
Detection and Resolution of Deadlocks in Distributed Database Systems

Kia Makki Niki Pissinou

Department of Computer Science The Center for Advanced Computer Studies

University of Nevada, Las Vegas University of Southwestern Louisiana

Las Vegas, Nevada 89154 Lafayette, LA 70504

kia~unh.edu pissinou@cacs.usl. edu

Abstract

Deadlock detection and resolution is one of the major com-

ponent of a successful distributed database management sys-
tem. In this paper, we discuss deadlock detection and res-

olution strategies and present two approaches for detecting

and resolving deadlocks in both general distributed database
systems and in distributed real-time database systems. Our
first approach is to collect information on connectivity of
nodes of the overall Transaction Wait-For Graph (TWFG)
of the distributed database system and then use these con-
nectivities information to build a local TWFG at each node
of the overall TWGF. We then detect the deadlocks by locat-
ing the cycles in each local TWFG. To resolve the deadlocks

the nodes involved in those cycles in each local T WFG, are
removed until there is no cycle in the local TWFGS. Our
second approach continuously checks for the occurrences of

a deadlock between different transaction trees. As soon as it
detects a deadlock it resolves it by aborting one of the trans-
action tree which has been initiated more recently. Some of
the advantages of our approaches over the approaches which
are using Probe messages are: (1) no extra storage required
to store different probe messages, (2) no false (Phantom)
deadlocks are reported, (3) detects and resolve all deadlocks.

In addition, our approaches use less messages and time to
detect and resolve all deadlocks in the existing TWFG of
the distributed database system.

1 Introduction

One of the major problems in the design of a distributed
database system is the detection and resolution of deadlocks.
The deadlock problem is intrinsic to a distributed database
system where lockhg is used as a mean of supporting con-
currency cent rol strategy. In distributed database systems,

users access the data objects of the database by executing
transactions. A transaction can be viewed as a process that
performs a sequence of reads and writes on the data objects.
The objective of concurrency control is to allow concurrent
execution of transactions and at the same time maintaining
the consistency of the database. In such an environment

Permission to make digitdhanl copies of all or pan of tila material for
personal or classroom use ia granted withnut fee provided that the copies
am aot made or distributed for profit or commercial advantage, the copy-
+ht notice, tbe We of the publication and its date appear, and notice is
gwen that copyright ia by permission of the ACM, Inc. To copy ethetwiee,
to mpubliab, to post on servers or to redistribute to lists, requires specific
pentskaion andlor fee.
CIKM ’95, Baltimore MD USA
01995 ACM 0-89791-812-6195111. .$3.50

a transactiorl must lock a data object before accessing it.
The use of locking for concurrency control introduces the
possibility that one transaction, may be suspended because
it requests a lock held by another transaction. One of the
commonly used concurrency control mechanism which guar-
antees consistency is based on two phase locking scheme [
Bernstein and Goodman]. The two phase locking imposes
a constraint on lock request and lock release actions of a
transaction. In such a system a deadlock occurs when a
set of transactions are circularly waiting for each other to
release resources.

Detecting deadlocks in distributed database systems is
a difficult task since no site has a complete and up to date
information about the entire system. Over the past several
years many distributed deadlock detection and resolution

algorithms have been proposed [2, 4, 6, 7, 8, 9, 10, 12, 13,
14, 15, 17, 18, 19, 20, 21, 23, 27, 28, 29, 30]. A good survey

of some of these distributed deadlock detection algorithms
can be found in [11, 16, 25, ‘26].

In this paper, we discuss some deadlock detection and
resolution strategies, and present two approaches for de-
tecting and resolving deadlocks in both general distributed
clatabase systems and in distributed real-time database sys-
tems. Our first approach ,collects information on connec-
tivity y of nodes of the overall Transaction Wait-For Graph
(TWFG) of the distributed database system and then uses
the information of these connectivities to build a local TWFG

at each node of the overall TWGF. It then detects the dead-
locks, by locating the cycles in each local TWFG. To resolve
the deadlocks the nodes involved in those cycles in each lo-
cal TWFG are removed until there is no cycle in the local

TWFGS. Our second approach, continuously checks for the
occurrences a deadlock between different transaction tries.
.4s soon as it detects a deadlock it resolves it by aborting
one of the transaction tree which has been initiated more
recently. Some of the advantages of our approaches over the

approaches which are using Probe messages are: (I) no ex-
t ra storage required to store different probe messages, (2)
no false deadlocks are reported, (3) detects and resolve all
deadlocks. In addition, our approaches use less messages
and time to detect and resolve all deadlocks in the existing

TVV’FG of the distributed database system.
The remainder of this paper is structured as follows.

In the next section we present an overview of the exist-
ing deadlock detection and resolution algorithms for dis-
t rlbuted database systems. In section 3, we provide our
distributed database model and the assumptions that are
1Iecessary for describing our deadlock detection and resolu-
I Ion approaches. Section 4, presents our first approach for

411

detecting and resolving deadlocks in distributed database
systems. Section 5, presents our second approach and its

application to distributed real time database syst ems. We
conclude with some final remarks.

2 Related Research

During the past several years, a significant amount of effort
has been focused on the development of the correct and ef-

ficient deadlock detection and resolution algorithms for dis-
tributed database systems. One brute force way to abort

and resolve deadlocks in distributed database systems, is to
use timeouts. In this approach, each transaction is given a

specified time interval to accomplish its task. A transaction
will be aborted if it has waited for more than its time in-

terval, after issuing a lock request. Since finding “a correct
timeout interval is very difficult in such an environment,
this strategy is not very practical. Furthermore, this strat-

egY maY cause a tr~saction to be aborted and restarted
repeatedly. To avoid this kind of situation we need to make
sure that we abort only those transactions which are directly
involved in a deadlock. This has led many researchers to dis-
cover different deadlock detection algorithms.

In general, deadlock detection algorithms for distributed
database systems can be classified into three groups [16, 26]:
Centralized, Hierarchical and Distributed.

The simplest way to detect and resolve deadlocks in dis-
tributed database systems is to appoint one site as a Cen-
tral site whkh will be responsible for constructing the global
TWFG, and then to search it for possible cycles [13, 15]. The
central site may maintain the global TWFG constantly, or
it may construct it whenever there is a need for deadlock
detection. In such a centralized system all sites request and

release resources by sending request/release resource mes-
sages to the central site. When the central site receives
a request/release resource message it updates its T WFG.
The central site continuously checks for deadlocks in the
TWFG by searching for cycles in TWFG. Although a cen-
tralized deadlock detection algorithm is simple and easy to
implement (and may be practical and efficient for local net-
works), it may impose a very large communications cost in

geographically distributed systems. An obvious drawback
of this algorithm is that the central site is unfairly burdened
with responsibility and with message traffic. Also, the reli-

ability is poor because if the central site which has all the
status information fails, the entire system comes to halt.

In the hierarchical deadlock detection algorithms [15],
sites are arranged in a hierarchical fashion (or tree), and
a site detects deadlocks involving only its descendant sites.
When these hierarchical deadlock detection algorithms are
used, sites are grouped as clusters based on resource ac-

cess patterns, and clusters are organized in a hierarchical
fashion. In each cluster, a designated site is responsible for
detecting deadlock within the cluster using a centralized al-
gorithm. Unlike centralized algorithms the entire system
does not come to halt if a single site fails. Also, sites that
do not belong to clusters involved in deadlocks are not both-
ered with the deadlock detection activities. The hierarchical
deadlock detection algorithms would not be very effective,
if most deadlocks involved many clusters.

Distributed deadlock is harder to detect, since each site
has only a local view of the whole system, and therefore
collaboration of the sites is required to detect deadlocks in-
volving more than one site. In distributed deadlock detec-
tion algorithms, all sites collectively cooperate and equally
contribute in detecting and resolving deadlocks. Unlike cen-

tralized deadlock detection and resolution algorithms, dis-
tributed ones are not vulnerable to a single point of failure.

Also no site is swamped with deadlock detection activity.
Due to the lack of a globally shared memory, distributed

deadlock detection algorithms are difficult to design. A
distributed deadlock detection algorithm can be initiated
whenever a transaction is forced to wait. Over the past
several years many distributed deadlock detection and res-
olution algorithms have been proposed [6, 7, 8, 23].

There are two main approaches for detecting deadlocks
in distributed databases. The first approach is to construct a
global system state [20, 23]. The second approach is to send
a special message called a Probe [7]. A Probe travels along
the edges of the global TWFG, and a deadlock is detected

when a probe message returns to its initiating process.
One of the earliest distributed deadlock detection algo-

rithm is by Menasce and Muntz [20]. They have utilized the
idea of of a Transachon Wait-For Graphfor a centralized
case. The basic idea underlying this algorithm, is to build
a local Transaction Wait-For Graph at each site. During a
deadlock detection process each site sends its local TWFG
to a number of neighboring sites. Each site after updating
its local TWFG, sends its local TWFG to its neighboring
sites. This process continues until eventually some site de-
velops a complete TWFG of the entire distributed database

system, and then checks the TWFG for existence of dead-

locks. Obermarck’s algorithm [23] improves upon Menasce
and Muntz’s algorithm by reducing the number of messages
required for passing the local TWFG around in order to
construct the global TWFG and decreasing deadfock detec-
tion overhead. This improvement is achieved by providing
total ordering for transactions, and by allowing each site to
extract the nonlocal portion of the global TWFG and then
send it to its neighboring sites for constructing the global
TWFG. One of the advantages of these kind of algorithms
is that they do not require that the global TWFG be built
and maintained in order for deadlocks to be detected. In
the literature, these kind of algorithms are referred to as a
Path-Pushing algorithms.

Unfortunately, both algorithms have been shown to be
incorrect. Menasce and Muntz’s algorithm has been shown

to be incorrect by Gliger and Shattuck [12], and Obermarck’s
algorithm has been shown to be incorrect by Knapp [16] and
Elmagarmid [11]. Specifically, they shat these algorithms
can not detect all the deadlocks, or that they detect Phan-

tom deadlocks (deadlocks that are non-existent). The resea-
son for this is that the local TWFGS that are propagated to
other sites may not collectively represent the global TWFG.

Moss [?~] was first to use special messages called Probes
in order to detect deadlocks in distributed database sys-
tems. Moss’s algorithm propagates special messages, called

Probes, along the edges of the TWFG in order to search for
cycles in TWFG. Probe messages are concerned exclusively
with deadlock detection and are distinct from resource re-
quests/releases. A Probe is a triplet (i, j, k) denoting that it
belongs to a deadlock detection initiated for process P,, and

it is being sent from process Pj on one site to process pk
on another site [26]. In Moss’s algorithm search for dead-
locks is initiated whenever a transaction becomes blocked
and waits for another transaction. A transaction does not
maintain any information regarding transactions that wait
for it. Hence, the algorithm requires transactions to initiate
deadlock detection activities periodically.

Moss’s algorithm was later improved by Chandy and
Misra [6], Mitchell and Merritt [21] and Sinha and Natarajan
[27]. In Mitchell and Merritt’s algorithm, Probes are sent

in the opposite directions of the edges of the TWFG. When
the Probe comes back to its initiator, the initiator declares

deadlock. Sinha and Natarajan’s algorithm, improves these

algorithms by using priorities for transactions to minimize
the number of messages initiated for detecting deadlocks. In
their afgorithm a deadlock detection is initiated only when
there is an antagonistic conflct (an antagonistic conflict is
said to occur when a transaction waits for a data object that
is locked by a lower priority transaction[26]).

In the literature [16,26], these kind of algorithms are re-
ferred to as an Edge- Chasing algorithms. The problem with
most of the algorithms that use Probes [7,8], is that only
those deadlocks in which the initiator is involved can be
detected. If the initiator is waiting outside a deadlock, its

probes are of no use in detecting the deadlock; it only adds
up to message traffic in the system.

3 Distributed Database Model and Assumptions

A distributed database system consists of a collection of
N database sites, S1 , S2, ,...., SN, (each of which consti-
tutes a centralized database system) which do not share a
common memory or clock. The database sites are inter-
connected through a communication network, and the sites
communicate with each other only by sending messages. ,No

assumption is made regarding the underlying network topol-

ogy. However, it is assumed that the underlying network is
reliable and sit es do not crash. It is further assumed that

messages send by any site arrive sequentially and in finite
time.

In such system, users access the data objects of the data
base by executing transactions. A transaction can be viewed

as a process that performs a sequence of operations (such
as read, write, lock, or unlock) on the data objects. The
data objects of a database can be viewed EMresources that
are requested/ released by transactions. A transaction may
consists of several subtransactions, that normally execute at
different sites. We assume that if a single transaction runs
by itself in a distributed database system, it will terminate

in finite time and release all resources. We also assume that
there are K transactions denoted by, T1, Tz, T]: run-

ning simultaneously on the distributed database.

A transaction can be in one of two states: active or
blocked. If a transaction has a lock request pending then
it is in the bloked state, otherwise it is active. A transaction
changes its state from active to wait if its lock request can
not be granted. We assume that distributed transactions
are represented by a group of processes which act on behalf
of the transactions.

Most deadlock detection algorithms for distributed data
base systems, detect deadlocks by finding cycles in a Trans-
action Wait-For Graph (TWFG), in which each node repre-

sents a transaction, and a directed edge from one transaction
T, to another transaction T, indicates that T, is waiting for
a data object locked by transaction T,. Deadlocks can be re-
solved by aborting one or more transactions involved in the
cycles of the T WFG, Finding cycles in a distributed Trans-
act ion Wait-For Graph where no single site knows the entire
graph, has been considered as one of the challenges in this
area.

4 Deadlock Detection Algorithm A

In this section we describe our first approach for detecting
and resolving deadlocks in a distributed database system.
The approach is to collect information on connectivity of

nodes of the overalf Transaction Wait-For Graph (TWFG)
of the distributed database system, and then to use the in-
formation of these connectivities to build a local TWFG at
each node of the overall TWGF. Deadlocks are detected by

locating the cycles in each local TWFG. To resolve the dead-
locks the nodes involved in those cycles in each local TWFG
are removed until there is no cycle in the Iocaf TWFGS.

4.1 Description of the Algorithm A

In this algorithm, we assume that each node (process) in the
overall Transact ion Wait- For Graph (T WFG) has a unique
label denoted by al, a2, am where m is the number of
nodes in the overall TWFG. We define a partiaf path to be
a sequence of labels of some sites. We further assume that
each node in the overall TWFG haa a local TWFG which is
initially set to empty and as nodes receive the partiaf paths
through their incoming edges they graduafly build their local
TWFGS.

Our deadlock detection and resolution algorithm gets ini-
tiated when a blocked process in TWFG, initiates a dead-
lock detection message after waiting for its resource request
for some pre-specified period of time. This deadlock detec-
tion message will carry a First-In-First-Out (FIFO) Queue
of node labels. Initially, the initiator node appends its own
label to the FIFO Queue of this deadlock detection mes-
sage. It then sends this deadlock detection message along
with its FIFO Queue to all of its immediate neighbors which
are connected to this node through its outgoing edges.

In this algorithm, whenever a node in the overall TWFG
receives such a deadlock detection messaee alomz with its
queue, it first checks to see if it has any o;tgoing” edges. If
the node does not have any outgoing edges (i.e. it is a sink
node which is an active node) then the deadlock detection
message will remain in that node. Otherwise the following
steps will take place at that node.

Step 1 It appends its own label to the end of the partial
path given in the FIFO Queue of the deadlock detec-

tion message.

Step 2 It adds the partial path given in the FIFO Queue
to its partially developed local TWFG.

Step 3 It checks the partial path to see if its label has oc-
curred in the partial path string twice (i.e. to see if this
partial path has been at this node once before). If this
partial path has been at this node once before then it
does nothing, otherwise it forwards the received dead-
lock detection message along with its FIFO Queue to
all of its immediate neighbors, which are connected to
this node through its outgoing edges.

This process will continue until all the deadlock detection

messages propagate through the edges of the overall TWFG
and stop at some nodes of the overall TWFG which find

their labels occurring in the partial path in the FIFO Queue
of the message twice.

When all deadlock detection messages have arrived at
their destinations, and have been settled at some nodes of
the overall TWFG (i.e. no deadlock detection messages are
in transit), then each node of the overall TWFG uses its own
local TWFG which has been constructed during deadlock
cletection message passings to detect possible deadlocks in
the distributed database system.

We sequentially check each local TWFG for possible cy-
cles starting for example from site SI. This process can be

413

done byusing one of the graph traversal algorithms such as
Breadth-First-Search (BFS) or Depth-First-Search (DFS).

Theprocess starts from site S, fori=l as follows:

1. Ifthere isnocycle insite S,’slocal TWFG, andi is not
equal to n then go to site S,+l and go to step 1. Oth-
erwise, terminate the deadlock detection algorithm. If

there aresome cycles in site S,’s local TWFG then go
to step 2.

2. Choose a node, (as a victim) for abortion which has
created maximum number of cycles in that local TWFG,
After the chosen node is aborted, site S, updates its
local TWFG and then it informs the sites which are
using this node in their locaf TWFGS to eliminate this
node and its incident edges from their local TWFGS.
Then go to step 2. (the victim selection and abortion
will be continued on the local TWFG at site S, until

there no more cycle can be found in that local TWFG).

3. If i = n then terminate the deadlock detection algo-
rithm. Otherwise, repeat steps 1 and ‘2 respectively for
next site in sequence (i.e. site S,+ I),

4.2 Correctness of the Algorithm A

In this section, we show that the deadlock detection and res-
olution algorithm presented in the previous section is cor-
rect. To show that the algorithm A is correct, we have to
prove that: (1) It terminates after a finite amount of time;
(2) It does not report false (Phantom) deadlocks; (3) It does
detect all deadlocks in the overall TWFG that are reachable
from the node that initiates deadlock detection algorithm.
The following theorems, show that the algorithm A termi-

nates in finite amount of time, detects all deadlocks, and it
does not report Phantom deadlocks.

does not report a false cycle. This is trivial, since accord-
ing to the algorithm A there must be an actuaf cycle in the
overall T WFG in order for algorithm to report it. Hence, no
false cycle can be reported and therefore no false (Phantom)
deadlocks can be reported by algorithm A. •l

Theorem 3: Algorithm A detects all the deadlocks in the
overall TWFG that are reachable from the node that initi-
ates deadlock detection algorithm.

Proof. In order to show that algorithm A detects all the
deadlocks in the overall TWFG that are reachable from the
node that initiates deadlock detection algorithm, we need
to show that algorithm A finds all the possible cycles in the

overall TWFG that are reachable from the node that initi.
ates the deadlock detection algorithm. Assume the contrary,
and that there is at least one cycle in the overall TWFG
which has not been picked up by the algorithm. We show
that this is not possible. Lets assume that the cycle consists
of nodes al, am, a=, al. Since this cycle is included
in the overall TWFG that is reachable from the node that
initiates a deadlock detection message, one of the deadlock

detection messages must arrive at one of the nodes in this
cycle. Otherwise this cycle does not belong to this over-
all TWFG. It belongs to some other independent TWFG.
So if one of the deadlock detection messages must arrive
at one of the node in that cycle, then assume node aP is
that node. Since node aP belongs to the cycle al, am,

al, then according to the algorithm one the deadlock detec-
tion messages must be leaving the node aP through one of

its outgoing edges to another node in that cycle and so on.
Therefore, eventually a deadlock detection message which
has aP as part of its partial path will arrive at aP (again

since aP is on that cycle). Hence, that cycle will be detected
by the algorithm A. ❑

Theorem 1: Algorithm A terminates after a finite amount
of time. 5 Deadlock Detection Algorithm B

In this section we describe our second approach for detect-
Proo~. In order to show that algorithm A terminates in a ing and resolving deadlocks in a distributed database sys-
finite amount of time, we need to show that all the deadlock tern. This approach continuously checks for the occurrences
detection messages which have been sent through the overall a deadlock between different transaction trees and as soon
Transaction Wait-For Graph’s nodes will eventually rest at as it detects a deadlock it resolves it by aborting one of the
some nodes in the overall T WFG. The following two cases transaction trees which has been initiated more recently.
show that this is indeed the case.

Case 1: A deadlock detection message eventually reaches

a node in the overall TWFG which does not have any
outgoing edges (i.e. it is an active node). In this
case, the deadlock detection message will rest at that
node and no further propagation of that message takes

place.

Case 2: A deadlock detection message eventually reaches
a node in the overall TWFG with a partiaf path that
contains the label of this node twice. AC thk point ac-
cording to the algorithm the deadlock detection mes-
sage will rest at that node without further propagation
through the overall TWFG. ❑

Theorem 2: Algorithm A does not report false (Phantom)
deadlocks.

Proof. In order to show that the algorithm A does not re-
port false deadlocks, we need to show that the algorithm

5.1 Description of the Algorithm B

In this algorithm, we assume that each original transac-
tion has a unique global identifier and all the nodes in the
transaction tree that are generated by a given transaction
will have the same identifiers as their originator’s identi-
fier. Also, we assume that each node in the transaction tree
knows who is its predecessor node. [n addition, we assume
that when two transaction trees will join for the first time
(via a request made from one node in one transaction tree
to a node in the second transaction tree), the transaction
tree that has been initiated earlier will get the ID of the
other transaction tree and store it in its root. This informa-
tion is needed for detecting potentiaf deadlocks when such
transaction trees try to connect again.

Initially, we assume each transaction starts its transac-
tion tree independent of other transactions. However, as
these transaction trees expand and branch out over the dis-
tributed database system, they may colide with one another,
over some resources which may cause distributed deadlocks.

414

Algorithm B continuously checks for the occurrences a
deadlocks between different transaction trees using the fol-

lowing steps:

Step 1 Whenever a node from one transaction tree requests
for a resource hold by a node from another transaction
tree for the first time, let this request be made suc-
cessfully by joining the two transaction trees via the
directed edge initiating from the node which has made
the request to the node which is holding the requested
resource. Then store the If) of the transaction tree
which has more recent initiation time among the two
transaction trees, in the root of the other transaction
tree.

Step 1 If these two transaction trees try to connect again
via some other request, then before the connection can

take place, check to see if this new connection will
cause a deadlock. If it does, one of the transaction
trees has to be aborted. In this case, the transaction
tree which has been initiated more recently is aborted.

For implementing step 1 and 2, we use an efficient im-
plementation of the classical Union and Find operations. In
step 1 of algorithm B, in order to find out if two transaction
trees are trying to connect for the first time or not, we need
to apply the Find operation to see if these two transaction
trees have different root IDs. If they have, we know that the
two transaction trees are trying to connect for the first time,

and thatthe algorithm allows the connection to take place.
However, in step 2 the algorithm uses the Find operation
to discover that the two transaction trees have already been
connected at some nodes. So in that step we need to check
for a potential deadlock.

In step two the algorithm checks for a potential deadlock
by sending a reverse Probe message along the reverse path

of the transaction tree which has requested the resource.
The reverse Probe message initially starts from the node
requesting for resource from a node in the other transac-
tion tree, The reverse Probe message carries the ID of the

transaction tree which has requested the resource. In or-
der to avoid overloading the system with unwanted reverse

Probe messages propagating through the overall TWFG, we
restrict the reverse Probe to only travel through the edges
with oposit e dkect ions. Therefore, the reverse Probe can
not travel through forward (outgoing) edges. This restric-
tion allows the reverse Probe to check for the cycle between
the two transaction trees in a very efficient way without cre-
ating too many unnecessary Probe messages.

If the reverse Probe message eventually comes back through
the opposite direction to the node which has initiated the
reverse Probe, then there is a cycle between the two trans-

action trees and therefore there is a deadlock and we need
to abort the most recent transaction. However, if after some
pre-specified time interval the requested node does not hear
from the reverse Probe message this should indicate that
eventhough the two transaction trees are connected at some
point already but the connection is a safe connection (i.e.
is not creating a deadlock), Hence the requesting node can
safely wait for its request and neither of the transaction trees
are required to be aborted.

Our second approach can be very useful in distributed
real-time datatbase systems, where there are ime constraints
on the transactions (i.e. transactions must finish before their
deadlines), and we can not afford to wait around too long
for the detection and resolution of deadlocks.

5.2 Correctness of the Algorithm B

In this section, we show that the deadlock detection and res-
olution algorithm presented in the previous section is cor-
rect. To show that the algorithm B is correct, we need to
prove the following theorem.

Theorem 4: The algorithm B (1) It terminates after a

finite amount of time; (2) It does not report false (Phantom)
deadlocks; (3) It does detect all deadlocks.

Proof. The detail proof of this theorem is provided in [19].
Here we try to justify only the first item in the theorem
which is trivial because we have a pre-specified time interval
for the reverse Probe to determine if there is a deadlock or
not. Therefore, the algorithm B always terminates after a
finite amount of time. ❑

6 Concluding Remarks

In this paper, we have discussed deadlock detection and
resolution strategies, and proposed two approaches for de-
tecting and resolving deadlocks in both general distributed
database systems and in distributed real-time database sys-
tems. Our first approach is to collect information on con-
nectivity of nodes of the overall Transaction Wait-For Graph
(TWFG) of the distributed database system and then use
these connectivities information to build a local TWFG at
each node of the overall T WGF. We then detects the dead-
locks by locating the cycles in each local T WFG. To resolve
the deadlocks the nodes involved in those cycles in each lo-
cal TWFG are removed until there is no cycle in the local
TWFGS. Our second approach continuously checks for the
occurrences a deadlock between different transaction trees
and as soon as it detects a deadlock it resolves it by abort-
ing one of the transaction tree, that has been initiated more

recently. Some of the advantages of our approaches over the
approaches which are using Probe messages are: (1) no ex-
tra storage required to store different probe messages, (2)
no false (Phantom) deadlocks are reported, (3) detects and

resolve all deadlocks. In addition, our approaches use less
messages and time to detect and resolve all deadlocks in the

existing TWFG of the distributed database system.
Our second approach can be very useful in the distributed

real-time datatbase systems where there is a time constraints
on the transactions (i.e. transactions must finish before their
deadlines) and we can not afford to wait around too long for
the detection and resolution of deadlocks.

References

[1]

[2]

[3]

[4]

B. Awerbuch and S. Micali, “Dynamic Deadlock De-

tection Protocols,” In Proceedings of the Foundations
of Computer Sctence, IEEE, New York, October 1986.

D. J. Badal “The Distributed Deadfock Detection
Algorithm,” ACM Transaction on Computer Systems,

November 1986.

P. A. Bernstein and N. Goodman, “Concurrency Con-
trol in Distributed Database Systems,” ACM Comput-

ing Surveys, Vol. 13, pp. 185-221, June 1981.

G. Bracha and S. Toueg, ‘LA Distributed Algorithm
for Generalized Deadlock Detection,” In Proceedings
of the A Clf Symposium on Principles oj Distributed

415

Computmg, Vancouver, Canada, pp. 285-301, August
1984.

[5] K. M. Chandy and L. Lamport, “Distributed Snap-
shots: Determining Global States of Distributed Sys-

[6]

[7]

[8]

[9]

[10

[11

[12

[13

[14

[15

[16

[17

[18

terns,” ACM Transaction on Programming Langua;e$

and Systems, Vol. 3, No. 1, pp. 63-75, February 1985.

K. M. Chandy and J. Misra, “A Distributed Algorithm
for detecting Deadlocks in Distributed Systems,” In
Proceedings of the A Chl SympoYtum on Principles of

Distributed Computing, Ottawa, Canada, pp. 157-164,
August 1982.

K. M. Chandy, J. Misra, and L. M. Haas, “Distributed
Deadlock Detection,” ACM Transaction on Computer

Systems, Vol. 1, pp. 144-156, May 1983.

A. L. Choudhary, W. H. Kohler, J, A. Stankovic, and
D. Towsley, “A Modified Priority Based Probe Algo-

rithm for Distributed Deadlock Detection and Reso-
lution,” IEEE Transaction on Software Engineering,

Vol. 15, No. 1, pp. 10-17, January 1989.

A, K. Elmagarmid, N. Soundarajan and M. T. Liu,
“A Distributed Deadlock Detection and Resolution Al-
gorithm and its Correctness,” IEEE Transaction on

Software Engineering, October 1988.

] A. K. Elmagarmid, ‘(Deadlock Detection and Reso-
lution in Distributed Processing Systems,” Ph.D. Dis-

sertation, Dept. of Computer and Injormat~on Sci-

ence, Ohio State University, Columbus, Ohio 1985.

] A. K. Elmagarmid, ‘(A Survey of Distributed Dead-

lock Detection Algorithms,” A CJf SIGMOD RECORD

Vol. i5, No. 3, September 1986.

] V. Gligor and S. Shattuck, “On Deacllock Detec-
tion in Distributed Databases,” IEEE Transaction on

Software Engineering, Vol. 6, No. 5, September 1980.
ACM Computing Surueys, Vol. 13, pp. 185-221, June
1981.

] J. N. Gray, “Notes on Database Operating Systems,”

in Operating Systems: An Advanced Course, Springer-
Verlag, New York pp. 393-481, 1978.

] L. M. Haas and C. Mohan, “A Distributed Deadlock
Detection Algorithm for Resource Based Systems,” lBM
Research Laboratory, Res. Rep. RJ 3765, San Jose
California, 1981.

] G. S. Ho and C. V. Ramamoorthy, “Protocols for
Deadlock Detection in Distributed Database Systems,”
IEEE Transaction on Software Engineering, Vol. 8,
No, 6, November 1982.

] E. Knapp, “Deadlock Detection in Distributed Dalabase
Systems,” A CJf Computzng Surveys, Vol. 19, No. 4,
December 1987.

] A. D. Kshemkalyani and M. Singhaf, “An Invariant-
Based Verification of a Priority-Based Probe Algorithm
for Distributed Deadlock Detection and Resolution,”
IEEE Transaction on Software Engineering, Vol. 17,
No. 8, August 1991.

] A. D. Kshemkalyani and M. Singhal, “Efficient De-
tection and Resolution of Generalized Distributed Deacl-
locks,” Ohio State University Technzcal Report, Dept.
of CIS, Columbus, Ohio, July 1990.

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

] K. Makki and N. Pissinou, “On Deadfock Detec-
tion and Resolution in Distributed Database Systems, ”
Technical Report, The Center For Advanced Computer
Studies, The University of Southwestern Louisiana,

Lafayette, LA, 1994.

] D. E. Menasce and R. R. Muntz, “Locking and

Deadlock Detection in Distributed Databases,” IEEE

Transaction on Software Engineering, Vol, 5, No. 3,
May 1979.

] D. P. hlitchell and M. j. Merritt, “A Distributed
Algorithm for Deadlock Detection and Resolution,” In
Proceedings of the ACM Conference on Principles of

Dwtributed Computing, New York, pp. 282-284, Au-
gust 1984.

] J .E.B. Moss, “Nested Transactions: An Approach

to Reliable Distributed Computing,” Technics/ Report

260 Laboratory of Computer Science, Massachusetts
Institute of Technology Cambridge, MA, April 1981.

] R. Obermarck, “Distributed Deadlock Detection Al-
gorithm,” ACM Transaction on Database Systems, Vol.
7, No. 2, pp. 187-208, June 1982.

] P. K. Reddy and S. Bhalla, “Deadlock Prevention
in a Distributed System,” ACM SIGMOD RECORD,

Vol. 22, No. 3, September 1993.

] M. Singhal, “Deadlock Detection in Distributed Sys-

tems,” IEEE Computer, November 1989.

] M. Singhal and N.G. Shivaratri, “Advance Concepts

in Operating Systems,” McGraw-Hills, 1994.

] hf. K Sinha and N. Natarajan, “A Priority Based

Distributed Deadlock Detection Algorithm,” IEEE Trans-

action on Software Engineering, Vol. 11, No. 1, Jan-
uary 1985.

] K. Sugihara, T. Kikuno, N. Yoshida and M. Ogata,
‘(A Distributed Algorithm for Deadlock Detection and
Resolution,” In Proceedings of the ~th Sympos:um on

Reliability in Distributed Software ans Database Sys-

tems, October 1984.

] C. F. Yeung, S. L. Hung and K. Y. Lam, “Per-
formance Evaluation of a New Distributed Deadlock
Detection Algorithm ,“ In ACM SIGMOD RECORD,

Vol. 23, No. 3 pp. 21-26, September 1994.

] C. F. Yeung, S. L. Hung, K. Y. Lam and C.. K.
Law, “A New Distributed Deadlock Detection Algo-
rithm for Distributed Database Systems, ” In Proceed-

ings of 1994 IEEE TENCON, pp. 506-510, 1994.

