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Abstract 

This paper presents an algorithm for impkmenting rule 
filtering in active and trigger enabled databases. The 
algorithm generates one or more decision trees that 
determine what rules or triggers might be enabled by an 
individual database element, reducing the number of 
rules or triggers that must be evaluated. The algorithm 
operates by symbolically representing tbe space of 
database elements and subdividing the space based on 
mle predicates. Regions of the state space represent 
particular combinations of enabled rules. Decision trees 
are then generated based on the subdivided state space. 
The trees have the important property that no individual 
test is repeated. The ordered binary decision diagram 
(BDD) data structure is used to represent and 
manipulate the state space. 

1. Introduction 

Modern database systems increasingly support active behavior 
through r&s. This support range.5 from simple database triggers 
to complete active database functionality. Rules typically follow 
the event - condition - action (ECA) model originally proposed 
in Hipac 1133. This rule model specifies the particular event or 
set of events a rule will respond to, tbe condition that must be true 
for the rule to proceed, and the action to execute if the condition 
is satisfied. 

Many current commercial relational databases restrict their trigger 
subsystems to support only a single rule (trigger) per table per 
event per situation. For example, Oracle version 7 allows one 
trigger per table per event (insert, delete, update) per situation 
(before sow, before statement, after row, after statement) for a 
totai of 12 triggers per table [I’?& However, no more than one 
trigger is active at any one time. 

One area where active databases have an advantage over simple 
trigger systems is in supporting multiple ruks per table. Active 
database rarely restrict the number of rules per table. This 
provides developers with the freedom to create multiple rules per 
table if they wish. The cost of this added frsedom is in execution 
time. Depending upon the coupling mode Cl33 of the rule, rule 
evaluation happens within the critical path of either the triggering 
DML command or the enclosing transaction commit. It is 
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therefore imperative that rule processing be as efficient as 
possible. 

One obvious technique for speeding up rule processing is to avoid 
evaIuating rules that cannot execute. This can be accomplished in 
two levels by examining the triggering tuple (in a rule with nn 
insert, update, or delete event). The first level is data 
independent, and consists of comparing the relation name of the 
updated tuple to the relation name(s) mentioned in the event 
portion of the rule. If a rule is not sensitive to events on the 
updated relation, then evaluation of the condition of the rule can 
be skipped. An update that can be ignored based on purely 
schematic information has been termed a readily gnorable 
update [6]. 

The second level is data dependent, and consists of comparing the 
triggering tuple to the constant test predicates in the rule’s 
condition. For example, figure 1 shows a schema and three rufcs 
in SQL3 style syntax from a hypothetical finance application. All 
three rules are sensitive to the CreditCard relation, so none arc 
readily ignorable. The when clause of the rules contains other 
conditions that are omitted for brevity. Similarly, the actions of 
the ruk are nlso omitted. 

If the triggering tuple does not satisfy the constant tests of a rule, 
the rule cannOt fire. Evaluation of these rules can stop with an 
examination of the triggering tuple, and no other actions need be 
performed. We term the process of comparing a triggering tuple 
to the constant test predicates of a rule condition for the purpose 
of eliminating some rules from consideration trigger filiering. 
Researchers in the expert system community have long used 
trigger filtering to speed up system execution. For example, the 
RETE 191 and TREAT [14] match algorithms use trigger filtering 
techniques to generate the elements in alpha memories (a form of 
specialized predicate index). 

Formally, we define a program as consisting of a set of rules, 
Each rule contains a possibly empty condition consisting of a set 
of predicates connected by the standard Boolean conncctivcs, 
Predicates can be of two types, firrering predicates and non- 
filtering predicates. We define a filtering predicate as any 
predicate that can be evaluated with respect to a triggering tuplc. 
Filtering predicates come in three types. The most common type 
is a constant test. which compares a tuple or attribute of a tuplc to 
a constant value. In the above example n. limit = 5000 1s n 
constant test. The second type is an intra-tuple test, which 
compares an attribute of a tuple with another attribute of the same 
tuple. in the above example, n.balance > n. limit fs an 
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intra-triple test. The final type is a function call’, which combines 
constant tests and intra-tuple tests behind a function. Non- 
filtering predicates include join predicates and aggregation 
predicates. For any rule, we term the set of filtering predicates 
joined by their appropriate connectives thefirtering qm-ession for 
the rule. The filtering predicates for the rules in figure 1 are 
shown in figure 2. 

A straightforward way of implementing trigger filtering for 
multiple rules is simply to maintain a list of rules and their 
respective filtering expressions. This may be wasteful because 
individual predicates may be repeated, as is the case in the 
example with the predicate n . type = ‘gold”. 

This paper describes a technique for efficiently solving the trigger 
filtering problem. The technique generates one or more decision 
trees. Added, modified, or removed elements are evaluated by the 
trees and the set of rules whose fiItering expression is satisfied is 
identified. The decision trees have the advantage that no tests are 
duplicated. Thus any database insert, update, or delete 
into a monitored table induces a bounded length descent of the 
tree. 

Many other researchers have studied trigger implementation. 
Bunemau and Clemens report on a technique for trigger filtering 
based on a limited evaluation of the complete rule, not just the 
filtering expression. Their technique first removes readily 
ignorable. updates, then, for remaining updates, evaluates 
complete trigger expressions over restricted size data sets. Join 
predicates are evaluated, but relative to small size relations (51. 
Cohen [S] describes a method of compiling trigger conditions into 
a match network similar to RETE [9]. This work is Focuses on 
evaluating the complete trigger expression, not filtering out 
unsatisfiable triggers. Similarly, the large bodies of work on 
production system match algorithms and database integrity 
constraints primarily focus on improving join performance. The 
only published work known to the authors on the trigger filtering 
probIem is by Hanson and Johnson, who report on a technique for 
solving the trigger filtering problem [I 11. Their methodology is 
discussed in section 2.2. Blakeley, Cobum, and Larson report on 
the somewhat related problem of detecting updates to base 
relations that are irrelevant to materialized views [l]. Their work 
is based on determining the reIationship between many elements 
and one rule (view definition), whereas the trigger filtering 
problem determines the relationship between one element and 
many rules. In the degenerate case of one element and one rule, 
the two are essentially the same. 

The remainder of the paper is organized as follows. Section 2 
presents three methods for solving the trigger filtering problem. 
The third method is using decision trees, which is the focus of this 
paper, Section 3 presents an algorithm to generate decision trees 
using an algorithm based on binary decision diagrams (BDDs) 
[3]. Section 4 presents an empirical evaluation of the decision 

’ Many active databases, especially those adopting a C based rule 
syntax, allow calling functions in the condition portion of a rule. 
These functions must be side effect free, and be strict functions on 
the input tuple. Example systems include VenusDB [15], 
SAMOS [IO], and Reach [4]. 

CreditCard(narne,balance,payment, 
limit, type, state) ; 

create trigger Tl 
after insert on CreditCard 
referencing new as n 
when (n.limit = 5000 and 

n-state = -TX” and 
n-type = “gold* and . ..) 

create trigger T2 
after insert on CreditCard 
referencing new as n 
when (n-type = "gold" and 

n-balance > n-limit and . ..) 

create trigger T3 
after insert on CreditCard 
referencing new as n 
when (n.balance > n-limit and 

n.paymnt z- 1000 and . ..I 

Figure 1 Example Rules 

tree technique. Section 5 lists three areas of future work. Section 
6 provides concluding remarks. 

The remainder of the paper uses relational terminology. 
However, the technique presented is applicable to fikering insert, 
update and remove events in object oriented databases as well. 
Events that do not compare a specific object against a set of rules, 
such as temporal events, will not fit well within this framework. 

2. Possible Solutions 

This section presents an overview of three methods to implement 
a trigger filtering solution. As stated previousIy, the purpose is to 
determine the individual pies that pass the trigger filtering stage 
for a given database object. In the following examples, calling the 
function signal with the rule name as a parameter indicates 
passing filtering. The database object being evaluated is indicated 
by the variable n. 

The methods presented in this section are applicable to both 
interpreted and compiled environments. 

2.1 Ntive 

The straightForward 
solution is termed nai:ve, 
and is a single if 
statement for each 
filtering expression. 
Thus for n filtering 

FPl : n-limit = 5000 
FP2: n-state = *TX” 
FP3 : n-type = “gold” 
FP4: n-balance z- n-limit 
FP5: n-payment > 1000 

Figure 3 filtering predicates 

ifIFP1 A FP2 A FP31 signal 
if(FP3 A FP4) signal (T2) 
if(FP4 A FP5) signal(T3) 

F'igure2Naive 



expressions, there are it individual if statements. 
Figure 3 shows naively generated code for the rules 
in figure 1. The statements have the problem that 
filtering predicates FP3 and FP4 are evaluated twice. 
The size of the statements and the maximum number 
of tests through the statements are equal to the 
summation of the fiRering predicates in each filtering 
expression. The minimum number of tests is the 
number of filtering expressions. 

Figure 4 Decision Tree 

2.2 Interval Skip List 

An alternative method is proposed by Hanson and 
Johnson 1113. They propose a technique relying on 
intervals. For each filtering expression, an interval 
over au attribute is selected. Intervals can be 
bounded (0 < n.value c 1) or unbounded (n.value < 
1). An equality test is treated as an interval of width 
0. For each attribute in the structure, an interval list 
is maintained. Each filtering expression is entered 
into the interval list for its selected interval’s 
attribute. Thus each expression is entered into one 
and only one interval list. They recommend the 
interval skip list as the imphmentation data 
StruClur~ 

The filtering expressions satisfied by a particular database tuple 
are determined by the following algorithm. For each attribute of 
the element, a stabbing query logarithmic in the number of 
entered expressions is executed on the attribute’s interval list with 
the element’s attribute value as the key. This determines a 
possibly empty set of filtering expressions that are partially 
satisfied by the tuple. For each partially satisfied expression, the 
remaiuing filtering predicates are evaluated relative to the tupIe in 

Third, once the partially satisfied filtering expressions arc 
determined by indexing into an interval list, the remaining 
filtering predicates in each expression are sequentially evaluated. 
Thus individual filtering predicates may be tested more than once, 
For example, consider the following two filtering expressions, 

n-al = true and n.aZ = true and n.a3 = true 
n.aL = true and n.a2 = true and n.a4 = true 

Assume the first predicate of the above two expressions is entered 
into the interval list (interval width 0), and the database tuple hns 

a linear Eashion. 

This method has three limitations, however. First, it only works 
with conjunctive f&ring expressions. Any filtering expression 
that include disjunction is transformed into its equivalent 
disjunctive normal form expression, and each resulting 
conjunctive clause is separately managed. Since the number of 
ciauses in a statement converted to DNF is in the worst case 
exponential in the size of the original expression, a potentially 
explosive number of intervals may need to be maintained. Also, 
correct execution of a system may dictate only a single 
notification message per rule for a given database tupla If the 
disjunctive expression is broken up into multiple clauses, and 
more than one clause is satisfied by a given tuple, then multiple 
notifications may result. To correct this, either the generated 
clauses must be mutually exclusive, requiring the complete set of 
tests per clause, or a separate post processing mechanism must be 
used to Nter out possible multiple calls. 

F 

Second, the method relies on every conjunctive cIause having one 
attribute that is both selective and over an ordered domain. 
Conjunctive clauses not possessing these two qualities are 

Label State(s) 

Tl 
FP~AFP~AFP~A-;FP~AFv 
FP~AFP~AFP~A~~A? 

T-2 
FP~A-IFP~~FP~AFP~~~~~ 
-lFPlAFP2AFP3AFP4n?FPSv 
-lFPlA7FFQnFP3nFP4A-EP5 

T3 
~lAt%tA-3A~dAf%v 
FF’IA-IFP~ATFP~~FP~A~T~~ 
-JFP~AFP~A~FP~AFP~AFP~v 
-lFP1n7FP2AlFP3nFP4nFPs 

T&T2 
~~A~A~?P~A~~A-IF.P~ 

T2;13 
~lA+%!AFf3AF%%A~SV 
-EP~AFP~AFP~AFP~AFPSV 
-IFP~A-;FP~A~~A-~A~~ 

Tl, T&T3 
mf A~A~A~dA~S 

Figure 5 List Representntion 
insert& into a qmate list managed via a naive method. In 

. *--..a ,z,&^_J-- ̂ ..,,,....:r.nr “,-a tiA.3 -- l 
essence, * 
having a 

me92 non-moexeu lurerllg ~~A=JIVIIJ UCI uduza as 
z infinite interval. 

an al value 01 true. L- : _I__, “I I,.., -Inus sraoomg mro mt; IIIIG~YUL LISL wlli 
retrieve both the above two expressions. Evaluating the Iwo 
expressions will involve testing the n.a2 = true prcdicato 
twice. 
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2.3 Decision Tree 

This paper proposes using decision trees with the important 
feamre that no test is repeated. By virtue of this property, the 
maximum number of tests during a descent of the tree is 
bounded by the total number of unique filtering predicates. 
Additionally, a well constructed tree can have a minimum and 
avemge path less than that of a naive version. The decision 
tree for the rules in figure 1 are shown in figure 4. In this tree, 
the maximum number of tests is five, two tests less than the 
amount in figure 3. Similady, the minimum number of tests is 
two (-0 A ~lT3), whereas the minimum in figure 3 is three. 

Generating optimal decision trees is a known NP-complete 
probiem 1121. Therefore, a heuristic method must be used to 
generate the tree. This method is presented in the next section. 

3. Algorithm 

Assume the set of filtering expressions is E. with each element 
e containing some subset of the set P of filtering predicates. 
Each filtering predicate can be either true or false. With 
respect to the filtering predicates, the state space can he viewed 
as n-cube with IPI dimensions. Individual cells within the cube 
can be labeled with the maximal set of filtering expressions 
satisfied at that state. In other words, each cell contains an 
element from the powerset of the set of filtering expressions. 

Au alternative method of representing the above information is a 
list of [state, label] pairs, where a state is a conjunction of the 
variables, some possibly negated. When multiple cells have the 
same label, then a particular label is defined by a set of states. 
The special case of the 1abeI 0 can be ignored. This is shown in 
figure 5. 

3.1 List Construction 

The purpose of this phase is to generate a list of labels and their 
corresponding set of states. We formally define the following 
terms. 

. a state space S is the set of all possible database objects for a 
given relation. 

. a filtering expressionfe F is a Boolean valued function on s 
E s. 

. a label L is an element from the powerset of F. Thus L 
defines a possibly empty set of filtering expressions. 

. a characteristic function for a IabeI L, denoted dL)), is a 
Boolean valued function on a states E S such that &L)(s) = 
true e VIE Lws) = tme] [7]. Intuitively, cflL) defines a 
subset of the state space S where every elements satisfies all 
of the filtering expressions in L. 

Procedure GenerateClassifications(in F, out C) 
Initialize classification list to empty 
For each filtering expression f in F 

Initialize temporary varfable tto false 
For each-existing classification c 

If cxf implies fcf 
Add f.id into c-1 
Set tto tv c.cf 

else if c.cf intersects f.cf 
Remove cfrom classification list 
Copy c into two separate classifications, 

cl and c2 
Add f.id into cl.1 
Set cl.cf to c.cf A fcf 
set &Cf f0 C.Cf A -kf 

If cl.cf is satisfiable 
Insert cl into C 

If c2.cf is satisfiable 
Insert c2 into C 

Set tto tv cl.cf 
If (t!= fc9 

Insert [f.id, f.cf - fl into C 
Return classification list C 

Figure 6 Qassificafion AIgoritbm 

. a classijiearion is a [label, characteristic function] pair. 

Rather than enumerating the individual states for a label, we 
instead provide the characteristic function. Thus the goal is to 
generate a list of classifications. 

The algorithm is shown in figure 6. The notation c.1 is an 
abbreviation for the label of a classification c, and c.cf is an 
abbreviation for the c’s characteristic function. It works through 
an inductive style process of comparing a filtering expressionfto 
each existing classification c. With each comparison, there are 
two interesting outcomes. The first is that the c’s set of states is a 
subset of the ps set of states. In this instance, the filtering 
expression is added to the classification’s label. The second 
interesting outcome is if there exist states within the c’s set of 
states that are within the f s set of states and there exist other 
states within the c’s set of states that are not within thefs set of 
states. In this instance. the classification c is split into two 
classifications, cl and c2. The first classification corresponds to 
states within both c andf. The label for this classification is set to 
the label of c plusf. The second corresponds to states within c 
but not withinf. This classification receives the Mel of c. Note 
that the union of the states within cl and c2 is exactly c. For both 
cl and ~2. a satisfiability check is made, and satisfiable 
classilications are inserted into the cIassXcation list C. The 
satisfiability check prunes classifications that are semantically 
impossible, such as n-value = 1 A n-value = 2. If all 
states forf are not accounted for by the above two items, a new 
classification is created containing only those remaining states. 
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The above algorithm can be implemented quite easily by 
employing the Ordered Binary Decision Diagram (BDD) data 
structure [3]. BDDs are useful for representing functions over 
binary variables. For this application, filtering predicates are 
viewed as atomic variables, and filtering expressions are BDD 
functions over the variables. In the above algorithm, the 
characteristic functions for classifications are calculated by 
joining filtering expressions, expressed in BDD form, using the 
Boolean operators A, v, and -J, which are directly supported by 
BDDs. It must be noted that for certain classes of functions 
BDDs behave very badly, with a worst case exponential size 
bound with respect to the number of variabIes [3]. While we have 
not experienuzd any BDD blowup in practice, further work is 
required to accurately determine the likelihood of BDD blowup. 
Similarly, the Boolean satisfiability issues are handled with 
excellent average case performance but without polynomial 
guarantee. 

3.2 Tree Generation 

Given a list of chssifications, the next task is to generate a binary 
decision tree such that any leaf of the tree corresponds to one and 
only classification. Given that optimal binary tree generation is a 
known Np-complete problem 1123, the method will necessaily be 
heuristic. 

This phase is modeled after decision tree generation in ID3, a 
machine learning algorithm for cIassifying items based on features 
[18]. Like ID3, this algorithm depends upon a heuristic to select 
the feature to test at each level. The heuristic used here is similar 
to the ID3 information gain heuristic. 

The algorithm, shown in figure 7, works by greedily choosing a 
filtering predicatep to test, outputting the test to the decision tree, 
and recursing on the then and else sides. T%e then side is 
parameterized by the classifications restricted by p = true. The 
eke side is parameter&d by the classifications restricted by p = 
false Recursion continues until C is empty. Classifications are 
removed from C in one of two ways. A ciassification equal to 
true implies the classification’s characteristic function is satisfied 
along the current path. The classification’s Iabel is output and the 
entry removed. Conversely, a classification equal to fake implies 
the classification cannot be satisfisd along the current path, so the 
ctassification is removed. Note that this all occurs at compile 
time, not runtime. 

A heuristic is involved with choosing the filtering predicate to test 
at a point. The heuristic is modeled after the ID3 information 
gain heuristic [IS]. If a particular filtering predicate is required 
by every characteristic function in a set of classifications, then 
that predicate is chosen. If no required predicate exists, then the 
predicate that splits the fewest number of classifications is 
chosen. Here, splitting means separating adjacent cells in the n- 
cube that have the same label. 

As with the classification generation step, set and Boolean 
operations are implemented using BDDs. 

3.3 Space Enhancement 

The worst case space 
compIexity of the Procedure GenerateTree(in C) 
decision tree method is For each c In C 
linear in the number of If c.cf = true 

classifications, which output c.l 

itself is exponential in Delete c from C 

the number of fikering If c.cf = false 

predicates. This occurs Delete cfrom C 

when each new filtering If C is empty 

expression intersects Return 
with every previous p= ChoosePredIcate 

classification in the output p 

classification generation 
Generate Tree(C I p) 

algorithm, doubling the GenerateTree(C I q) 

number 
classifications at that 
point. 

Of / Figure 8 Tree Generation 

* One way to partially 
mitigate this expIosion is to segregate the filtering expressions 
into different groups such that no member of a group complctcly 
intersects with every other member. This can be ac~ompllshed 
using the algorithm in figre 8. This enhancement works by 
organizing the filtering expressions into connected components, 
and applying the decision tree generation technique to each 
component individually. 

Note that this enhancement preserves the important fcaluro that no 
filtering predicate is tested more than once is still preserved. 

4. Empiricaf Evaluation 

The authors believe the decision tree method of trigger lilterlng is 

superior to the typical ndive method because it results In, on 
average, fewer tests at runtime. This is demonstrated in sccllon 
4.2. The cost of the method is in tree generation time, which Is 
only done once, and in tree size at runtime. Tree generation timo, 
while not reported here, generally takes less than one second, with 
the largest trees taking tens of seconds. 

The decision tree generation method was evaluated using two : 
criteria, the total number of nodes in the trees and the average 
path length through the trees. Average path length is the most I 
important measure, since that is the runtime speed measure. I 

I 
I 

Generate an undirected graph. The filtering predicates 
represent nodes. Two nodes are connected if thay 
appear together in a filtering expression. 

Split the graph into connected components 

For each component, determine the set of filtering predicates 
and create a set of filtering expressions . 

For each set of filtering expressions, apply the decision tree 
generation procedure. 

Figure 7 Enhancement 
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Two workloads were analyzed, synthetic and actual. The 
synthetic workload consists of randomly generated filtering 
expressions over a single table. There were three degrees of 
Freedom in the generator, the total number of filtering predicates, 
the maximum number of predicates per expression, and the total 
number of expressions generated. Two reasonable values were 
chosen for each parameter, for a total of eight separate trials. The 
actual workload consisted of classifications from four expert 
system programs from the Texas Benchmark Suite, a suite of rule 
programs from the expert system community [2]. 

4.1 Test count 

The total number of tests in a tree is a size measure. The desired 
result is a test count that approaches that of naive. Decision trees 
were generated using the ntive and decision tree approaches for 
different compositions of rules. 

The test counts for the actual and synthetic workloads are shown 
in tables 1 and 2. In all instances, the decision tree method 
generated more tests than the ndive method. This is expected. In 
three instances (103-10, 10-6-10, and mom), the decision tree 
was extremely large. 

Table 4. Test Counts Table 1. Path Length 
Synth 

103-5 

10-3-10 

10-6-5 

10-6-10 

30-3-5 

30-3-10 

30-6-5 

30-6-10 

ic Workload 

Naive Tree 

10 30 

19 511 

13 103 

24 999 

10 16 

20 71 

13 98 

25 111 

Table 3. Test Counts 
Act 11 Workload 

Naive Tree Naive Tree 

Mab 37 56 

Mom 75 1086 

Waltz 27 23 

Waltxdb 25 27 

IO-35 

10-3-10 

10-6-5 

10-6-10 

30-3-5 

30-3-10 

30-6-5 

30-6-10 

ic Workload 

Naive Tree 

12.3 8.3 

22.3 IO 

12.8 10.0 

25.5 11.0 

12.3 9.7 

24.3 16.8 

12.8 11.0 

25.8 20.8 

Table 2. Path Length 

Mab 18.4 10.8 

Mom 7.2 5.9 

Walt2 21.7 9.4 

Waltzdb 10.0 7.8 

4.2 PathLength 

The path length through the decision tree is a speed measure, and 
is therefore the primary figure of merit. Average path length was 
measured. This number represents the average number of tests 
performed during the trigger filtering stage in response to an 
individual database element. A lower number represents less 
work performed at nmtime. 

The system was tested under two workloads, a synthetic workload 
and a set of benchmark programs. The synthetic workload 
consisted of 10,000 randomly constructed elements. The exact 
same instance stream was used for each test. The instances were 
fed through each of the trigger filters generated during test count 
testing. 

The average path lengths for the actual and synthetic workloads 
are show in tables 3 and 4. In all cases. the decision tree method 
outperformed ntive by having a smaller average path length. 

5. Future Work 

Three areas of future work remain. The first is to develop a 
heuristic that further divides a connected component if the 
component is going to explode in space. The second is to 
integrate attribute testing costs into the tree generation heuristic. 

This will allow generation of efficient, trees for 
environments where there are non uniform predicate test 
costs. An example would be testing over complex data 
types such as images. A final area of future work is to 
support dynamic addition and deletion of filtering 
expressions. The current scheme completely regenerates 
the classification list and decision trees when the set of 
filtering expressions is modilicd. 

d Workload 
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6. Conclusion 

This paper presented an algorithm for implementing rule 
fiItering in active and trigger enabled databases. The core 
algorithm generates a decision tree that determines what 
rules or triggers might be enabled by an individual 
database element. This is accomplished by descending a 
database element down a decision tree. When the element 
reaches a tree leaf, the leaf contains a label listing the rule 
or trigger identifiers that might be enabled. The paper 
also presents an extension based on grouping rules into 
connected components that helps alleviate occasional 
exponential space explosion. In a sense, the decision tree 
represents a function whose domain is the set of all 
elements in a particular relation and whose range is the 
powerset of rules. It is important to note that, at runtime. 
the function is only evaluated with respect to individual 
elements. Boolean satisfiability calculations are not 
attempted at runtime. 

Decision trees generated by the technique outlined in this 
paper have the important property that the maximum path 
from the root to a leaf is bounded by the total number of 
filtering predicates, which is necessarily less than or 
equal to the maximum path for the straightforward nave 
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technique. Empirical evaluation shows that the average number of 
tests through the decision tree is less than the average number of 
tests using the ntive method for all tests data sets. 

The algorithm is based on a symbolic representation of the space 
of database elements. The state space is iteratively subdivided into 
regions that represent particular combinations of enabled rules. 
The ordered binary decision diagram (BDD) data structure is used 
to quickly and easily represent and manipulate the state space. 
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