G c G}.

The partial order Q is canonically extended to &r by:4

AT CT BT :* (AB)7 = AT.

The operations n, U and – are canonically extended
toGT ‘by:

ATBT := (AB)T,
AT UT B7 := (Au B)7,

compT(A7) := (A)T.

0

All conjunctive t-class terms are assumed to be represented
by their corresponding elements of CT. This presumes that
taxonomic and probabilistic constraints are defined on CT.

Taxonomic constraints are extended to CT by Def. 5.1, prob-
abilistic constraints can similarly be extended to (!T. The
translation of the user-defined probabilistic constraints over

C into the corresponding probabilistic constraints over CT is
done as follows:

(IR) Internal Representation:

(a) {A~B}~A~~A7BT

(b) {A&% B}+ AT$%B75
II] *Y2 Y1*Y2

4The definitions in c) and d) are independent from the represen-
tative of the squivnlence clMaes.

5AT
=,.=2 2,.=2

~ ET is equivalent to AT ~ AT ET and

u) .U2
VI .V2

BT ~ A.I-BT.

The internal representation over CT yields an enormous
search space reduction that can be illustrated by the follow-

ing example.

Example 5.2 Let the alphabet A be defined by A = {O, 0,
A, B, C, D} and let the taxonomic knowledge-bases To and
T1 be given by:

7.=0,71= {Au B~C, All B, D~A}.

The following table gives a comparison of the number of
elements in CT, the number of uncertain rules and the num-
ber of correlation rules over C7 occurring w.r.t. ‘T= To and

7=%.

IT=To T=%

number of elements in CT 17 6

number of uncertain rules over CT 82 19

number of correlation rules over CT 289 36

•1

Note that for the special case of basic t-classes organized in

a partition hierarchy, the number of elements in CT is equal
to the number of elements in the alphabet.

5.2 Probabilistic inference rules

As already pointed out, the deduction of probabilistic knowl-
edge is assumed to support the design of a set of modeling-
consistent probabilistic constraints. During this process the

user may ask the uncertain query ?A ~ B. If A = 0

holds, the uncertain rule ?A ~ B is always true. If
A~Bor Al[Bhold, theanswerzl =x2= lorz1=z2=
O, resp., can be returned by taxonomic deduction without
engaging in probabilistic deduction. Otherwise probabilistic

query evaluation has to be initiated, employing probabilistic

inference rules.

Below we state an inference rule for the chaining of correla-
tion rules. As proved in [Luk95] this inference rule is sound
and yields the tightest bounds for taxonomic knowledge-
bsses without partition constraints. Note that taxonomic
constraints (to be evaluated on the internal representation
of t-classes) appear in the premise of the inference rules.

Let A, B, C G C and T be a taxonomic knowledge-base with
T~A~Cand T~AC=O. Let fZT:=~TX~T\~T.

(CH) Chaining of correlation rules:

{AT ~ BT, BT -&& C’T, UI, VI, ZI, VI > O} *
VI ,W2 #l *Y2

AT ~z> CT with Z1 equaf to

[

~
V2 if f7T GT AT, ATBT ST CT

SE.r.
V2V2 if C7T ST AT, ATBT ~T CT

U1 if CT $ZT AT, ATBT ~T CT

m
*2

if Cr $ZT AT, ATBT iZT CT,

BTCT CT AT

max(O, U1 — ~ + ~ ) otherwise

and 22 equal to
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I
min(l, fi, l-ul + *,

=+=U2 - “, Wlvl 7

z
rl~v~+(l-y~)z~ ) otherwise

Example 5.3 With respect to the portfolio management

application we could draw the following conclusions by the
chaining of correlation rules. Since german raw.material ~

0, raw-material Q german raw-material (second case for the
lower bound) and german raw.material Q 0, german raw-ma-

terial ~ raw-material (second case for the upper bound), we
get:

0.4,0,6
{0 - raw.material,

0.59,0.67
raw-material ~ german raw-material} *

1 [CH}
0.236,0.402

0 ~ german raw-material

Since korean raw-material ~ (9, raw-material Q korean raw-ma-

terial (second case for the lower bound) and korean raw-ma-

terial ~ 0, korean raw-material ~ raw-material (second case
for the upper bound), we get:

0,4,0.6
{o - raw-material, .

0.33,041
raw-material ~ korean raw-material} *

1 (r7H)
0.132,0.246

0 ~ korean raw-material

Hence the probabilistic constraints for the portfolio manage
ment application restrict the investments into German raw
material stocks to the range of 23.6 to 40.2 per cent and the
investments into Korean raw material stocks to the range
of 13.2 to 24.6 per cent. The user can check the deduced
uncertain rules against his intentions and possibly change
the constraints.

6 Related work

We are not aware of any work dea.hng with uncertain in-
tegrity constraints az a generalization of t-onomic hierar-
chies in object-oriented databases. Some related ideas are
provided by absolute cardinality constraints considered in
the context of ER-modeling.

. Calvanese and Lenzerini [CL94] examine the interaction
between ISA-relationships and cardinality constraints. They
show that the satisfiability of a single class in an ER-model
with ISA-relationships and cardinality constraints can be
checked by solving a corresponding linear programming prob-
lem.

The combination of taxonomic and uncertain knowledge was
also examined by Ng and Subrahmanian [NS92].

● Ng and Subrahmanian present an approach to integrate
empirical probabilities in deductive databases. An empuicai

program consists of two parts, true/false knowledge about
classes of individuals (or single individuals) and empirical
clauses representing statistical knowledge about “generic”

individuals. In a compilation step this knowledge bwe is
enriched by adding logically entailed first order and empir-
icaf clauses. The consistency of an empiricaf program is
checked by integer linear programming. Queries about indi-
viduals are either answered by deduction or by induction on
the enriched knowledge base. In contrast to this approach
in which mi?eger linear programming techniques are used
to verify the consistency of a knowledge-base, we showed
that within our framework the modeling-consistency of a
probabilistic knowledge-base can be proved by genersJ lin-

ear programming. 6 Furthermore we apply more generaf and
more precise inference rules on the uncertain rule knowledge
allowing a broader range of hypothetical reasoning. Here we
do not consider queries considering individuals, but our ap-
proach can be extended to uncertain facts as well ([TKG95]).

7 Conclusion and Outlook

We have presented the TOP database model as a coherent

and evolutionary approach to extend current 00DB tech-
nology by taxonomic and uncertain modeling and reasoning
capabilities. For the complex field of uncertain deduction
we applied novel techniques and algorithms capable of ex-

ploiting taxonomic knowledge during the probabilistic de-
duction process. We expect applications such as configura-
tion tasks, multimedia, inventory control, lead qualification
or other management tasks under uncertain constraints to
be suitable for a TOP database system. In this paper we
have only examined hard probabilistic constraints, i.e., prob-
abilistic constraints which must be satisfied by each class ex-
tension. A more general scenario of how the TOP-features
support interesting application domains might be as follows.
As a generalization SOB probabdistzc constraints representing
intended or desired restrictions, i.e., restrictions that may
be violated by a class extension are essential. The port-
folio management application illustrates the usage of these
notions: regulations about the composition of growth funds
according to the economic law or sales prospectus are exam-
ples for mandatory probabilistic constraints. Additionally
the brokers may desire that the funds contain a certain per-
centage of computer industry stock which is an example of
an optionaf probabilistic constraint. The database system
should strive after the satisfaction of this type of restrictions
in the long run where the level of satisfaction is determined
by an evaluation function. Violations, however, especially
short term ones are possible. The system could even try to
satisfy the restrictions by automatically triggering update
actions.

Of course there is more research to be done, e.g. ex-
tending TOP to cover the full ODMG spectrum including
relationships. More work has also to be done with respect to
enriching the TOP database model by the capability to rep
resent uncertain knowledge about individual objects and the
attributes of objects. A project to build a TOP-prototype is
under way using available 00DBs like 02 or Versant. The
implementation of uncertain deduction can adapt our prior
experiences with the DUCK-system.

6Note that the time complexity of general linear program m!n,g is

polynomial in the number of cormtrausts and the number of vari-

ables, while integer linear programming is known to be in ~P (see

e.g. [PS82]).
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