
Evaluating Triggers Using Decision Trees

Lance Obexmeyer
Applied Research Laboratories

The University of Texas at Austin
lanceo@arlut.utexas.edu

Abstract

This paper presents an algorithm for impkmenting rule
filtering in active and trigger enabled databases. The
algorithm generates one or more decision trees that
determine what rules or triggers might be enabled by an
individual database element, reducing the number of
rules or triggers that must be evaluated. The algorithm
operates by symbolically representing tbe space of
database elements and subdividing the space based on
mle predicates. Regions of the state space represent
particular combinations of enabled rules. Decision trees
are then generated based on the subdivided state space.
The trees have the important property that no individual
test is repeated. The ordered binary decision diagram
(BDD) data structure is used to represent and
manipulate the state space.

1. Introduction

Modern database systems increasingly support active behavior
through r&s. This support range.5 from simple database triggers
to complete active database functionality. Rules typically follow
the event - condition - action (ECA) model originally proposed
in Hipac 1133. This rule model specifies the particular event or
set of events a rule will respond to, tbe condition that must be true
for the rule to proceed, and the action to execute if the condition
is satisfied.

Many current commercial relational databases restrict their trigger
subsystems to support only a single rule (trigger) per table per
event per situation. For example, Oracle version 7 allows one
trigger per table per event (insert, delete, update) per situation
(before sow, before statement, after row, after statement) for a
totai of 12 triggers per table [I’?& However, no more than one
trigger is active at any one time.

One area where active databases have an advantage over simple
trigger systems is in supporting multiple ruks per table. Active
database rarely restrict the number of rules per table. This
provides developers with the freedom to create multiple rules per
table if they wish. The cost of this added frsedom is in execution
time. Depending upon the coupling mode Cl33 of the rule, rule
evaluation happens within the critical path of either the triggering
DML command or the enclosing transaction commit. It is

Daniel P. Miranker
Department of Computer Sciences
The University of Texas at Austin
miranker@cs.utexas.edu

therefore imperative that rule processing be as efficient as
possible.

One obvious technique for speeding up rule processing is to avoid
evaIuating rules that cannot execute. This can be accomplished in
two levels by examining the triggering tuple (in a rule with nn
insert, update, or delete event). The first level is data
independent, and consists of comparing the relation name of the
updated tuple to the relation name(s) mentioned in the event
portion of the rule. If a rule is not sensitive to events on the
updated relation, then evaluation of the condition of the rule can
be skipped. An update that can be ignored based on purely
schematic information has been termed a readily gnorable
update [6].

The second level is data dependent, and consists of comparing the
triggering tuple to the constant test predicates in the rule’s
condition. For example, figure 1 shows a schema and three rufcs
in SQL3 style syntax from a hypothetical finance application. All
three rules are sensitive to the CreditCard relation, so none arc
readily ignorable. The when clause of the rules contains other
conditions that are omitted for brevity. Similarly, the actions of
the ruk are nlso omitted.

If the triggering tuple does not satisfy the constant tests of a rule,
the rule cannOt fire. Evaluation of these rules can stop with an
examination of the triggering tuple, and no other actions need be
performed. We term the process of comparing a triggering tuple
to the constant test predicates of a rule condition for the purpose
of eliminating some rules from consideration trigger filiering.
Researchers in the expert system community have long used
trigger filtering to speed up system execution. For example, the
RETE 191 and TREAT [14] match algorithms use trigger filtering
techniques to generate the elements in alpha memories (a form of
specialized predicate index).

Formally, we define a program as consisting of a set of rules,
Each rule contains a possibly empty condition consisting of a set
of predicates connected by the standard Boolean conncctivcs,
Predicates can be of two types, firrering predicates and non-
filtering predicates. We define a filtering predicate as any
predicate that can be evaluated with respect to a triggering tuplc.
Filtering predicates come in three types. The most common type
is a constant test. which compares a tuple or attribute of a tuplc to
a constant value. In the above example n. limit = 5000 1s n
constant test. The second type is an intra-tuple test, which
compares an attribute of a tuple with another attribute of the same
tuple. in the above example, n.balance > n. limit fs an

144

intra-triple test. The final type is a function call’, which combines
constant tests and intra-tuple tests behind a function. Non-
filtering predicates include join predicates and aggregation
predicates. For any rule, we term the set of filtering predicates
joined by their appropriate connectives thefirtering qm-ession for
the rule. The filtering predicates for the rules in figure 1 are
shown in figure 2.

A straightforward way of implementing trigger filtering for
multiple rules is simply to maintain a list of rules and their
respective filtering expressions. This may be wasteful because
individual predicates may be repeated, as is the case in the
example with the predicate n . type = ‘gold”.

This paper describes a technique for efficiently solving the trigger
filtering problem. The technique generates one or more decision
trees. Added, modified, or removed elements are evaluated by the
trees and the set of rules whose fiItering expression is satisfied is
identified. The decision trees have the advantage that no tests are
duplicated. Thus any database insert, update, or delete
into a monitored table induces a bounded length descent of the
tree.

Many other researchers have studied trigger implementation.
Bunemau and Clemens report on a technique for trigger filtering
based on a limited evaluation of the complete rule, not just the
filtering expression. Their technique first removes readily
ignorable. updates, then, for remaining updates, evaluates
complete trigger expressions over restricted size data sets. Join
predicates are evaluated, but relative to small size relations (51.
Cohen [S] describes a method of compiling trigger conditions into
a match network similar to RETE [9]. This work is Focuses on
evaluating the complete trigger expression, not filtering out
unsatisfiable triggers. Similarly, the large bodies of work on
production system match algorithms and database integrity
constraints primarily focus on improving join performance. The
only published work known to the authors on the trigger filtering
probIem is by Hanson and Johnson, who report on a technique for
solving the trigger filtering problem [I 11. Their methodology is
discussed in section 2.2. Blakeley, Cobum, and Larson report on
the somewhat related problem of detecting updates to base
relations that are irrelevant to materialized views [l]. Their work
is based on determining the reIationship between many elements
and one rule (view definition), whereas the trigger filtering
problem determines the relationship between one element and
many rules. In the degenerate case of one element and one rule,
the two are essentially the same.

The remainder of the paper is organized as follows. Section 2
presents three methods for solving the trigger filtering problem.
The third method is using decision trees, which is the focus of this
paper, Section 3 presents an algorithm to generate decision trees
using an algorithm based on binary decision diagrams (BDDs)
[3]. Section 4 presents an empirical evaluation of the decision

’ Many active databases, especially those adopting a C based rule
syntax, allow calling functions in the condition portion of a rule.
These functions must be side effect free, and be strict functions on
the input tuple. Example systems include VenusDB [15],
SAMOS [IO], and Reach [4].

CreditCard(narne,balance,payment,
limit, type, state) ;

create trigger Tl
after insert on CreditCard
referencing new as n
when (n.limit = 5000 and

n-state = -TX” and
n-type = “gold* and . ..)

create trigger T2
after insert on CreditCard
referencing new as n
when (n-type = "gold" and

n-balance > n-limit and . ..)

create trigger T3
after insert on CreditCard
referencing new as n
when (n.balance > n-limit and

n.paymnt z- 1000 and . ..I

Figure 1 Example Rules

tree technique. Section 5 lists three areas of future work. Section
6 provides concluding remarks.

The remainder of the paper uses relational terminology.
However, the technique presented is applicable to fikering insert,
update and remove events in object oriented databases as well.
Events that do not compare a specific object against a set of rules,
such as temporal events, will not fit well within this framework.

2. Possible Solutions

This section presents an overview of three methods to implement
a trigger filtering solution. As stated previousIy, the purpose is to
determine the individual pies that pass the trigger filtering stage
for a given database object. In the following examples, calling the
function signal with the rule name as a parameter indicates
passing filtering. The database object being evaluated is indicated
by the variable n.

The methods presented in this section are applicable to both
interpreted and compiled environments.

2.1 Ntive

The straightForward
solution is termed nai:ve,
and is a single if
statement for each
filtering expression.
Thus for n filtering

FPl : n-limit = 5000
FP2: n-state = *TX”
FP3 : n-type = “gold”
FP4: n-balance z- n-limit
FP5: n-payment > 1000

Figure 3 filtering predicates

ifIFP1 A FP2 A FP31 signal
if(FP3 A FP4) signal (T2)
if(FP4 A FP5) signal(T3)

F'igure2Naive

expressions, there are it individual if statements.
Figure 3 shows naively generated code for the rules
in figure 1. The statements have the problem that
filtering predicates FP3 and FP4 are evaluated twice.
The size of the statements and the maximum number
of tests through the statements are equal to the
summation of the fiRering predicates in each filtering
expression. The minimum number of tests is the
number of filtering expressions.

Figure 4 Decision Tree

2.2 Interval Skip List

An alternative method is proposed by Hanson and
Johnson 1113. They propose a technique relying on
intervals. For each filtering expression, an interval
over au attribute is selected. Intervals can be
bounded (0 < n.value c 1) or unbounded (n.value <
1). An equality test is treated as an interval of width
0. For each attribute in the structure, an interval list
is maintained. Each filtering expression is entered
into the interval list for its selected interval’s
attribute. Thus each expression is entered into one
and only one interval list. They recommend the
interval skip list as the imphmentation data
StruClur~

The filtering expressions satisfied by a particular database tuple
are determined by the following algorithm. For each attribute of
the element, a stabbing query logarithmic in the number of
entered expressions is executed on the attribute’s interval list with
the element’s attribute value as the key. This determines a
possibly empty set of filtering expressions that are partially
satisfied by the tuple. For each partially satisfied expression, the
remaiuing filtering predicates are evaluated relative to the tupIe in

Third, once the partially satisfied filtering expressions arc
determined by indexing into an interval list, the remaining
filtering predicates in each expression are sequentially evaluated.
Thus individual filtering predicates may be tested more than once,
For example, consider the following two filtering expressions,

n-al = true and n.aZ = true and n.a3 = true
n.aL = true and n.a2 = true and n.a4 = true

Assume the first predicate of the above two expressions is entered
into the interval list (interval width 0), and the database tuple hns

a linear Eashion.

This method has three limitations, however. First, it only works
with conjunctive f&ring expressions. Any filtering expression
that include disjunction is transformed into its equivalent
disjunctive normal form expression, and each resulting
conjunctive clause is separately managed. Since the number of
ciauses in a statement converted to DNF is in the worst case
exponential in the size of the original expression, a potentially
explosive number of intervals may need to be maintained. Also,
correct execution of a system may dictate only a single
notification message per rule for a given database tupla If the
disjunctive expression is broken up into multiple clauses, and
more than one clause is satisfied by a given tuple, then multiple
notifications may result. To correct this, either the generated
clauses must be mutually exclusive, requiring the complete set of
tests per clause, or a separate post processing mechanism must be
used to Nter out possible multiple calls.

F

Second, the method relies on every conjunctive cIause having one
attribute that is both selective and over an ordered domain.
Conjunctive clauses not possessing these two qualities are

Label State(s)

Tl
FP~AFP~AFP~A-;FP~AFv
FP~AFP~AFP~A~~A?

T-2
FP~A-IFP~~FP~AFP~~~~~
-lFPlAFP2AFP3AFP4n?FPSv
-lFPlA7FFQnFP3nFP4A-EP5

T3
~lAt%tA-3A~dAf%v
FF’IA-IFP~ATFP~~FP~A~T~~
-JFP~AFP~A~FP~AFP~AFP~v
-lFP1n7FP2AlFP3nFP4nFPs

T&T2
~~A~A~?P~A~~A-IF.P~

T2;13
~lA+%!AFf3AF%%A~SV
-EP~AFP~AFP~AFP~AFPSV
-IFP~A-;FP~A~~A-~A~~

Tl, T&T3
mf A~A~A~dA~S

Figure 5 List Representntion
insert& into a qmate list managed via a naive method. In

. *--..a ,z,&^_J-- ̂ ..,,,....:r.nr “,-a tiA.3 -- l
essence, *
having a

me92 non-moexeu lurerllg ~~A=JIVIIJ UCI uduza as
z infinite interval.

an al value 01 true. L- : _I__, “I I,.., -Inus sraoomg mro mt; IIIIG~YUL LISL wlli
retrieve both the above two expressions. Evaluating the Iwo
expressions will involve testing the n.a2 = true prcdicato
twice.

146

- _ .^~.,.-

--- -.__-
y Z<:‘.~ .

2.3 Decision Tree

This paper proposes using decision trees with the important
feamre that no test is repeated. By virtue of this property, the
maximum number of tests during a descent of the tree is
bounded by the total number of unique filtering predicates.
Additionally, a well constructed tree can have a minimum and
avemge path less than that of a naive version. The decision
tree for the rules in figure 1 are shown in figure 4. In this tree,
the maximum number of tests is five, two tests less than the
amount in figure 3. Similady, the minimum number of tests is
two (-0 A ~lT3), whereas the minimum in figure 3 is three.

Generating optimal decision trees is a known NP-complete
probiem 1121. Therefore, a heuristic method must be used to
generate the tree. This method is presented in the next section.

3. Algorithm

Assume the set of filtering expressions is E. with each element
e containing some subset of the set P of filtering predicates.
Each filtering predicate can be either true or false. With
respect to the filtering predicates, the state space can he viewed
as n-cube with IPI dimensions. Individual cells within the cube
can be labeled with the maximal set of filtering expressions
satisfied at that state. In other words, each cell contains an
element from the powerset of the set of filtering expressions.

Au alternative method of representing the above information is a
list of [state, label] pairs, where a state is a conjunction of the
variables, some possibly negated. When multiple cells have the
same label, then a particular label is defined by a set of states.
The special case of the 1abeI 0 can be ignored. This is shown in
figure 5.

3.1 List Construction

The purpose of this phase is to generate a list of labels and their
corresponding set of states. We formally define the following
terms.

. a state space S is the set of all possible database objects for a
given relation.

. a filtering expressionfe F is a Boolean valued function on s
E s.

. a label L is an element from the powerset of F. Thus L
defines a possibly empty set of filtering expressions.

. a characteristic function for a IabeI L, denoted dL)), is a
Boolean valued function on a states E S such that &L)(s) =
true e VIE Lws) = tme] [7]. Intuitively, cflL) defines a
subset of the state space S where every elements satisfies all
of the filtering expressions in L.

Procedure GenerateClassifications(in F, out C)
Initialize classification list to empty
For each filtering expression f in F

Initialize temporary varfable tto false
For each-existing classification c

If cxf implies fcf
Add f.id into c-1
Set tto tv c.cf

else if c.cf intersects f.cf
Remove cfrom classification list
Copy c into two separate classifications,

cl and c2
Add f.id into cl.1
Set cl.cf to c.cf A fcf
set &Cf f0 C.Cf A -kf

If cl.cf is satisfiable
Insert cl into C

If c2.cf is satisfiable
Insert c2 into C

Set tto tv cl.cf
If (t!= fc9

Insert [f.id, f.cf - fl into C
Return classification list C

Figure 6 Qassificafion AIgoritbm

. a classijiearion is a [label, characteristic function] pair.

Rather than enumerating the individual states for a label, we
instead provide the characteristic function. Thus the goal is to
generate a list of classifications.

The algorithm is shown in figure 6. The notation c.1 is an
abbreviation for the label of a classification c, and c.cf is an
abbreviation for the c’s characteristic function. It works through
an inductive style process of comparing a filtering expressionfto
each existing classification c. With each comparison, there are
two interesting outcomes. The first is that the c’s set of states is a
subset of the ps set of states. In this instance, the filtering
expression is added to the classification’s label. The second
interesting outcome is if there exist states within the c’s set of
states that are within the f s set of states and there exist other
states within the c’s set of states that are not within thefs set of
states. In this instance. the classification c is split into two
classifications, cl and c2. The first classification corresponds to
states within both c andf. The label for this classification is set to
the label of c plusf. The second corresponds to states within c
but not withinf. This classification receives the Mel of c. Note
that the union of the states within cl and c2 is exactly c. For both
cl and ~2. a satisfiability check is made, and satisfiable
classilications are inserted into the cIassXcation list C. The
satisfiability check prunes classifications that are semantically
impossible, such as n-value = 1 A n-value = 2. If all
states forf are not accounted for by the above two items, a new
classification is created containing only those remaining states.

147

-4
:m -:,,,. ..;‘?

I. I ‘.. .‘, ..’ ,. (

II-’ ;,i

i :,;,,.;,y !‘: :

I 1.
L ; :” (,(
,, i . <

.‘. I . “,I
.-,‘I i <:, + 5,
_. - 1.
2. .

,‘I .,.. = 1
‘. =r’.. i,“-. i’: . . ,.) ,I

/_ ‘I- : ;i;j

.;, xx, ,-:;,.:,j !
/ ...I -::‘,,,.
,,/“,

.‘;‘.! ,,$.-.
;.::. i .:1

,t,-:

I_:;.‘$; 1

t

‘.
I i ,

The above algorithm can be implemented quite easily by
employing the Ordered Binary Decision Diagram (BDD) data
structure [3]. BDDs are useful for representing functions over
binary variables. For this application, filtering predicates are
viewed as atomic variables, and filtering expressions are BDD
functions over the variables. In the above algorithm, the
characteristic functions for classifications are calculated by
joining filtering expressions, expressed in BDD form, using the
Boolean operators A, v, and -J, which are directly supported by
BDDs. It must be noted that for certain classes of functions
BDDs behave very badly, with a worst case exponential size
bound with respect to the number of variabIes [3]. While we have
not experienuzd any BDD blowup in practice, further work is
required to accurately determine the likelihood of BDD blowup.
Similarly, the Boolean satisfiability issues are handled with
excellent average case performance but without polynomial
guarantee.

3.2 Tree Generation

Given a list of chssifications, the next task is to generate a binary
decision tree such that any leaf of the tree corresponds to one and
only classification. Given that optimal binary tree generation is a
known Np-complete problem 1123, the method will necessaily be
heuristic.

This phase is modeled after decision tree generation in ID3, a
machine learning algorithm for cIassifying items based on features
[18]. Like ID3, this algorithm depends upon a heuristic to select
the feature to test at each level. The heuristic used here is similar
to the ID3 information gain heuristic.

The algorithm, shown in figure 7, works by greedily choosing a
filtering predicatep to test, outputting the test to the decision tree,
and recursing on the then and else sides. T%e then side is
parameterized by the classifications restricted by p = true. The
eke side is parameter&d by the classifications restricted by p =
false Recursion continues until C is empty. Classifications are
removed from C in one of two ways. A ciassification equal to
true implies the classification’s characteristic function is satisfied
along the current path. The classification’s Iabel is output and the
entry removed. Conversely, a classification equal to fake implies
the classification cannot be satisfisd along the current path, so the
ctassification is removed. Note that this all occurs at compile
time, not runtime.

A heuristic is involved with choosing the filtering predicate to test
at a point. The heuristic is modeled after the ID3 information
gain heuristic [IS]. If a particular filtering predicate is required
by every characteristic function in a set of classifications, then
that predicate is chosen. If no required predicate exists, then the
predicate that splits the fewest number of classifications is
chosen. Here, splitting means separating adjacent cells in the n-
cube that have the same label.

As with the classification generation step, set and Boolean
operations are implemented using BDDs.

3.3 Space Enhancement

The worst case space
compIexity of the Procedure GenerateTree(in C)
decision tree method is For each c In C
linear in the number of If c.cf = true

classifications, which output c.l

itself is exponential in Delete c from C

the number of fikering If c.cf = false

predicates. This occurs Delete cfrom C

when each new filtering If C is empty

expression intersects Return
with every previous p= ChoosePredIcate

classification in the output p

classification generation
Generate Tree(C I p)

algorithm, doubling the GenerateTree(C I q)

number
classifications at that
point.

Of / Figure 8 Tree Generation

* One way to partially
mitigate this expIosion is to segregate the filtering expressions
into different groups such that no member of a group complctcly
intersects with every other member. This can be ac~ompllshed
using the algorithm in figre 8. This enhancement works by
organizing the filtering expressions into connected components,
and applying the decision tree generation technique to each
component individually.

Note that this enhancement preserves the important fcaluro that no
filtering predicate is tested more than once is still preserved.

4. Empiricaf Evaluation

The authors believe the decision tree method of trigger lilterlng is

superior to the typical ndive method because it results In, on
average, fewer tests at runtime. This is demonstrated in sccllon
4.2. The cost of the method is in tree generation time, which Is
only done once, and in tree size at runtime. Tree generation timo,
while not reported here, generally takes less than one second, with
the largest trees taking tens of seconds.

The decision tree generation method was evaluated using two :
criteria, the total number of nodes in the trees and the average
path length through the trees. Average path length is the most I
important measure, since that is the runtime speed measure. I

I
I

Generate an undirected graph. The filtering predicates
represent nodes. Two nodes are connected if thay
appear together in a filtering expression.

Split the graph into connected components

For each component, determine the set of filtering predicates
and create a set of filtering expressions .

For each set of filtering expressions, apply the decision tree
generation procedure.

Figure 7 Enhancement

148 !

Two workloads were analyzed, synthetic and actual. The
synthetic workload consists of randomly generated filtering
expressions over a single table. There were three degrees of
Freedom in the generator, the total number of filtering predicates,
the maximum number of predicates per expression, and the total
number of expressions generated. Two reasonable values were
chosen for each parameter, for a total of eight separate trials. The
actual workload consisted of classifications from four expert
system programs from the Texas Benchmark Suite, a suite of rule
programs from the expert system community [2].

4.1 Test count

The total number of tests in a tree is a size measure. The desired
result is a test count that approaches that of naive. Decision trees
were generated using the ntive and decision tree approaches for
different compositions of rules.

The test counts for the actual and synthetic workloads are shown
in tables 1 and 2. In all instances, the decision tree method
generated more tests than the ndive method. This is expected. In
three instances (103-10, 10-6-10, and mom), the decision tree
was extremely large.

Table 4. Test Counts Table 1. Path Length
Synth

103-5

10-3-10

10-6-5

10-6-10

30-3-5

30-3-10

30-6-5

30-6-10

ic Workload

Naive Tree

10 30

19 511

13 103

24 999

10 16

20 71

13 98

25 111

Table 3. Test Counts
Act 11 Workload

Naive Tree Naive Tree

Mab 37 56

Mom 75 1086

Waltz 27 23

Waltxdb 25 27

IO-35

10-3-10

10-6-5

10-6-10

30-3-5

30-3-10

30-6-5

30-6-10

ic Workload

Naive Tree

12.3 8.3

22.3 IO

12.8 10.0

25.5 11.0

12.3 9.7

24.3 16.8

12.8 11.0

25.8 20.8

Table 2. Path Length

Mab 18.4 10.8

Mom 7.2 5.9

Walt2 21.7 9.4

Waltzdb 10.0 7.8

4.2 PathLength

The path length through the decision tree is a speed measure, and
is therefore the primary figure of merit. Average path length was
measured. This number represents the average number of tests
performed during the trigger filtering stage in response to an
individual database element. A lower number represents less
work performed at nmtime.

The system was tested under two workloads, a synthetic workload
and a set of benchmark programs. The synthetic workload
consisted of 10,000 randomly constructed elements. The exact
same instance stream was used for each test. The instances were
fed through each of the trigger filters generated during test count
testing.

The average path lengths for the actual and synthetic workloads
are show in tables 3 and 4. In all cases. the decision tree method
outperformed ntive by having a smaller average path length.

5. Future Work

Three areas of future work remain. The first is to develop a
heuristic that further divides a connected component if the
component is going to explode in space. The second is to
integrate attribute testing costs into the tree generation heuristic.

This will allow generation of efficient, trees for
environments where there are non uniform predicate test
costs. An example would be testing over complex data
types such as images. A final area of future work is to
support dynamic addition and deletion of filtering
expressions. The current scheme completely regenerates
the classification list and decision trees when the set of
filtering expressions is modilicd.

d Workload

149

6. Conclusion

This paper presented an algorithm for implementing rule
fiItering in active and trigger enabled databases. The core
algorithm generates a decision tree that determines what
rules or triggers might be enabled by an individual
database element. This is accomplished by descending a
database element down a decision tree. When the element
reaches a tree leaf, the leaf contains a label listing the rule
or trigger identifiers that might be enabled. The paper
also presents an extension based on grouping rules into
connected components that helps alleviate occasional
exponential space explosion. In a sense, the decision tree
represents a function whose domain is the set of all
elements in a particular relation and whose range is the
powerset of rules. It is important to note that, at runtime.
the function is only evaluated with respect to individual
elements. Boolean satisfiability calculations are not
attempted at runtime.

Decision trees generated by the technique outlined in this
paper have the important property that the maximum path
from the root to a leaf is bounded by the total number of
filtering predicates, which is necessarily less than or
equal to the maximum path for the straightforward nave

J

.

.

I

h

.

+

’ L

technique. Empirical evaluation shows that the average number of
tests through the decision tree is less than the average number of
tests using the ntive method for all tests data sets.

The algorithm is based on a symbolic representation of the space
of database elements. The state space is iteratively subdivided into
regions that represent particular combinations of enabled rules.
The ordered binary decision diagram (BDD) data structure is used
to quickly and easily represent and manipulate the state space.

7. Acknowledgements

The idea of subdividing the state space into classifications is due
to an unpublished paper by Satoshi Nishiyama, Keith Gookbey,
and Daniel P. Miranker. A pa&l implementation is describe in
1161.

8. References

I. J. Blakeley, N. Cobum, and P.-A. Larson, “Updating
derived relations: detecting irrelevant and autonomously
computable updates,” ACM Transactions on Database Systems,
vol. 14, no. 3, September, pp. 369-400,1989.

2. D. Brunt, T. Grose, B. Lofaso, and D. P. Miranker, “Effects
of database size on rule system performance: Five case studies,”
in Proceedings of the I7fh fntemutinal Conference on Very
Large Data Buses. Barcelona, Spain, September, 1991, pp. 28%
296.

3. R E. Bryant, “Symbolic booiean manipulation with ordered
binary-decision diagrams,” ACM Computing Surveys, vol. 24, no.
3, September, pp. 293-3 18,1992.

4. A. Buchmann, J. Zimmermann, J. Blakeley, and D. Wells,
“Building an integrated active OODBMS: Requirements,
architecture, and design decisions,” in Proceed@ of the 21th
Intemationaal Conference on Datu Engineering. Taipeh, Taiwan,
March, 1995, pp. 117-128.

5. 0. P. Buneman and E. IC Clemens, “Efficiently monitoring
relational databases,” ACM Transactions on Database Systems,
vol. 4, no. 3, September, pp. 368-382,199.

6. Buneman. 0. P. and E. R cIemons, “Esciently monitoring
relational databases,” ACM Transactions on Database Systems,
vol. 4, no. 3, September, pp. 36%382,1979.

7. E. Cemy and M. A. Marin, “An approach to unified
methodoIogy of combinational switching circuits,” IEEE
Transactions on Computers, vol. 8, August, pp. 45-756,1977.

8. D. Cohen, “Compiling complex database transition
triggers,” in Proceedings of the 1989 ACM SIGMOD
Xntemational Conference oli the Management of D&a. Portland,
OR, May, 1989, pp. 225-234.

9. C. Forgy, “RFX’Ez A fast match algorithm for the many
pattedmany object pattern match problem,” ArfifiCM~
Intelligence, vol. 19, pp. 17-37,1982.

150

10. A. Geppert, S. Gatziu, K. R. Dittrich, l-Z. Fritschl, anti A,
Vaduva. Architecture and implementalion of fhe active object-
oriented clatabuse management system SAMOS, TR 95.29. Institut
fur Informatik, Universitat Zurich, Switzerkmd, 1995.

II. E. Hanson and T. Johnson, “Selection predicate indexing
for active databases using inteval skip lists,” Information Systems,
vol. 21, no. 3, pp. 269-298,1996.

12. L. Hyafd and R. L. Rive& “Constructing opdmal binary
decision trees is NP-complete,” Information Processing Letters,
vol. 5, no. 1,1976.

13. D. R. McCarthy and U. Dayal, “The architedurc of an
active database management system,” in Proceedings of the 1989
ACM S1GMOD Intemaiional Conference on the Management of
Data. Portland, OR, May, 1989, pp. 215-224.

14. D. P. Miranker, TREAT: A new and eflcient marcir

algorithm for AI production systems. Los Altos, CA:
Pittmankforgan-Kaufman Publishers, 1989.

15. D. P. Miranker and L. Obermeyer, “An overvlcw of the
VenusDB active multidatabase system,” International Symposium
on Cooperative Database Systems for Advanced Applicadons,
Kyoto, Japan, December, 1996.

16. S. Nishiyama, “Optimizing compilation of select phase of
production systems,” Master’s thesis. Department of Computer
Sciences, The University of Texas at Austin, 1991.

17. Oracle Corporation, Or&e 7users guide1992.

18. 3. R. Quinkn, “Induction of decision trees,” Machine
Learning, vol. 1, pp. 81-106.

l’ennkiw 10 make di&lfhard vnpks ut’ull ur p;nl ul’tliis Inalwicll br ’
persmal or ctwroom use is grunted willwtl I& prtwitlcd thrill IhJ Cn$cU !
nre 1101 made or distrihukd for @it or wntrwxcinl :~dvnnl~~gc. lhc wpy-
right notice. ~hc title &he puhliwtion and its clntr: rppcar. i1n11 nolk~ i.4
givcu that copyright is hy pcnnkiw ot%~ ACBI. hc. ‘I’0 ~npy UlhVkU, 1
IO republish, lo post on s~‘rwis or to rcdislribuk lo lists. rqllires spccih I
permission antior Ike. #
ClKM 97 La.d+gx Nmlrh ml
Copyridlr 1997 Xhl N-379 t-97~1-~97~1 LS3.M

