Evaluating Triggers Using Decision Trees

Lance Obermeyer
Applied Research Laboratories
The University of Texas at Austin
lanceo@arlut.utexas.edu

Abstract

This paper presents an algorithm for implementing rule
filtering in active and trigger enabled databases. The
algorithm generates one or more decision trees that
determine what rules or triggers might be enabled by an
individual database element, reducing the number of
rules or triggers that must be evaluated. The algorithm
operates by symbolically representing the space of
database elements and subdividing the space based on
rule predicates. Regions of the state space represent
particular combinations of enabled rules. Decision trees
are then generated based on the subdivided state space.
The trees have the important property that no individual
test is repeated. The ordered binary decision diagram
(BDD) data structure is used fo represent and
manipulate the state space.

1. Introduction

Modern database systems increasingly support active behavior
through rules. This support ranges from simple database triggers
to complete active database functionality. Rules typically follow
the event — condition — action (ECA) model originally proposed
in Hipac [13]. This rule model specifies the particular event or
set of events a rule will respond to, the condition that must be true
for the tule to proceed, and the action to execute if the condition
is satisfied.

Many current commercial relational databases restrict their trigger
subsystems to support only a single rule (trigger) per table per
event per situation. For example, Oracle version 7 allows one
trigger per table per event (insert, delete, update) per situation
(before row, before statement, after row, after statement) for a
total of 12 triggers per table [17]. However, no more than one
trigger is active at any one time.

One area where active databases have an advantage over simple
trigger systems is in supporting muitiple rules per table. Active
database rarely restrict the number of rules per table. This
provides developers with the freedom to create multiple mles per
table if they wish. The cost of this added freedom is in execution
time. Depending upon the coupling mode [13] of the rule, rule
evaluation happens within the critical path of either the triggering
DML command or the enclosing transaction commit. It is

Daniel P. Miranker

Department of Computer Sciences
The University of Texas at Austin
miranker@cs.utexas.edu

therefore imperative that rule processing be as efficient as
possible.

One obvious technique for speeding up rule processing is to avoid
evaluating rules that cannot execute. This can be accomplished in
two levels by examining the triggering tuple (in a mle with an
insert, update, or delete event). The first level is data
independent, and consists of comparing the relation name of the
updated tuple to the relation name(s) mentioned in the event
portion of the rle. If a rule is not sensitive to eveats on the
updated relation, then evaluation of the condition of the rule can
be skipped. An update that can be ignored based on purely
schematic information has been termed a readily ignorable
update [6].

The second level is data dependent, and consists of comparing the
triggering tuple to the constant test predicates in the rule’s
condition. For example, figure 1 shows a schema and three mles
in SQLS3 style syntax from a hypothetical finance application. All
three rules are sensitive to the CreditCard relation, so none are
readily ignorable. The when clause of the rules contains other
conditions that are omitted for brevity. Similarly, the actions of
the rules are also omitted.

If the triggering tuple does not satisfy the constant tests of a rulc,
the tule cannot fire. Evaluation of these rules can stop with an
examination of the triggering tuple, and no other actions need be
performed. We term the process of comparing a triggering tuple
to the constant test predicates of a rule condition for the purpose
of eliminating some rules from consideration frigger filiering.
Researchers in the expert system community have long used
trigger filtering to speed up system execution. For example, the
RETE [9] and TREAT [14] match algorithms use trigger filtering
techniques to generate the elements in alpha memories (a form of
specialized predicate index).

Formally, we define a program as consisting of a set of mules.
Each rule contains a possibly empty condition consisting of & sct
of predicates connected by the standard Boolean connctives.
Predicates can be of two types, filtering predicates and non-
filtering predicates. We define a filtering predicate as any
predicate that can be evaluated with respect to a triggering tuple.
Filtering predicates come in three types. The most common type
is a constant test, which compares a tuple or attribute of a tuple to
a constant value. In the above example n.1imit = 5000isa
constant test. ‘The second type is an intra-tuple test, which
compares an attribute of a tuple with another attribute of the same
tuple. In the above example, n.balance > n.limit isan

TPY - CNTR AR
T e R A

BTAR AN Pl M AN m NS Tt) Nt Lo T T et AL
yraedehda i T A RIS AR B P Telandeod o

intra-tuple test. ‘The final type is a function call', which combines
constant tests and intra-tuple tests behind a function. Non-
filtering predicates include join predicates and aggregation
predicates, For any rule, we term the set of filtering predicates
joined by their appropriate connectives the filtering expression for
the rule. The filtering predicates for the rules in figure 1 are
shown in figure 2,

A straightforward way of implementing trigger filtering for
multiple rules is simply to maintain a list of rules and their
respective filtering expressions. This may be wasteful because
individual predicates may be repeated, as is the case in the
example with the predicaten. type = “gold~.

This paper describes a technique for efficiently solving the trigger
filtering problem. The technique generates ore or more decision
trees. Added, modified, or removed elements are evaluated by the
trees and the set of rules whose filtering expression is satisfied is
identified. The decision trees have the advantage that no tests are
duplicated. Thus any database insert, update, or delete
into a monitored table induces a bounded length descent of the
tree.

Many other researchers have studied trigger implementation.
Buneman and Clemons report on a technique for trigger filtering
based on a limited evaluation of the complete rule, not just the
filtering expression. Their technique first removes readily
ignorable updates, ther, for remaining updates, evaluates
complete trigger expressions over restricted size data sets. Join
predicates are evaluated, but relative to small size relations [5].
Cohen [8] describes a method of compiling trigger conditions into
a match network similar to RETE [9]. This work is focuses on
evaluating the complete trigger expression, not filtering out
unsatisfiable triggers. Similarly, the large bodies of work on
production system match algorithms and database integrity
constraints primarily focus on improving join performance. The
only published wosk known to the anthors on the trigger filtering
problem is by Hanson and Yohnson, who report on a technique for
solving the trigger filtering problem [11]. Their methodology is
discussed in section 2.2, Blakeley, Coburn, and Larson report on
the somewhat related problem of detecting updates to base
relations that are irrelevant to materialized views [1]. Their work
is based on determining the relationship between many elements
and one rule (view definition), whereas the trigger filtering
problem determines the relationship between one element and
many rules. In the degenerate case of one element and one rule,
the two are essentially the same.

The remainder of the paper is organized as follows. Section 2
presents three methods for solving the trigger filtering problem.
The third method is using decision trees, which is the focus of this
paper. Section 3 presents an algorithm to generate decision trees
using an algorithm based on binary decision diagrams (BDDs)
[3]. Section 4 presents an empirical evaluation of the decision

! Many active databases, especially those adopting a C based rule
syntax, allow calling functions in the condition portion of a rule.
These functions must be side effect free, and be strict functions on
the input tuple. Example systems include VenusDB [15],
SAMOS [10], and Reach {4].

145

CreditCard (name, balance, payment,
limit, type, state);

create trigger T1

after insert on CreditCard

referencing new as n

when (n.limit 5000 and
n.state *TX* and
n.type = “gold” and ..}

create trigger T2

after insert on CreditCard

referencing new as n

when (n.type *gold” and
n.balance > n.limit and ..)

create trigger T3

after insert on CreditCard

referencing new as n

when (n.balance > n.limit and
n.payment > 1000 and ..)

Figure 1 Example Rules

tree technique. Section 5 Iists three areas of future work. Section
6 provides concluding remarks.

The remainder of the paper uses relatiomal terminology.
However, the technique presented is applicable to filtering insert,
update and remove events in object oriented databases as well.
Events that do not compare a specific object against a set of rules,
such as temporal events, will not fit well within this framework.

2. Possible Solutions

This section presents an overview of three methods to implement
a trigger filtering solution. As stated previously, the purpose is to
determine the individual rules that pass the trigger filtering stage
for a given database object. In the following examples, calling the
function signal with the rule name as a parameter indicates
passing filtering. The database object being evaluated is indicated
by the variable n.

The methods presented in this section are applicable to both
interpreted and compiled environments.

FP2: n.state = “TX"
The straightforward FP3: n.type = “gold”
solution is termed naive, | FP4: n.balance > n.limit
and is a single if FP5: n.payment > 1000
state:_nent for e-ach Figure 3 filtering predicates
filtering expression.

Thus for n filtering

if(FP1 A FP2 A FP3) signal{(Tl)

if(FP3 A FP4) signal (T2)
if(FP4 A FP5) signal (T3)
Figure 2 Naive

expressions, there are n individual if statements.
Figure 3 shows naively generated code for the rules
in figure 1. The statements have the problem that
filtering predicates FP3 and FP4 are evaluated twice.
The size of the statements and the maximum number
of tests through the statements are equal to the
summation of the filtering predicates in each filtering

expression. ‘The minimum number of tests is the
number of filtering expressions.

2.2 Interval Skip List

An alternative method is proposed by Hanson and
JTohnson [11]. They propose a technique relying on
intervals., For each filtering expression, an interval
over an attribute is selected. Intervals can be
bounded (0 < n.value < 1) or unbounded (p.value <
1). An equality test is treated as an interval of width
0. For each attribute in the structure, an interval list
is maintained. Each filtering expression is entered
into the interval list for its selected interval's
attribute, Thus each expression is entered into one
and only one interval list. They recommend the
interval skip list as the implementation data

Figure 4 Decision Tree

>
e _m
;a!se / \z@

\> >
\ e
oy

&>
/\’

P N e

<)

o ey T
Ry S

structure.

The filtering expressions satisfied by a particular database tuple
are determined by the following algorithm. For each attribute of
the element, a stabbing query logarithmic in the number of
entered expressions is executed on the atiribute’s interval list with
the element’s attribute value as the key. This determines a
possibly empty set of filtering expressions that are partially
satisfied by the tuple. For each partially satisfied expression, the
remaining filtering predicates are evaluated relative to the tuple in
a linear fashion.

This method has three limitations, however. First, it only works
with conjunctive filtering expressions. Any filtering expression
that include disjunction is transformed into its equivalent
disjunctive normal form expression, and each resulting
conjunctive clause is separately managed. Since the number of
clauses in a statement converted to DNF is in the worst case
exponential in the size of the original expression, a potentially
explosive number of intervals may need to be maintained. Also,
correct execution of a system may dictate only a single
notification message per rule for a given database tople. If the
disjunctive expression is broken up into multiple clauses, and
more than one clause is satisfied by a given tuple, then multiple
notifications may result. To correct this, either the generated
clauses must be mutually exclusive, requiring the complete set of
tests per clause, or a separate post processing mechanism must be
used to filter out possible multiple calls.

Second, the method relies on every conjunctive clause having one
attribute that is both selective and over an ordered domain.
Conjunctive clauses not possessing these two qualities are
inserted into a separate list managed via a nafve method. In
essence, these non-indexed filtering expressions are treated as
having an infinite interval.

Third, once the partially satisfied filtering expressions arc
determined by indexing into an interval list, the remaining
filtering predicates in each expression are sequentially evaluated,
Thus individual filtering predicates may be tested more than once,
For example, consider the following two filtering expressions,

true
true

n.al

true and n.a2 = true and n.a3
n.al =

true and n.a2 true and n.ad

Assume the first predicate of the above two expressions is entered
into the interval list {interval width 0), and the database tuple has

Label State(s)

FP1 AFP2 AFP3 A—FP4 AFPS V
FP1 AFP2 AFP3 A —FP4 A —FP5
FP1 A—FP2 AFP3 AFP4 A~FP5 Vv
—FP1 AFP2 AFP3 AFP4 AFPS v
—FP1 A —FP2 A FP3 A FP4 A —FP5
FP1 AFP2 A—FP3 AFP4 AFPS v
FP1 A—FP2 A—FP3 AFPAAFP5 v
—FP1 AFP2 A—FP3 AFP4 AFPS v
—FP1 A =FP2 A —FP3 A FP4 AFP5
FP1 A FP2 AFP3 AFP4 A—FP5

T1

T2

T1,T2

FPl A—FP2 AFP3 AFP4AFPS v
—FP1 AFP2 AFP3 AFP4 AFPS v
—FP1 A —FP2 AFP3 A —FP4 A FP5
FP1 AFP2 AFP3 AFP4 AFPS

T2,T3

T1, T2,13

Figure 5 List Representation

an a1 value of txue. Thus stabbing into the interval list will
tetrieve both the above two expressions. Evaluating the two
expressions will involve testing the n.a2 = true predicate

twice.

146

|
i
|
t

ot 2’2’1‘.7\»1;‘“ ;l..

2.3 Decision Tree

This paper proposes using decision trees with the important
feature that no test is repeated. By virtue of this property, the
maximum number of tests during a descent of the tree is
bounded by the total number of unique filtering predicates.
Additionally, a well constructed tree can have a minimum and
average path less than that of a naive version. The decision
tree for the rules in figure 1 are shown in figure 4. In this tree,
the maximum number of tests is five, two tests less than the
amount in figure 3. Similarly, the minimum number of tests is
two (—FP0 A —FP3), whereas the minimum in figure 3 is three.

Generating optimal decision trees is a known NP-complete
problem [12]. Therefore, a heuristic method must be used to
generate the tree. This method is presented in the next section.

3. Algorithm

Assume the set of filtering expressions is E, with each element
e containing some subset of the set P of filtering predicates.
Bach filtering predicate can be either true or false. With
respect to the filtering predicates, the state space can be viewed
as n-cube with [Pl dimensions. Individual cells within the cube
can be labeled with the maximal set of filtering expressions
satisfied at that state. In other words, each cell contains an
element from the powerset of the set of filtering expressions.

Procedure GenerateClassifications(in F, out C)

Initialize classification list to empty
For each filtering expression f in F
Initialize temporary variable tto false
For each existing classificaticn ¢
If c.cf implies fcf
Add fid into c.l
Settto tv ccf
else if c.cf intersects ficf
Remove ¢ from classification list
Copy cinto two separate classifications,
cland c2
Add fid into c1.1
Set c1.cf to c.cf A ficf
Set c2.cf to c.cf A =fcf
If c1.cf is satisfiable
Insert ctinto C
If c2.cf is satisfiable
Insert c2into C
Set tto tv cl.cf
If (t!= fcf)
Insert [fid, fcf—flinto C
Retumn classification list C

Figure 6 Classification Algorithm

An alternative method of representing the above information is a
list of [state, label] pairs, where a state is a conjunction of the
variables, some possibly negated. When multiple cells have the
same label, then a particular label is defined by a set of states.
The special case of the label & can be ignored. This is shown in
figure 5.

3.1 List Construction

The purpose of this phase is to generate a list of labels and their
corresponding set of states. We formally define the following
terms.

a state space S is the set of all possible database objects for a
given relation.

a filtering expression f € F is a Boolean valued function on s
€S

a label L is an element from the powerset of F. Thus L
defines a possibly empty set of filtering expressions.

a characteristic function for a label L, denoted ¢fiL}), is a
Boolean valued function on a state s € S such that ¢f{iL)s) =
true ¢ Vf € L{f{s) = true] [7]. Intuitively, c{L) defines a
subset of the state space S where every element s satisfies all
of the filtering expressions in L.

147

o aclassification is a [label, characteristic function] pair.
Rather than enumerating the individual states for a label, we
instead provide the characteristic function. Thus the goal is to
generate a list of classifications.

The algorithm is shown in figure 6. The notation cl is an
abbreviation for the label of a classification ¢, and c.cf is an
abbreviation for the ¢’s characteristic function. It works through
an inductive style process of comparing a filtering expression f to
each existing classification ¢. With each comparison, there are
two interesting outcomes. The first is that the ¢’s set of statesis a
subset of the f's set of states. In this instance, the filtering
expression is added to the classification’s label. The second
interesting outcome is if there exist states within the ¢'s set of
states that are within the fs set of states and there exist other
states within the c’s set of states that are not within the f's set of
states. In this instance, the classification ¢ is split into two
classifications, cI and c2. The first classification corresponds to
states within both c and f. The label for this classification is set to
the label of ¢ plus f. The second comresponds to states within ¢
but not within f. This classification receives the label of c. Note
that the union of the states within ¢/ and ¢2 is exactly ¢. For both
cl and c2, a satisfiability check is made, and satisfiable
classifications are inserted into the classification list C. The
satisfiability check prumes classifications that are semantically
impossible, such as n.value 1 An.value 2. Ifall
states for f are not accounted for by the above two items, a new
classification is created containing only those remaining states.

SRRt SN MR LY SRR

A TR e A s

e

wit TNl L

The gbove algorithm' can be implemented quite easily by
employing the Ordered Binary Decision Diagram (BDD) data
structure [3]. BDDs are useful for representing functions over
binary variables. For this application, filtering predicates are
viewed as atomic variables, and filtering expressions are BDD
functions over the variables. In the above algorithm, the
characteristic functions for classifications are calculated by
joining filtering expressions, expressed in BDD form, using the
Boolean operators A, v, and —, which are directly supported by

DUUVIRIL VpuiGiris /Ay vy diie Yisuniie aans MAeIAARY PPVRiAs U

BDDs. It must be noted that for certain classes of functions
BDDs behave very badly, with a worst case exponential size
bound with respect to the number of variables [3]. While we have
not experienced any BDD blowup in practice, further work is
required to accurately determine the Iikelihood of BDD biowup.
Similarly, the Boolean satisfiability issues are handled with
excellent average case performuance but without polynomial
guarantee.

3.2 Tree Generation

Given a list of classifications, the next task is to generate a binary
decision tree such that any leaf of the tree corresponds to one and
only classification. Given that optimal binary tree generation is a
known NP-complete problem {12}, the method will necessarily be
heuristic.

This phase is modeled after decision tree generation in ID3, a
machine learning algorithm for classifying items based on features
[18). Like ID3, this algorithm depends upon a heuristic to sefect
the feature to test at each level. The heuristic used here is similar
to the ID3 information gain heuristic.

The algorithm, shown in figure 7, works by greedily choosing a
filtering predicate p to test, outputting the test to the decision tree,
and recursing on the then and else sides. The then side is
parameterized by the classifications restricted by p = true. The
else side is parameterized by the classifications restricted by p =
false. Recursion continues until C is empty. Classifications are
removed from C in one of two ways. A classification equal to
true implies the classification’s characteristic function is satisfied
along the current path. The classification’s Iabel is output and the
entry removed. Conversely, a classification equal to false implies
the classification cannot be satisfied along the current path, so the
classification is removed. Note that this all occurs at compile
time, not runtime.

A henristic is involved with choosing the filtering predicate to test
at a point. ‘The heuristic is modeled after the ID3 information
gain heuristic [18]. ¥ a particular filtering predicate is required
by every characteristic function in a set of classifications, then
that predicate is chosen. If no required predicate exists, then the
predicate that splits the fewest number of classifications is
chosen. Here, splitting means separating adjacent cells in the n-
cube that have the same label.

As with the classification generation step, set and Boolean
operations are implemented using BDDs.

3.3 Space Enhancement

The worst case Space

complexity of the | Procedure GenerateTree(in C)
decision tree method is Foreachcin C

Tinear in the number of if CCfn 1|TUB‘ (
classifications, which CUIpW Cu
itself is exponential in Delete cfrom C
the number of filtering If cct =false
predicates. This occurs . Delete cfrom C
when each new filtering ifc 'sﬁeg?lfg

expression intersects

wifb every previous g Z;Ju?;?sePred!cale(C)
Cedfeation gontrtion Generate Tree(G1 o)
e e GenerateTres(C| —p)
d.lguuuuu, uUuUuus e

number of

classifications at that Figure 8 Tree Generation
point.

One way to partially

mitigate this explosion is to segregate the filtering cxpressions
into different groups such that no member of a group completely
intersects with every other member. This can be accomplished
using the algorithm in figure 8. This enhancement works by
organizing the filtering expressions into connected components,
and applying the decision tree generation technique to cach
component individually.

Note that this enhancement preserves the important feature that no
filtering predicate is tested more than once is still preserved.

4, Empirical Evaluation

The authors believe the decision tree method of trigger filtering is
superior to the typical naive method because it resulls in, on
average, fewer tests at runtime. This is demonstrated in scction
4.2. The cost of the method is in tree generation time, which is
only done once, and in tree size at runtime. Tree generation time,
while not reported here, generally takes less than one second, with
the largest trees taking tens of seconds,

The decision tree generation method was evaluated using two
criteria, the total number of nodes in the trees and the average
path length through the trees. Average path length is the most
important measure, since that is the untime speed measure.

Generate an undirected graph. The filtering predicates
represent nodes. Two nodes are connected [f thoy
appear together in a filtering expression.

Split the graph into connected components

For each component, determine the set of filtering predicates

and create a set of filtering expressions .

For each set of filtering expressions, apply the decisien tree
generation procedure.

Figure 7 Enhancement

148

Two workloads were analyzed, synthetic and actual. The
synthetic workload consists of randomly generated filtering
expressions over a single table. There were three degrees of
freedom in the generator, the total number of filtering predicates,
the maximum number of predicates per expression, and the total
number of expressions generated. Two reasonable values were
chosen for each parameter, for a total of eight separate trials. The
actual workload consisted of classifications from four expert
system programs from the Texas Benchmark Suite, a suite of rule
programs from the expert system community {2].

4.1 Test count

The total number of tests in a tree is a size measure. The desired
result is a test count that approaches that of naive. Decision trees
were generated using the naive and decision tree approaches for
different compositions of rules.

The test counts for the actual and synthetic workloads are shown
in tables 1 and 2. In all instances, the decision tree method
generated more tests than the naive method. This is expected. In
three instances (10-3-10, 10-6-10, and mom), the decision tree
was extremely large.

4.2 PathLength

The path length through the decision tree is a speed measure, and
is therefore the primary figure of merit. Average path length was
measured. This number represents the average number of tests
performed during the trigger filtering stage in response to an
individual database element. A lower number represents less
work performed at runtime.

The system was tested under two workloads, a synthetic workload
and a set of benchmark programs. The synthetic workload
consisted of 10,000 randomly constructed elements. The exact
same instance stream was used for each test. The instances were
fed through each of the trigger filters generated during test count
testing.

The average path lengths for the actual and synthetic workloads
are show in tables 3 and 4. In all cases, the decision tree method
outperformed naive by having a smaller average path length.

5. Future Work

Three areas of future work remain. The first is to develop a
heuristic that further divides a connected component if the
comporent is going to explode in space. The second is to
integrate attribute testing costs into the tree generation heuristic.

Table 4. Test Counts Table 1. Path Length This will allow generation of efficient trees for
Synthetic Workload Synthetic Workload environments where there are non uniform predicate test
costs. An example would be testing over complex data
Naive Tree Naive Tree types such as images. A final area of fature work is to
support dynamic addition and deletion of filtering
10-3-5 10 30 10-3-5 123 8.3 expressions. The current scheme completely regenerates
the classification list and decision trees when the set of
10310 |19 511 10310 (223 10 filtering expressions is modificd.
10-6-5 13 103 10-6-5 12.8 10.0 6. Conclusion
10-6-10 24 999 10-6-10 255 110 This paper presented an algorithm for implementing rule
filtering in active and trigger enabled databases. The core
30-3-5 10 16 30-3-5 12.3 9.7 algorithm generates a decision tree that determines what
rules or triggers might be enabled by an individual
30-3-10 20 7 30-3-10 243 16.8 database element. This is accomplished by descending a
database element down a decision tree. When the element
30-6-5 13 98 30-6-5 12.8 11.0 reaches a tree leaf, the leaf contains a label listing the rule
or trigger identifiers that might be enabled. The paper
30-6-10 25 111 30-6-10 25.8 20.8 also presents an extension based on grouping rules into
connected components that helps alleviate occasional
Table 3. T ts exponential space explosion. In a sense, the decision tree
1‘:::“‘1 we::,ﬁ?):: Table 2. Path Length represents a function whose domain is the set of all
Actual Workload elements in a particular relation and whose range is the
Naive Tree Naive Tree powerset of rules. It is important to note that, at runtime,
the function is only evaluated with respect to individual
Mab 37 56 elements. Boolean satisfiability calculations are not
Mab 184 108 attempted at runtime.
Mom 15 1086
Mom 12 59 Decision trees generated by the technique outlined in this
paper have the important property that the maximum path
Waltz 2 2 Waltz 217 9.4 from the root to a leaf is bounded by the total number of
Waltzdb 25 27 filkering predicates, which is necessarily less than or
Waltzdb 10.0 7.8 equal to the maximum path for the straightforward naive
149

e

Vgt AT e R B N LT T TN T m T et T gy, TR AN IANAET N A Ie e r e A wis . v -
> he TR P LUV Ry s e g BT A TR ELTET YT e AT e, SN e Ty AT AT R L aTR e L - s
LR A R i i e T R e T e T R e S A T R e L T e 2

technique. Empirical evaluation shows that the average number of
tests through the decision tree is less than the average number of
tests using the naive method for all tests data sets.

The algorithm is based on a symbolic representation of the space
of database elements. The state space is iteratively subdivided into
regions that represent particular combinations of enabled rules.
The ordered binary decision diagram (BDD) data structure is used
to quickly and easily represent and manipuiate the state space.

7. Acknowledgements

The idea of subdividing the state space into classifications is due
to an unpublished paper by Satoshi Nishiyama, Keith Goolsbey,
and Danfe] P. Miranker. A partial implementation is describe in
[16].

8. References

1. J. Blakeley, N. Cobum, and P.-A. Larson, "Updating
derived relations: detecting irrelevant and autonomously
computable updates," ACM Transactions on Database Systems,
vol. 14, no. 3, September, pp. 369-400, 1989,

2. D.Brant, T. Grose, B. Lofaso, and D. P. Miranker, "Effects
of database size on rule system performance: Five case studies,"
in Proceedings of the 17th International Conference on Very
Large Data Bases. Barcelona, Spain, September, 1991, pp. 287-
296,

3. R.E. Bryant, "Symbolic boolean manipulation with ordered
binary-decision diagrams," ACM Computing Surveys, vol. 24, no.
3, September, pp. 293-318, 1992,

4, A. Buchmann, J. Zimmermann, J. Blakeley, and D. Wells,
"Building an integrated active OODBMS: Reguirements,
architecture, and design decisions,” in Proceedings of the 11th
International Conference on Data Engineering. Taipeh, Taiwan,
March, 1995, pp. 117-128.

5. O.P.Buneman and E. K. Clemons, "Efficiently monitoring
relational databases,” ACM Transactions on Database Systems,
vol. 4, no. 3, September, pp. 368-382, 199.

6. Buneman. O. P. and E. K. clemons, "Efficiently monitoring
relational databases," ACM Transactions on Database Systems,
vol. 4, no. 3, September, pp. 368-382, 1979.

7. E. Cerny and M. A. Marin, "An approach to unified
methodology of combinational switching circuits," IEEE
Transactions on Computers, vol. 8, August, pp. 45-756, 1977.

8. D. Cohen, "Compiling complex database transition
triggers,” in Proceedings of the 1989 ACM SIGMOD
International Conference on the Management of Data. Portland,
OR, May, 1989, pp. 225-234.

9. C. Forgy, "RETE: A fast match algorithm for the many
pattern/many object pattern atch problem,” Artificial
Intelligence, vol. 19, pp. 17-37, 1982.

10. A. Geppert, 8. Gatziu, K. R, Dittiich, H. Fritschi, and A.
Vaduva, Architecture and implementation of the active object-
oriented database management system SAMOS, TR 95.29, Institut
fur Informatik, Universitat Zurich, Switzerland, 1995,

11. E. Hanson and T. Johnson, "Selection predicate indexing
for active databases using inteval skip lists," Information Systems,
vol. 21, no. 3, pp. 269-298, 1996.

12. L. Hyafil and R. L. Rivest, "Constructing optimal binary
decision trees is NP-complete,” Information Processing Lelters,
vol. 5, no. 1, 1976.

13. D. R. McCarthy and U. Dayal, "The architecture of an
active database management system,” in Proceedings of the 1989
ACM SIGMOD International Conference on the Management of
Data. Portlard, OR, May, 1989, pp. 215-224,

14. D. P. Miranker, TREAT: A new and efficient match
algorithm for Al production systems. Los Altos, CA:
Pittman/Morgan-Kaufman Publishers, 1989,

15. D. P. Miranker and L. Obermeyer, "An overview of the
VenusDB active multidatabase system," International Symposium
on Cooperative Database Systems for Advanced Applications.
Kyoto, Japan, December, 1996.

16. 8. Nishiyama, "Optimizing compilation of sciect phase of
production systems,” Master's thesis. Department of Computer
Sciences, The University of Texas at Austin, 1991,

17. Oracle Corporation, Oracle 7 users guide1992,

18.). R. Quinlan, "Induction of decision trees," Machine
Learning, vol. 1, pp. 81-106.

Permission to make digitalrhard vopies of all ar part ol this watecdal foe
personal or classroom use is granted withowt tee provided that the copies
are not made or distributed for profit or conmercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACML Ine. T'o copy vthenwise,
10 republish, to post an servers or to redistribute to Fisly, requires specifle
permission and/or lee.

CIKM 97 Lasbegas Nevada USe

Copyright 1997 ACM 0-8979L-9T4-5/9T/11..53.54

150

