On the Storage and Retrieval of Continuous Media Data

Banu Ozden

Rajeev Rastogi

Avi Silberschatz

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

{ozden, rastogi, avi}@research.att.com

Abstract

Continuous media applications, which require a guar-
anteed transfer rate of the data, are becoming an in-
tegral part of daily computational life. However, con-
ventional file systems do not provide rate guarantees,
and are therefore not suitable for the storage and re-
trieval of continuous media data (e.g., audio, video).
To meet the demands of these new applications, con-
tinuous media file systems, which provide rate guar-
antees by managing critical storage resources such as
memory and disks, must be designed.

In this paper, we highlight the issues in the stor-
age and retrieval of continuous media data. We first
present a simple scheme for concurrently retrieving
multiple continuous media streams from disks. We
then introduce a a clever allocation technique for stor-
ing continuous media data that eliminates disk la-

tency and thus, drastically reduces RAM requirements.

We present, for video data, schemes for implementing
the operations fast-forward, rewind and pause. Fi-
nally, we conclude by outlining directions for future
research in the storage and retrieval of continuous me-
dia data.

1 Introduction

The recent advances in compression techniques and
broadband networking enable the use of continuous
media applications such as multimedia electronic-mail,
interactive TV, encyclopedia software, games, news,
movies, on-demand tutorials, lectures, audio, video
and hypermedia documents. These applications de-
liver to users continuous media data like video that is
stored in digital form on secondary storage devices.
Furthermore, continuous media-on-demand systems
enable viewers to playback the media at any time and
control the presentation by VCR like commands.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

CIKM '94- 11/84 Gaitherburg MD USA

© 1994 ACM 0-89791-674-3/94/0011..$3.50

322

An important characteristic of continuous media
that distinguishes it from non-continuous media {(e.g.,
text) is that continuous media has certain timing char-
acteristics associated with it. For example, video data
is typically stored in units that are frames and must be
delivered to viewers at a certain rate (which is typ-
ically 30 frames/sec). Another feature is that most
continuous media types consume a large storage space
and bandwidth. For example, a 100 minute movie
compressed using the MPEG-I compression algorithm
requires about 1.25 gigabyte (GB) of storage space.
At a cost of 40 dollars per megabyte (MB), storing a
movie in RAM would cost about 45,000 dollars. In
comparison, the cost of storing data on disks is less
than a dollar per megabyte and on tapes and CD-
ROMs, it is of the order of a few cents per megabyte.
Thus, it is more cost-effective to store video data on
secondary storage devices like disks.

Given the limited amount of resources such as mem-
ory and disk bandwidth, it is a challenging problem
to design a file system that can concurrently service
a large number of both conventional and continuous
media applications while providing low response time.
Conventional file systems provide no rate guarantees
for data retrieved and are thus unsuitable for the stor-
age and retrieval of continuous media data. Continu-
ous media file systems, on the other hand, guarantee
that once a continuous media stream (that is, a re-
quest for the retrieval of a continuous media clip) is
accepted, data for that stream is retrieved at the re-
quired rate.

The fact that the secondary storage devices have
relatively high latencies and low transfer rates makes
the problem more interesting. For example, besides
the fact that disk bandwidths are relatively low, the
disk latency imposes high buffering requirements in
order to achieve a transfer rate close to the disk band-
width. As a matter of fact, in order to support mul-
tiple streams, the closer the transfer rate gets to the
disk bandwidth the higher the buffering requirements
become. However, since the number of concurrent re-
quests that can be serviced concurrently is dependent
on both the buffering and bandwidth requirements,
increasing transfer rate does not necessarily increase
the number of requests that can be serviced concur-
rently.

inner track transfer rate Tdisk | 68 Mb/sec
Settle time tsertie | 0.6 msec
Seek time {worst case) tseex | 17 msec
Rotational latency (worst case) | i, 8.34 msec

Figure 1: The characteristics of Seagate Barracuda 2
disk.

In order to increase performance, schemes for re-
ducing the impact of latency, as well as solutions for
increasing bandwidth must be devised. Clever stor-
age allocation schemes [2, 12, 3] as well as novel disk
scheduling schemes [1, 11, 7, 13, 9] must be devised
to reduce or totally climinate Iatency so that buffer-
ing requirements can be reduced while bandwidth is
utilized effectively. Storage techniques based on mul-
tiple disks such as replication and striping must be
employed to increase the bandwidth.

In this paper, we first present a simple scheme
for concurrently retrieving multiple continuous me-
dia streams from disks. We then show, how by em-
ploying novel striping techniques for storing continu-
ous media data, we can completely eliminate disk la-
tency and thus, drastically reduce RAM requirements.
We present, for video data, schemes for implementing
the basic VCR operations fast-forward, rewind, and
pause. We conclude by outlining directions for future
research in the storage and retrieval of continuous me-
dia data.

2 Retrieving Continuous Media Data

In this section, we briefly review characteristics of
disks (additional details can be found in [14]), and
present our architecture for retrieving continuous me-
dia streams from disks. We then outline a simple
scheme for retrieving multiple concurrent continuous
media streams from disks, and compute the buffer re-
quirements of this scheme.

Data on disks is stored in a series of concentric
circles, or tracks, and accessed using a disk head. A
disk rotates on a central spindle and the speed of ro-
tation denotes the transfer rate of the disk. Data on
a particular track is accessed by positioning the head
on (also referred to as seeking to) the track contain-
ing the data, and then waiting until the disk rotates
enough so that the head is positioned directly above
the data. Seeks typically consist of a coast during
which the head moves at a constant speed and a set-
tle, when the head position is adjusted to the desired
track. Thus, the latency for accessing data on disk
is the sum of seek and rotational latency. Another
feature of disks is that tracks are longer at the out-
side than at the inside. A consequence of this is that
outer tracks may have higher transfer rates than in-
ner tracks. Figure 1 illustrates the notation we use
for disk characteristics and the characteristics of the
Seagate Barracuda 2 disk (we choose the disk transfer
rate to be the transfer rate of the innermost track.)

In our architecture, we assume that continuous me-
dia clips are stored on disks and must be delivered at
a rate Tmeq. Lhe continuous media system is respon-
sible for retrieving data for continuous media streams
from disk into RAM at rate 7,,.q. The data is then
transmitted over a network to clients where they are
delivered at the required rate. In this paper, we re-
strict ourselves to the problem at the server end -
that is, the task of retrieving multiple continuous me-
dia streams from disk to RAM concurrently.

The maximum number of concurrent streams, de-
noted by p, that can be retrieved from disk is given

by
Tdisk
= 1
I-Tmed J ()

A simple scheme for retrieving data for m contin-
uous media streams concurrently is as follows. Con-
tinuous media clips are stored contiguously on disk
and a buffer of size d is maintained in RAM for each
of the m streams. Continuous media data is retrieved
into each of the buffers at a rate 7,,.4 in a round robin
fashion, the number of bits retrieved into a buffer dur-
ing each round being d. In order to ensure that data
for the m streams can be continually retrieved from
disk at a rate 7.4, in the time that the d bits from m
buffers are consumed at a rate r,,.4, the d bits follow-
ing the d bits consumed must be retrieved into the
buffers for every one of the m streams. Since each
retrieval involves positioning the disk head at the de-
sired location and then transferring the d bits from
the disk to the buffer, we have the following equation.

d
Z m- (+ tseek + trot)
Tmed Tdask
In the above equation, - —d— is the time it takes to

transfer d bits from disk, and tseek + 1,01 is the worst
case disk latency. Hence the size d of the buffer per
stream can be calculated as

(tseek + t’rot) *Tmed * Tdisk) (2)

d>
- (ﬂ;:& - Tmed)

Thus, the buffer size per stream increases both with
latency of the disk and the number of concurrent
streams. In the following example, we compute for a
commercially available disk, the buffer requirements
in order to support the maximum number of concur-
rent streams.

Example 1: Consider MPEG-I compressed video
data stored on a Seagate Baracuda 2 disk. The video
data needs to be retrieved at a rate of req =1.5
Mb/s. Thus, the maximum number of streams that
can be retrieved from the disk is 45. Since the worst-
case rotational latency of 8.34 msec and worst case
seek latency of 17 msec, the worst-case latency for
the disk is 25.34 msec. From Equation 2, it follows
that the minimum buffer size required in order to sup-
port 45 streams is 233 Mb. Since there is a buffer of
size d for every stream, the total buffer requirements
are 10 Gb. O

323

In the case of video streams, the VCR operations
pause, fast-forward, and rewind can be implemented
as follows. Pause is implemented by simply halting
the consumption of bits from the buffer for the stream.
Furthermore, the number of bits, d;, read into the
buffer during a round satisfies the following equality.

dy +ds =d

where ds is the number of unconsumed bits already
contained in the buffer before data is read into it.
Thus, it is possible that when a stream is paused,
no data is read into the buffer for the stream until
it is resumed again. Fast-forward is implemented by
simply skipping a certain number of bits in the con-
tinuous media clip between the d bits retrieved during
each successive round into the buffer for the stream.
Similarly, rewind is implemented by retrieving preced-
ing bits during each successive round, and skipping a
certain number of bits between the d bits retrieved
during successive rounds.

3 Matrix-Based Allocation

The scheme we proposed in Section 2 for retrieving
data for multiple continuous media streams had high
buffer requirements due to high disk latencies. In this
section, we present a clever storage allocation scheme
for video clips that completely eliminates disk latency
and thus, keeps buffer requirements low. However,
the scheme results in an increase in the worst-case
response time between the time a request for a con-
tinuous media clip is made and the time the data for
the stream can actually be consumed.,

3.1 Storage Allocation

In order to keep the amount of buffer required low,
we propose a new storage allocation scheme for con-
tinuous media clips on disk, which we call the matriz-
based allocation scheme. This scheme is referred to
as phase-constrained allocation in [2] when it is used
to store a single clip. The matrix-based allocation

scheme eliminates seeks to random locations, and thereby

enables the concurrent retrieval of maximum number
of streams p, while maintaining the buffer require-
ments as a constant independent of the number of
streams and disk latencies. Since continuous media
data is retrieved sequentially from disk, the response
time for the initiation of a continuous media stream
is high.

Consider a super-clip in which the various contin-
uous media clips are arranged linearly one after an-
other. Let ! denote the length of the super-clip in
seconds. Thus, the storage required for the super-clip
is [- med bits. Suppose that continuous media data is
read from disks in portions of size d. We shall assume
that I-7neq is a multiple of p-d.! Our goal is to be able
to support p concurrent continuous media streams. In
order to accomplish this, we divide the super-clip into

IThe length of the super-clip can be modified by appending
advertisements, etc. to the end of the super-clip.

3 . |
o L | |]
< g4 >

Figure 2: The super-clip viewed as a matrix.

p contiguous partitions. Thus, the super-clip can be
visualized as a (p x 1) vector, the concatenation of
whose rows is the super-clip itself and each row con-
tains ¢, - T'meq bits of continuous media data, where

Note that the first bit in any two adjacent rows are
t. seconds apart in the super-clip. Also, a continu-
ous media clip in the super-clip may span multiple
rows. Since super-clip data in each row is retrieved
in portions of size d, a row can be further viewed.as
counsisting of n portions of size d, where

_ te - Tmed
d

Thus, the super-clip can be represented as a (p x n)
matrix of portions as shown in Figure 2. Each portion
in the matrix can be uniquely identified by the row
and column to which it belongs. Suppose we now store
the super-clip matrix on disk sequentially in column-
major form. Thus, as shown in Figure 3, Column 1
is stored first, followed by Column 2, and finally Col-
umn 7.

We now show that by sequentially reading from
disk, the super-clip data in each row can be retrieved
concurrently at a rate rp,.q. From Equation 1, it fol-
lows that: d i

L=< =, 3)
Tdisk Tmed
Therefore, in the time required to consume d bits of
continuous media data at a rate 7,,.4, an entire col-
umn can be retrieved from disk. As a result, while
a portion is being consumed at a rate 7,,.4, the next
portion can be retrieved.

Suppose that once the n** column has been re-
trieved, the disk head can be repositioned to the start
of the device almost instantaneously. In this case, we
can show that p concurrent streams can be supported
while the worst case response time for the initiation of
a stream will be £.. The reason for this is that every
t. seconds the disk head can be repositioned to the
start. Thus, the same portion of a continuous media

1

324

clip is retrieved every t. seconds. Furthermore, for ev-
ery other concurrent stream, the last portion retrieved
just before the disk head is repositioned, belongs to
Column n. Since we assume that repositioning time
is negligible, Column 1 can be retrieved immediately
after Column n. Thus, since the portion following
portion (z,n) in Column n, is portion (i + 1,1) in
Column 1, data for concurrent streams can be re-
trieved from disk at a rate 7,,.4. In Section 3.3, we
present schemes that take into account repositioning
time when retrieving data for p concurrent streams.

3.2 Buffering

We now compute the buffering requirements for our
storage scheme. Unlike the scheme presented in Sec-
tion 2 in which we associated a buffer with every
stream, in the matrix-based scheme, with every row of
the super-clip matrix, we associate a row buffer, into
which consecutive portions in the row are retrieved.
Each of the row buffers is implemented as a circular
buffer; that is, while writing into the buffer, if the end
is reached, then further bits are written at the begin-
ning of the row buffer (similarly, while reading, if the
end is reached, then subsequent bits are read from the
beginning of the buffer).

With the above circular storage scheme, every %‘;
seconds, consecutive columns of the super-clip data
are retrieved from disk into row buffers. The size of
each buffer is 2-d, one half of which is used to read in a
portion of the super-clip from disk, while d bits of the
super-clip are consumed from the other half. Also, the
number of row buffers is p. The row buffers store the p
different portions of the super-clip contained in a sin-
gle column — the first portion in a column is read into
the first row buffer, the second portion into the second
row buffer and so on. Thus, in the scheme, initially,
the p portions of the super-clip in the first column are
read into the first d bits of each of the corresponding
row buffers. Following this, the next p portions in the
second column are read into the latter d bits of each of
the corresponding row buffers. Concurrently, the first
d bits from each of the row buffers can be consumed
for the p concurrent streams. Once the portions from
the second column have been retrieved, the portions
from the third column are retrieved into the first d
bits of the row buffers and so on. Since consecutive
portions of a super-clip are retrieved every ink seconds,
consecutive portions of continuous media clips in the
super-clip are retrieved into the buffer at a rate of
Tmed- Thus, in the first row buffer, the first n por-
tions of the super-clip (from the first row) are output
at a rate of rmeq, while in the second, the next n por-
tions (from the second row) are output and so on. As
a result, a request for a continuous media stream can
be initiated once the first portion of the continuous
media clip is read into a row buffer. Furthermore,
in the case that a continuous media clip spans mul-
tiple rows, data for the stream can be retrieved by
sequentially accessing the contents of consecutive row
buffers.

3.3 Repositioning

The storage technique we have presented thus far en-
ables data to be retrieved continuously at a rate of
Tmeq under the assumption that once the n!* col-
umn of the super-clip is retrieved from disk, the disk
head can be repositioned at the start almost instan-
taneously. However, in practice, this assumption does
not hold. Below, we present techniques for retrieving
data for p concurrent streams of the super-clip if we
were to relax this assumption. The basic problem is
to retrieve data from the device at a rate of r,.q in
light of the fact that no data can be transferred while
the head is being repositioned at the start. A sim-
ple solution to this problem is to maintain another
disk which stores the super-clip exactly as stored by
the first disk and which takes over the function of the
disk while its head is being repositioned.

An alternate scheme, which does not require the
entire super-clip to be duplicated on both disks, can
be employed if . is at least twice the repositioning
time. The super-clip data matrix is divided into two
submatrices so that one submatrix contains the first

[2] columns and the other submatrix, the remaining

| %] columns of the original matrix, and each sub-
matrix is stored in column-major form on two disks
with bandwidth 74,5%. The first submatrix is retrieved
from the first disk, and then the second submatrix is
read from the other disk while the first disk is reposi-
tioned. When the end of the data on the second disk
is reached, the data is read from the first disk and the
second disk is repositioned.

If the time it takes to reposition the disk to the
start is low, in comparison to the time it takes to read
the entire super-clip, as is the case for disks, then al-
most at any given instant one of the disks would be
idle. To remedy this deficiency, in the following, we
present a scheme that is more suitable for disks. In
the scheme, we eliminate the additional disk by stor-
ing, for some m, the last m portions of the column-
major form representation of the super-clip in RAM
so that after the first Ir,,.4 — md portions have been
retrieved from the disk into the row buffers, reposi-
tioning of the head to the start is initiated. Further-
more, while the device is being repositioned, the last
m portions of the super-clip are retrieved into the
row buffers from RAM instead of the device. Once
the head is repositioned and the last m portions have
been retrieved into the row buffers, the columns are
once again loaded into the row buffers from disk be-
ginning with the first column as described earlier in
the section. For the above scheme to retrieve data for
streams at a rate of 7,,.q, the time to reposition the
head must be less than or equal to the time to con-
sume m portions of continuous media data at a rate
of Tyneq, that is,

m-d

2 tseek + trot
Tmed

Thus, the total RAM required is md 4 2dp.

325

- 1st column

(1.1 (2,1) (p.1) (1.2 (2.2)

2nd column

- nth column

(p.2) (1,m) (2.n) (P

{ [

Jul] | .

-4 =

Figure 3: Placement of n columns of the super-clip matrix.

3.4 Implementation of VCR Operations

We now describe how the VCR operations begin, pause,
fast-forward, rewind and resume can be implemented
with the matrix-based storage architecture. As we de-
scribed earlier, contiguous portions of the super-clip
are retrieved into p row buffers at a rate 4. The
first n portions are retrieved into the first row buffer,
the next n into the second row buffer, and so on.

e begin: The consumption of bits for a continuous
media stream is initiated once a row buffer con-
tains the first portion of the continuous media
clip. Portions of size d are consumed at a rate
Tmed from the row buffer (wrapping around if

necessary). After the 7-n** portion of the super-
clip is consumed by a stream, consumption of
data by the stream is resumed from the i + 1**
row buffer. We refer to the row buffer that out-
puts the continuous media data currently being
consumed by a stream as the current row buffer.
Since in the worst case, n-d bits may need to be
transmitted before a row buffer contains the first
portion of the requested continuous media clip,
the delay involved in the initiation of a stream
when a begin command is issued, in the worst
case, is ..

¢ pause: Consumption of continuous media data
by the stream from the current row buffer is
stopped (note however, that data is still retrieved
into the row buffer as before).

o fast-forward: A certain number of bits are con-
sumed from each successive row buffer follow-
ing the current row buffer. Thus, during fast-
forward, the number of bits skipped between con-
secutive bits consumed is approximately n - d
{note that this scheme is inapplicable if succes-
sive row buffers do not contain data belonging
to the same continuous media clip).

e rewind: This operation is implemented in a
similar fashion to the fast-forward operation ex-
cept that instead of jumping ahead to the fol-
lowing row buffer, jumps during consumption
are made to the preceding row buffer. Thus, a
certain number of bits are consumed from each
previous row buffer preceding the current row
buffer.

e resume: In case the previously issued command
was either fast-forward or rewind, bits are con-
tinued to be consumed normally from the current

326

row buffer. If, however, the previous command
was pause, then once the current row buffer con-
tains the bit following the last bit consumed, nor-
inal consumption of data from the row buffer is
resumed beginning with the bit. Thus, in the
worst case, similar to the case of the begin op-
eration, a delay of ¢, seconds may result before
consumption of data for a stream can be resumed
after a pause operation.

For the disk in Example 1, ¢. for a 100 minute super-
clip is approximately 133 seconds. Thus, the worst
case delay is 133 seconds when beginning or resuming
a continuous media stream. Furthermore, the number
of frames skipped when fast-forwarding and rewinding
is 3990 (133 seconds of video at 30 frames/s). By
reducing ¢., we could reduce the worst-case response
time when initiating a stream.

We now show how multiple disks can be employed
to reduce t.. Returning to Example 1, suppose that
instead of using a single disk, we were to use an array
of 5 disks. In this case, the bandwidth of the disk ar-
ray increases from 68 Mb/s to 340 Mb/s. The number
of streams, p, increases from 45 to 226, and, there-
fore, t, reduces from 133 seconds to approximately 26
seconds. In this system, the worst case delay is 26
seconds and the number of frames skipped is 780 (26
seconds of video at 30 frames/sec).

4 Related Work

A number of storage schemes for continuous retrieval
of video and audio data have been proposed in the
literature [5, 11, 12, 7, 3, 8, 13, 9]. Among these,
[5, 11, 7, 13, 9] address the problem of satisfying mul-
tiple concurrent requests for the retrieval of multi-
media objects residing on a disk. These schemes are
similar in spirit to the simple scheme that we pre-
sented in Section 2. In each of the schemes, concur-
rent requests are serviced in rounds retrieving succes-
sive portions of multimedia objects and performing
multiple seeks in each round. Admission control tests
based on computed buffer requirements for multiple
requests are employed in order to determine the feasi-
bility -of additional requests with available resources.
The schemes presented in [5, 11, 7] do not attempt
to reduce disk latency. In [13], the authors show that
the CSCAN policy for disk scheduling is superior for
retrieving continuous media data in comparison to a
policy in which requests with the earliest deadlines
are serviced first (EDF) [10]. In [9], the authors pro-
pose a greedy disk scheduling algorithm in order to
reduce both seek time and rotational latency.

In [3], in order to reduce buffer requirements, an
audio record is stored on optical disk as a sequence of
data blocks separated by gaps. Furthermore, in order
to save disk space, the authors derive conditions for
merging different audio records. In [12], similar to [3],
the authors define an interleaved storage organization
for multimedia data that permits the merging of time-
dependent multimedia objects for efficient disk space
utilization. However, they adopt a weaker condition
for merging different media strands, a consequence of
which is an increase in the read-ahead and buffering
requirements.

In [8], the authors use parallelism in order to sup-
port the display of high resolution of video data that
have high bandwidth requirements. In order to make
up for the low I/O bandwidths of current disk technol-
ogy, a multimedia object is declustered across several
disk drives, and the aggregate bandwidth of multiple
disks is utilized.

5 Research Issues

In this section, we discuss some of the research is-
sues in the area of storage and retrieval of continuous
media data that remain to be addressed.

5.1 Load Balancing and Fault Tolerance Issues

So far, we assumed that continuous media clips are
stored on a single disk. However, in general, continu-
ous media servers may have multiple disks on which
continuous media clips may need to be stored. One
approach to the problem is to simply partition the set
of continuous media clips among the various disks and
then use the schemes that we described earlier in order
to store the clips on each of the disks. One problem
with the approach is that if requests for continuous
media clips are not distributed uniformly across the
disks, then certain disks may end up idling, while oth-
ers may have too much load and so some requests may
not be accepted. For example, if clip C) is stored on
disk Dy and clip Cs is stored on disk D-, then if there
are more requests for Cy and fewer for Cs, then the
bandwidth of disk Dy would not be fully utilized. A
solution to this problem is striping. By storing the
first half of C; and C3 on D; and the second half of
the clips on D5, we can ensure that the workload is
evenly distributed between D, and Ds.

Striping continuous media clips across disks in-
volves a number of research issues. One is the gran-
ularity of striping for the various clips. The other is
that striping complicates the implementation of VCR
operations. For example, consider a scenario in which
every stream is paused just before data for the stream
is to be retrieved from a “certain” disk D;. If all the
streams were to be resumed simultaneously, then the
resumption of the last stream for which data is re-
trieved from D; may be delayed by an unacceptable
amount of time. Replicating the continuous media
clips across multiple disks could help in balancing the
load on disks as well as reducing response times in
case disks get overloaded.

327

Replication of the clips across disks is also useful to
achieve fault-tolerance in case disks fail. One option is
to use disk mirroring to recover from disk failures; an-
other would be to use parity disks [6]. The potential
problem with both of these approaches is that they
are wasteful in both storage space as well as band-
width. We need alternative schemes that effectively
utilize disk bandwidth, and at the same time ensure
that data for a stream can continue to be retrieved at
the required rate in case of a disk failure. Finally, an
interesting research issue is to vary the size of buffers
allocated for streams dynamically, based on the num-
ber of streams being concurrently retrieved from disk
at any point in time.

5.2 Storage Issues

Neither storing clips contiguously, nor the matrix-
based storage scheme for continuous media clips is
suitable in case there are frequent additions, dele-
tions and modifications. The reason for this is that
both schemes are very rigid and could lead to frag-
mentation. As a result, we need to consider storage
schemes that decompose the storage space on disks
into pages and then map various continuous media
clips to a sequence of non-contiguous pages. Even
though the above scheme would reduce fragmenta-
tion, since pages containing a clip may be distributed
randomly across the disk, disk latency would increase
resulting in increased buffer requirements. An impor-
tant research issue is to determine the ideal page size
for clips that would keep both space utilization high
as well as disk latency low.

Another important issue to consider is the stor-
age of continuous media clips on tertiary storage (e.g.,
tapes, CD-ROMs). Since continuous media data tends
to be voluminous, it may be necessary (in order to re-
duce costs) to store it on CD-ROMs and tapes, which
are much cheaper than disks. Techniques for retriev-
ing continuous media data from tertiary storage is
an interesting and challenging problem. For example,
tapes have high seek times and so we may wish to use
disks to cache initial portions of clips in order to keep
response times low.

5.3 Data Retrieval Issues

One of the schemes we presented in the previous sec-
tions yields low response times but has significantly
large buffer requirements. The other scheme, on the
other hand, has much higher response times but it
eliminates disk latency completely and has low bufler
requirements. Further research along the lines of [1,
13, 9] must be carried out in order to reduce disk seek
and rotational latency when servicing stream requests
while keeping response times low.

We have also assumed so far that media streams
have a single transfer rate r,,.q. This assumption
may not be true. For example MPEG-I compressed
video requires a transfer rate of 1.5 Mb/s, while JPEG
compressed video requires a transfer rate of about 7
Mb/s [4]. We need to develop schemes to retrieve data

for continuous media streams with different transfer
rates.

In the schemes we developed, we made the pes-
simistic assumption that the disk transfer rate 74,5
is equal to the transfer rate of the innermost track.
By taking into account the disk transfer rate of the
tracks where continuous media clips are stored, we
could substantially reduce buffer requirements. Also,
in our work, we have not taken into account the fact
that disks are not perfect. For example, disks have
bad sectors that are remapped to alternate locations.
Furthermore, due to thermal expansion, tables stor-
ing information on how long and how much power to
apply on a particular seek, need to be recalibrated.
Typically, this takes 500-800 milliseconds and occur
once every 15-30 minutes. Finally, in this paper, we
have only considered continuous media requests. We
need a general-purpose system that would have the
ability to service both continuous (e.g., video, audio)
as well as non-continuous (e.g., text) media requests.
Such a system would have to give a high priority to
retrieving continuous media data, and use slack time
in order to service non-continuous media requests.

6 Concluding Remarks

In this paper, we considered two approaches to re-
trieving continuous media data from disks. In the
first approach, response times for servicing requests
are low, but a high latency is incurred, resulting in sig-
nificantly large buffer requirements. The second ap-
proach eliminates random disk head seeks and thus re-
duces buffer requirements but may result in increased
response times. We presented simple schemes for im-
plementing pause, fast-forward and rewind operations
on continuous media streams (in case the data is video
data). Finally, we outlined future research issues in
the storage and retrieval of continuous media data.

References

[1] B. Ozden, R. Rastogi and A. Silberschatz. Fellini
—a file system for continuous media. Technical
report, AT&T Bell Laboratories, June 1994.

{2] B. Ozden, R. Rastogi, A. Biliris and A. Silber-
schatz. A low-cost storage server for movie on
demand databases. In Proceedings of the Twen-
tieth International Conference on Very Large
Databases, Santiago, September 1994.

{3] D. Bitton, Q. Yang, R. Bruno, C. Yu, W. Sun and
J. Tullis. Efficient placement of audio data on
optical digks for real-time applications. Commu-
nications of the ACM, 32(7):862-871, July 1989.

[4] H. J. Chen and T. D. C. Little. Physical storage
organizations for time-dependent data. In Foun-
dations of Data Organization and Algorithms,
pages 19-34. Springer-Verlag, October 1993.

[5] Y. Osawa, D. P. Anderson and R. Govindan. A
file system for continius media. ACM Trans-

328

actions on Computer Systems, 10(4):311-337,
November 1992.

6] R. Y. Hou, G. R. Ganger, B. L. Worthington and
Y. N. Patt. Efficient storage techniques for digital
continuous multimedia. IEEE Transactions on
Knowledge and Data Engineering, 5(4):564-573,
August 1993.

[7] J. Gemmell and S. Christodoulakis. Principles of
delay-sensitive multimedia data storage and re-
treival. ACM Transactions on Information Sys-
tems, 10(1):51-90, January 1992.

[8] S. Ghandeharizadeh and L. Ramos. Continuous
retrieval of multimedia data using parallelism.
IEEE Transactions on Knowledge and Data Fn-
gineering, 5(4):658—669, August 1993.

[9] A. Goyal, H. M. Vin and P. Goyal. Algorithms for
designing large-scale multimedia servers. Com-
puter Communication, 1994.

[10] C. L. Liu and J. Layland. Scheduling algorithms
for multiprogramming in a har real-time environ-
ment. Journal of the ACM, 20(1):46-61, 1973.

[11] H. M. Vin, P. V. Rangan and S. Ramanathan.
Designing an on-demand multimedia service.
IEEE Communications Magazine, 1(1):56-64,
July 1992.

[12] P. V. Rangan and H. M. Vin. Efficient stor-
age techniques for digital continuous multimedia.
IEEE Transactions on Knowledge and Data En-
gineering, 5(4):564-573, August 1993.

[13] A. L. N. Reddy and J. C. Wyllie. I/O issues
in a multimedia system. Computer, 27(3):69-74,
March 1994.

[14] C. Ruemmler and J. Wilkes. An introduction
to disk drive modeling. Computer, 27(3):17-27,
March 1994.

