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Abstract 
In this paper, we devise efficient algorithms for mining as- 
sociation rules with adjustable accuracy. It is noted that 
several applications require mining the transaction data to 
capture the customer behavior frequently. In those applica- 
tions, the efficiency of data mining could be a more impor- 
tant faktor t.han the requirement for complete accuracy of the 
mining results. Allowing imprecise results can significantly 
improve the data mining efficiency. In this paper, two meth- 
ods for mining association rules with adjustable accuracy are 
developed. By dealing with the concept of sampling, both 
methods obtain some essential knowledge from a sampled 
subset first, and in light of that knowledge, perform efficient 
association rule mining on the entire database. A technique 
of relaxing the support factor based on the sampling size 
is devised to achieve the desired level of accuracy. These 
two methods differ from each other in their ways of utiliz- 
ing the sampled data. Performance of these two methods 
is comparatively analyzed. As shown by our experimental 
results, the relaxation factor, as well as the sample size, can 
be properly adjusted so as to improve the result accuracy 
while minimizing the corresponding execution time, thereby 
allowing us to effectively achieve a design trade-off between 
accuracy and efficiency with two control parameters. It is 
shown that with the advantage of controlled sampling, the 
proposed methods are very flexible and efficient, and can in 
general lead to results of a very high degree of accuracy. 

1 Introduction 
Due to the increasing use of computing for various applica- 
tions, the importance of data mining is growing at a rapid 
pace recently. Progress in bar-code technology has made it 
possible for retail organizations to collect and store massive 
amounts of sales data. Catalog companies can also collect 
sales data from the orders they received. It is noted that 
analysis of past transaction data can provide very valuable 
information on customer buying behavior, and thus improve 
the quality of business decisions. In essence, it is necessary 
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to collect and analyze a sufficient amount of sales data before 
any meaningful conclusion can be drawn therefrom. Since 
the amount of these processed data tends to be huge, it is 
important to devise efficient algorithms to conduct mining 
on these data. 

Various data mining capabilities have been explored in 
the literature. Among them, the one receiving the most 
amount of research attention is on mining association rules 
[Z, 3, 5, 8, 9, 12, 13, 141. For example, given a database 
of sales transactions, it is desirable to discover all associa- 
tions among items such that the presence of some items in 
a transaction will imply the presence of other items in the 
same transaction. Also, mining classification is an approach 
of trying to develop rules to group data tuples together based 
on certain common features. This has been explored both 
in the AI domain [lo, 111 and in the context of databases 
[4, 61. 

In general, data mining is a very application-dependent 
issue and different applications explored will require differ- 
ent mining techniques to cope with. Notice, however, that in 
several data mining applications, the problem domain could 
only be vaguely defined, and hence a mathematical formu- 
lation of the problem is usually called for to abstract the 
original problem. As such, the corresponding parameter se- 
lection is often subject to interpretation. For example, to ad- 
dress the problem of identifying consumer buying patterns, 
a mathematical model of mining association rules is formu- 
lated. Based on thii formulation, purchasing a group of m 
items, (Al, . . . . A,}, is said to imply a high likelihood of 
concurrently purchasing another item B, if (1) the group, 
(Al, ---2 A,,,}, appears in at least s% of the transactions, 
and (2) among the transactions including (Al, . . . . A,}, C% 

of them also include item B.l In the literature [3, 91, s and 
c are referred to as the minimum supporl and confidence 
levels of the association ruIe, respectively. The selection of 
parameter values for s and c usually has to be based on ex- 
perience or even resorts to try-and-error. Moreover, another 
challenging issue is on how items should be grouped together 
in order to make the counting of occurrences meaningful, as 
studied in [7, 131. 

In this paper, we devise efficient algorithms for mining 
association rules with adjustable accuracy to the mathemat- 
ical formulation. It is noted that several applications require 
mining the transaction data to capture the customer behav- 
ior frequently. In those applications, the efficiency of data 

lMore details on the model of mining association rules are 
given in Section 2. 
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mining could be a more important factor than the require- 
ment for complete accuracy of the results according to the 
mathematical formulation. Consider again the previous ex- 
ample of mining consumer purchase pattern. Since the way 
that confidence (c) and support (s) factors are selected is 
not very precise, i.e., somewhat experimental, missing some 
marginal cases with confidence and support levels at the bor- 
derline may have IittIe effect on the quality of the solution 
to the original problem. Allowing imprecise results can in 
fact significantly improve the efficiency of the mining a&- 
rithms. In this paper, two methods for mining association 
rules with adjustable accuracy are developed. By dealing 
with the concept of sampling, both methods obtain some es- 
sential knowledge from a sampled subset first, and in light 
of that, knowledge, perform efficient association rule mining 
on the entire database. Specifically, a technique of relaxing 
the support factor based on the sampling size is devised to 
achieve the desired Ievel of accuracy. While both employ- 
ing this technique, these two methods differ from each other 
in their ways of utilizing the sampled data. Performance of 
these two methods is ComparativeIy analyzed. As will be 
seen later, the relaxation factor, as well as the sample size, 
can be properly adjusted so as to improve the result accuracy 
while minimizing the corresponding execution time. Thus, 
one can effectively achieve a design trade-off between accu- 
racy and efficiency with two control parameters. Sensitivity 
analysis on several parameters is conducted. From our re- 
sults, it is shown that with the advantage of controlled sam- 
pling, the proposed methods are very flexible and efficient, 
and can in general lead to results of a very high degree of 
accuracy. 

We comment that sampling has been used in [13] for de- 
termining the cut-off level in the class hierarchy of items to 
collect occurrence counts in mining generalized association 
rules. The algorithm in [13] is able to detect any subsequent 
sampling error and make corrections. However, sampling 
is used there as a means to improve efficiency, rather than 
a means to achieve a trade-off between accuracy and efZ- 
ciency. Sampling has also been discussed in [SJ as a justifi- 
cation for devisiig algorithms and conducting experiments 
with data sets of small sizes. Concurrent to our work, a 
sampling method to iind large itemsets has been proposed in 
[14] for reducing the number of passes through the database 
using a lowered frequency threshold, Le., relaxing support. 
The algorithm in [14] computes all large itemsets in a sam- 
ple and then confirms all the itemsets by scanning the rest 
of the database, wbiie our approach uses a sample to find 
just large l-itemsets, which will be explained in detail. By 
incorporating the technique of relaxing support into the sam- 
pling method, the emphasis of this paper is on optimizing 
the trade-off between execution efficiency and resuIt accu- 
racy. As shown by our experimental results, dealing with 
both the sample size and the relaxation factor, the proposed 
methods are capable of achieving a much better design trade- 
off between efficiency and accuracy than the prior work that 
relied upon adjusting the sample size only. As the database 
size increases and sampling appears to be an attractive ap- 
proach for data mining nowadays, the methods devised in 
this paper improve not onIy the flexibility but also the prac- 
ticality of the sampIing approach. 

The rest of the paper is organized as follows. Prelimi- 
naries are given in Section 2. The two sampling schemes 
are described in Section 3. Performance studies on various 
schemes are conducted in Section 4 via simulation. In Sec- 
tion 5, remarks on the relationship between two control pa- 
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Database D 

Figure 1: An example transaction database for data 
mining 

rameters, sample size and relaxation factor, are made. This 
paper concludes with Section 6. 

2 Preliminaries 
Since the algorithms proposed in this paper are developed by 
incorporating the sampling technique into algorithm DHP 
presented in [9], and DHP is a revised version of Apriori 
reported in 131, we shall briefly describe Apriori and DBP in 
this section. Readers interested in more details of these two 
prior algorithms are referred to [3] and [9]. 

2.1 Mining Association RuIes by Apri- 
ori 

I&Z={&, iz, . . . . im) be a set of literals, called items, Let 
D be a set of transactions, where each transaction 7 is s set 
of items such that T C 2. Note that the quantities of items 
bought in a transaction are not considered, meaning that 
each item is a binary variable representing if an item was 
bought. Each transaction is associated with an identifier, 
called TID. Let X be a set of items. A transaction T is 
said to contain X if and only if X C_ T. An association 
rule is an impIication of the form X * Y, where X C z, 
Y C Z and X 

8 
Y = 4. The rule X _ Y holds in tho 

transaction set with confidence e if c% of transactions 
in D that contain X also contain Y. The rule X a Y lr‘as 
support s in the transaction set D ii S% of transactions in 
D contain XUY. 

The problem of mining association rules is composed of 
the following two steps: 

1. Discover the large itemsets, i.e., alI sets of itemsets that 
have transaction support above a pre-determined min- 
imum support S. 

2. Use the large itemsets to generate the association rules 
ior the database. 

The overalI performance of mining association rules is in fact 
determined by the first step. After the large itemsets are 
identified, the corresponding association rales can be derived 
in a straightforward manner. Apriori, DIIP, and also the 
sampling methods proposed in this paper mainly nddrcss 
the issue of discovering large itemsets. 

Using an example transaction database given in Figure 
I’, we now describe the method used in Apriori for dis- 
covering large itemsets. In Apriori [33, in each iteration 
(or each pass) it constructs a candidate set of large item- 
sets, counts the number of occurrences of each candidntc 

?lJhis example database js extracted from (31. 
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itemset, and then determines large itemsets based on a pre- 
determined minimum support. In the first iteration, Apriori 
simply scans all the transactions to count the number of oc- 
currences for each item. The set of candidate I-itemsets, cl, 
obtained is { {A},{B},{C},(D},(E}}. Assuming that the 
minimum transaction support required is 2 (i.e., S = 40%), 
the set of large 1-itemsets, L1, composed of candidate l- 
itemsets with the minimum support required, can then be 
determined. Then, L1 = { {A},{B},{C},{E}}. TO dk- 
cover the set of large 2-itemsets, in view of the fact that any 
subset of a large itemset must also have minimum support, 
Apriori uses Ll* L1 to generate a candidate set of itemsets 
Cz where * is an operation for concatenation in this case.’ 
CZ= { {AB}, {AC}, {B}, (BC},{BE},(CE}). Next, 
the four transactions in D are scanned and the support of 
each candidate itemset in cz is counted. The set of large 2- 
itemsets, &, is therefore determined based on the support 
of each candidate 24temset in Cz. Then, Lz= ( {AC}, 
(BCMBEhWE33. 

The set of candidate itemsets, c3, is generated from L;! 
as follows. From Lz, two large 2-itemsets with the same first 
item, such as {BC} and {BE}, are identified first. Then, 
Apriori tests whether the Zitemset {CE}, which consists 
of their second items, constitutes a large 2-itemset or not. 
Since {GE is a large itemset by itself, we know that all the 
subsets of I BCE} are large and then (BGE} becomes a 
candidate 3-itemset. There is no other candidate 3-itemset 
from Lz. Apriori then scans all the transactions and dis- 
covers the large 3-itemsets L3. Since there is no candidate 
4-itemset to be constituted from Ls, Apriori ends the pro- 
cess of discovering large itemsets. 

2.2 Algorithm DHP 
Same as Apriori, DHP also generates candidate k-itemsets 
from Lk-1. However, DHP is unique in that it employs a 
hash table, which is built in the previous pass, to test the 
eligibility of a k-itemset. Instead of including all k-itemsets 
from Ls-1 * Lk-1 into Gk, DHP adds a Litemset into Gk 
only if that k-itemset is hashed into a hash entry whose value 
is larger than or equal to the minimum transaction support 
required. DHP also reduces the database size progressively 
by not only trimming each individual transaction size but 
also pruning the number of transactions in the database. We 
note that both DHP and Apriori are iterative algorithms on 
the large itemset size in the sense that the large Oitemsets 
are derived from the large (k - 1)-itemsets. 

An example of generating candidate itemsets by DHP is 
given in Figure 2. For the candidate set of large I-itemsets, 
which is Cl={ {A},{B},{C},{D},{E}} in the example, 
all transactions of the database are scanned to count the 
support of these I-itemsets. For each transaction, after oc- 
currences of all the I-itemsets are counted, all the 2-subsets 
of thii transaction are generated and hashed into a hash ta- 
ble Hz in such a way that when a 2-itemset is hashed to 
bucket i, the value of bucket i is increased by one. Fig- 
ure 2 shows a hash table Hz for a given database. After 
the database is scanned, each bucket of the hash table has 
the number of sitemsets hashed to the bucket. Given the 
hash table in Figure 2 and a minimum support equal to 
2, we can filter out candidate 2-itemsets from Ll * L1, to 
obtain Gz= { {AC},{BG},(BE},{GE}}, instead of C’s= 

153 

3Forthegeneralcase,Lk*Lk=CX~YIX,Y EL~,IX~IY[= 
k-l}. 

ontbeoy Cl coUm Ll 

ii 

iI 

i-e i 
c 3 

E : 
II E 

MakIng a hash table minlmum support fs 2 

h((x y)) = ((order of x)W + [order of y)) mod 7; 

I/ E”iwh 

m 
Gemsting C 2 

#inabucketwith tbeftemset 

AB 

LlXLl E 

II 

: 

=a 

1 - i% 

E 3’ II E 
CE 3 

Figure 2: Example of a hash table and generation of Gz 

( {A@, (AC}, (AN, {BG},{BE},(GE}} resulted by 
Apriori. As shown in [9], the hash filtering in DHP can dras- 
tically reduce the size of Ck for small H values, especially for 
E = 2, and lead to prominent performance improvement. 

3 Mining Association Rules 
with Adjustable Accuracy 

In this section, the two proposed methods for mining associa- 
tion rules with adjustable accuracy are described. These two 
methods explore the trade-off between execution efficiency 
and result accuracy. A technique of relaxing the support, fac- 
tor based on the sampling size is utilized by both methods 
to effectively achieve the desired level of accuracy. 

Due to the nature of sampling, results may not be com- 
pIetely accurate. While employing the same notation as in 
prior work described in Section 2, we put a “prime” to the 
symbol of a data set to represent a data set from the sam- 
pling methods that may be inaccurate. For example, while 
Lk is the real set of large Il.-itemsets, Li means the set of 
large k-itemsets from the sampling methods. The meanings 
of HL and CL are defined similarly. 

3.1 Method on Based on Direct Sam- 
pling 

The first method, performing association rule mining by nti- 
lizing direct sampling, is referred to as algorithm DS. First, 
according to a subset of the transaction database, DS deter- 
mines L’, and H: from the subset. The minimum support 
required for a 1-iiemset to be included into L: is set to (YS 
where s is the given minimum support for large itemsets, and 
LY, whose value is within [O,l], is the relaxation factor. Since 
cys is smaller than S, thii Li tends to be larger than the 
real L1. As will be shown in Section 4 later, the relaxation 
factor, as well as the sample size, can be properly adjusted 
so as to improve the result accuracy and to minimize the 
corresponding execution time. 

After Li and H$ are obtained, DS then generates the 
candidate 2-itemsets, C& from Li and Hi. From the de- 
scription in Section 2, it is noted that large k-itemsets are 
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derived from large (k - l)-itemsets. That is, for an item to 
appear in a large k-itemset, this item must have appeared 
in a large (k - I)-itemset. In other words, if an item is not 
in L1 then this item can be removed from consideration for 
all later construction for Lk, k > 1. This concept is incor- 
porated into both of our schemes and found to be able to 
achieve much better execution efTkiency4. Explidtly, when 
generating the candidate Z-itemsets Ci from r?, and Hi, we 
identify from Li those items which are not used to generate 
C.$. Such a set of identified items is denoted by F, and is 
employed as a filter to improve the efficiency of Iarge itemset 
generation’. The use of a set of large l-itemsets as a filter 
to improve the generation of candidate large Zitemsets is 
the very reason that DS is designed to obtain L: from the 
sample database first. 

Next, after C$ is obtained DS scans the whole transaction 
database to obtain the real L1, and also to determine L$ 
from Ci. If an item of a transaction beIongs to I, then 
this item is filtered out for the formation of any 2-itemset in 
LB, Finally, the remaining steps to iind Lk, for k 2 3, axe 
same as those in DHP. It can be seen that since the whole 
database is scanned by DS to determine L6, for k > 2, the 
resulting Li is a subset of Lk for k 2 2. 

The procedure of DS is summarized below, and its 
flowchart is given in Figure 1 (a) for illustrative purposes. 

Algorithm DS: Mining assdciation rules based on direct 
sampling. 
Step 1: Determine Li and H.$ from a subset of the Bans- 

action database with a minimum support as. 
Step 2: Generate the candidate %itemsets, ci, from L: 

and H$ Let $ be a set of items which are not used 
to generate C-$. 

Step 3: Scan the whole transaction database to decide the 
real L1 and also obtain L)2 from Ci. If an item of a 
transaction belongs to F, then this item is filtered out 
for the formation of any 2-itemset in L$. 

Step 4: Perform the remaining steps the same as the steps 
of DHP to find Lk for k 2 3. 

3.2 Method on Based on Sampling with 
Effective Hash Construction 

The second method, refereed to as algorithm SE, performs 
association rule mining by sampling with effective hash ta- 
b!e construction. Algorithm SH utilizes the same underly- 
ing concept as DS, but is tierent from the latter in their 
ways of utilizing the sampled data. Algorithm SH is outlined 
as follows. Fist, according to a subset of the transaction 
database, SH determines Li-with a minimum support as, 

and obtains a set of items F which is composed of items 
not belonging to L’,. Then, SH scans the whole transaction 
database to decide the real L1 and $. While all the items 
in each transaction are used to decide L1, items belonging to 
F are filtered out for the generation of H$ C$ is then gen- 
erated from & and Hi, and those items which are not used 

“Note that this filtering technique is also applicable to algo- 
rithm Apriori. 

5As can be seen later, we implemented this concept by inverse 
filtering, i.e., items falling into P will be removed from later con- 
sideration. Clearly, one could implement it as normd filtering, 
i.e., only items in 3 will require further processing. 

of the database 

L,’ and Hi. i” 

(a) 

Scan a subset 
of the database 
to determine 
L,‘. 

I Use L, and Hi 
to determine C 2’. 

Figure 3: FIawcharts of sampling methods: (a) DS and 
(b) SH. 

to generate C; are added to F. Note that as the number z 
of items in f increases, its filtering effect improves, Next, 
using 3 as a flter, SH scans the whole transaction dntnbnso 
to decide L’,. FinzJly, the remaining steps to find LB, ior 
k >_ 3, axe same as those in DHP. Same as in DS, it can - , _ - _._ 

1 

be seen that the resultmg L$ from SH is B subset of L!:, for 
k > 2. The procedure of SH is summarized below with the 

! 

co&spondiig flowchart given in Figure 1 (b). 1 

Algorithm SH: Mining association rules based on mm- I 
pling with effective hash table construction. 
Step 1: Determine Li from a subset of the transaction 

data&e with a minimum support a~. Obtain a set of 
items 3 which is composed of items not belonging to 
Li. I 

Step 2: Scan the whole transaction database to decide_ the 
real L1 and Hi. Fitter out items belonging to 3 for 
the generation of Hi, 

Step 3: Generate Ci from L1 and Hi. Those items rvhicll ; 
are not used to generate c.$ are added to 3, 

Step 4: By using F as a filter, scan the whole transaction 1 

i 



database to decide L’,. 
Step 5: Perform the remaining steps the same as the steps 

of DHP to find LI, for k 2 3. 
From Figure 1, it can be observed that the very tier- 

ence between DS and SH stems from the feature that SH 
obtains its Li from its sample set first without generating 
H!, at the same time. Explicitly, while DS utilizes the L’, 
ob&ned from the sample data to improve the efficiency of 
generating Ci, SH utilizes the Li from the sample data to 
improve the efficiency of generating H$. (The H; of DS is 
obtained together with L’, from the sample data.) It can 
also be seen that, as a consequence, SH incurs one more run 
of database scan than DS. The reason that SH is so designed 
is explained below. It is found from DS that with the perfor- 
mance improvement achieved, the generation of Hi could be 
costly itself, To improve the efficiency of generating H& SH 
gets a set of large l-itemsets from a sample database first (in 
Step 1) and uses it as a filter to facilitate the generation of 
Hi. In contrast to the Hi of DS which is obtained together 
with Li from a sample data, the Hi of SH is obtained with 
a full database scan (in Step 2) and is thus more accurate 
and effective than that of DS. Clearly, the above advantage 
of SH has to be compensated with its extra run of database 
scan. Performance of DS and SH is comparatively analyzed 
in Section 4. In general, it is shown that DS incurs shorter 
execution time while SH leads to more accurate results. 

3.3 Quality of Results from the Pro- 
posed Methods 

While achieving better execution efficiency, the large item- 
sets obtained by the proposed methods may not be complete 
accurate, Though DS and SH are designed for applications 
allowing inaccurate results, it is still important to under- 
stand the degree of inaccuracy resulted. In our discussion, 
two types of inaccuracy are examined. First, if a set of large 
itemsets by the sampling method, i.e., Li, is not identical 
to the real set of large itemsets, i.e., Ln: (as obtained by 
DHP), then we say there is a discrepancy between these 
two sets of large itemsets. On the other hand, if a com- 
plete set of results (containing all LL, for X: 2 1) from the 
sampling method is not exactly the same as the set of all 
Le, for h 2 1, i.e., if there exists an m such that there is 
a discrepancy between Lk and L,, then we say there is 
a mismaZch between these two sets’of results. The corre- 
sponding experiment is then called a case with mismatch. 
To assess the performance of proposed methods, extensive 
experimental studies will be conducted in Section 4 to ana- 
lyze both mismatch and discrepancy resulting from DS and 
SH. 

For illustrative purposes, a case with mismatch is pre- 
sented below, which is an example run of algorithm DS”. 
In this experiment, there are 100,000 transactions in the 
database and the minimum support required is 5% (Le., 
5,000 transactions). Also, the sample size used is 10% of the 
entire transaction database (i.e., 10,000 transactions) and 
the relaxation factor Q used is 0.75. By running DHP and 
DS, we get IL51 = 1892 < IL21 = 1897, 
IL;1 = 2086 < l&l = 2089, 
IL;1 = 1846 < IL41 = 1847, 

OThe results from an example run of SH contain similar infor- 
mation and are thus omitted here. An empirical study on both 
DS and SH is conducted in Section 4. 

155 

Table 1: Missed Z-itemsets and their counts 

2-itemset missed 

ILkI = IL51 = 1300, IL’61 = l&l = 725, ILkI = I&/ = 310, 
IL;j = IL81 = 97, IL’91 = IL91 = 20, and l&l= l&u] = 2. 
It can be seen that in this experiment with mismatch, there 
are discrepancies between L: and Li for 2 5 i 5 4, whereas 
L: and Li are the same for 5 5 i 5 10. Recall that in the 
process of determining large itemsets, each itemset receives 
a support count for its occurrences, and is declared to be a 
large itemset if that count meets the minimum support re- 
quired- Note that given a pair of (L[j, Li) with discrepancy, 
in addition to knowing that there are some large j-itemsets 
are missing in Li, it is important to learn the relative im- 
portance of those itemsets missing, i.e., what are the sup- 
port counts for those missed itemsets. Obviously, missing an 
itemset with a huge support count is more undesirable than 
missing one with a small count. 

In this experiment, itemsets in Li, 2 5 i 5 4, are sorted 
based on their supports in descending order, and those which 
are absent in Li are identified. Missed large 2-itemsets and 
their support counts are given in Table 1. From Table 1, 
it can be seen that the amount of discrepancy between Li 
and Lz is fact less than 0.2% (i.e., &), and also that the 5 
large itemsets missing in L$ are mostly in the bottom 10% of 
those in L2 in view of their support counts, meaning that the 
itemsets missed by DS are in the borderline and of relatively 
less importance than other large itemsets. This agrees with 
our intuition since an itemset with a strong support count is 
very unlikely to be overlook by Li of DS with a relaxed sup 
port level as. Missed large 3-itemsets and large Gtemsets 
are shown in Tables 2 and 3, respectively- Again, the amount 
of discrepancy between L’, and Ls and that between LI, and 
La are both less than O-2%, and the itemsets missing are all 
in the bottom level in accordance with their support counts. 

It is noted that while generating the real Lr, DS obtains 
Li that is a subset of Lk, for 2 5 h, meaning that no false 
association rules would be output by DS. Moreover, since 
large itemsets with strong support counts are captured by 
DS, the association rules missed by DS, if any, are in general 
borderline cases and are of less importance. The same quali- 
tative assessment also holds for SH. It can be observed from 
Tables 1, 2 and 3 that the overlook of the item 257 by Li in 
Step 1 of DS indeed causes a few subsequent large itemsets 
missing (three in L$, three in Li and one in Li). As will be 
shown later, the accuracy of capturing large 1-itemsets into 
LII, by both sampling methods DS and SH can be properly 
adjusted by dealing with the sample size and the relaxation 
factor employed. 
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Table 2: Missed 3-itemsets and their counts 

3-itemset missed 1 count 

Table 3: Missed Pitemsets and their counts 

[ Rank {in 1847) Gtemset missed count 

1 1793th (257,566, 616, 664) 510 1 

4 Experimental Results 
To assess the performance of proposed methods, we con- 
ducted several experiments on finding large itemsets using 
a SUN SPARC/lO workstation with a CPU clock rate of 
4OMHz sunning Solaris 2.3. Section 4.1 explains the way 
that the synthetic transaction workload is generated, and 
Section 4.2 compares the performance of fonr different min- 
ing methods including DS, SH, DHP and Apriori. The per- 
centage of cases with mismatches and the frnctional amount 
of discrepancy caused by the sampling approach are ana- 
lyzed in Sections 4.3 and 4.4, respectively. Finally, the effect 
of relaxation factor is studied in Section 4.5. 

4.1 Generation of Synthetic Workload 
Synthetic transactions are generated from an N item set 
with the objective of emulating sales transactions in a retail 
industry. The method of creating the transaction database 
ia in essence similar to those used in [3] and [9]. We gen- 
erate 40 different transaction databases from the same set 
of potentially large itemsets to evaluate the performance of 
the two sampling methods, DS and SE. Each database con- 
sists of IDI transactions, and on the average each transaction 
has IT] items. Table 4 summarizes the meaning of various 
parameters used in the experiments. Figure 4 shows the 
process used in generating the transaction database, which 
is brieBy described below. More details on the workload 

Table 4: Meaning of various parameters. 

FWplall y Transactions 
Items c Hemsets - lLJl= 100,000 

N=lOOO PICK-ITEM 

I 

fi,,,ooo PICK-PLI jTj=15 

Figure 4: The process of generating a single synthetic 
transaction file 

generation can be found in [3] and f9]* Synthetic transac- 
tions consist of a series of potentially large itemsets IPLI’e) 
which are chosen according to the weight of each PLI. The 
method of selecting PLI’s to form a transaction is referred 
to as PICK-PLI in Figure 4. The weight of each PLI corre- 
sponds to the probability that this PLI will be included into 
the synthetic transactions. A weight of each PLI is pick& 
from an exponential distribution with unit mean. Fnrthcr- 
more, all the weights are normalized so that the sum of them 
is equal to one. For the first PLI in PICK-ITEM of Rgnre 
4, items aze chosen by a random selection method where 
a uniform distribution is used to select an item out of N 
items. Some fraction of the items in subsequent PLI’s is 
chosen from the previous FL1 and the remaining items arc 
chosen based on the random selection method. The common 
fraction is referred to as the correlation level and is gener- 
ated from an exponentially distributed random variable with 
the mean equal to a predetermined value. The mean of the 
correlation level is set to 0.25 for our experiments. 

4.2 Comparison of Four methods 
Figure 5 shows the experimental results of four different 
mining methods for finding large itemsets. The results in 
Figure 5 are associated with the case when N = 1000, 
I4 = 2000, 111 = 4, and 101 = 100,000. The sam- 
ple size for the sampling methods, DS and SH, is 10% of 
the transactions. In addition, until analyzed in Section 4.5, 
the relaxation factor (Y is set to be 0.75 in our experiments, 
Apriori in Figure 5 refers to algorithm Apriori in [3], and 
DHP refers to algorithm DHP in [9]. In Figure 5, it can 
be observed that the two sampling methods DS and SM 
achieve shorter execution time than DKP and Apriori Ear 
various minimum support levels under two different trans- 
action sizes, i.e., /T]=lO and IT]=15. The results show that 
the execution time of DS is smaller than one-third of thnt 
of DHP for 2.9% minimum snpport, showing significant pcr- 
formance improvement. Among the two sampling methods, 
DS outperforms SH for various minimum snpport levels. 

Comparing DHP with DS, we note that in order to gen- 
erate hash table Hz, algorithm DHP considers all combina- 
tions of Zitems for each transaction in the database, while 
DS uses a subset of the transactions for generating a.$. The 
time for generating H2 in algorithm DHP is indeed a major 
part of its execution time. By improving the efficiency of 
generating H$, the total execuGon time of DS is reduced, 
In addition to reducing the time for generating Hi, filtering 
items out by F for generating L$ can also improve perfor- 
mance of the sampling method, because this also reduces the 
number of combinations of 2-items to be considered, For ex- 
ample, for the case of 0.5% minimum support in Figure 6 
(b), F contains 215 items among a set of 1000 items, and 
for 2.0% minimum support 1st is approximately 380. 

The sampling methods DS and SH are more efficient than 
Apriori and DRP whereas DS and SH may lose some RC- 
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Figure 5: Execution time to minimumsupports. 

curacy for low minimum supports. As we shall see later, 
proper selection of relaxation factor and sample size by DS 
and SH can lead to improvement in execution time even for 
the stringent case requiring [near) complete accuracy. In 
fact, both DS and SH in Figure 5 (a) generate all real large 
itemsets (i.e. complete accuracy) when minimum supports 
are larger than 0.75%. In the remaining figures of Section 4, 
results on the accuracy of these methods will be shown for 
ITI = 15. 

Figure 6 shows the execution times of DS by varying sample 
sizes under four different minimum support levels, ranging 
from 0.5% to 2.0%. The case with a 0.5% minimum support 
is labeled with 0.5 in the figure. The other support levels 
are labeled similarly. As shown in Figure 6, the execution 
time increases as the sample size grows. This is due to the 
reason that with a larger sample size more transactions have 
to be processed at the first step to generate Li and Hi. [A 
similar phenomenon is also observed for SH.) As the sample 
size reduces, the accuracy decreases as well. The trade-off 
between the sample size and the result accuracy is studied 
below. 

As mentioned before, we generate 40 transaction 
databases to compare the two sampling methods DS and 
SH. The sampling method may miss certain number of real 
large itemsets for some of these 40 cases. The percentage 
of cases with mismatch is used as a means to measure the 
accuracy of the sampling method. As will be addressed in 
Section 4.4, the other measure considered is the amount of 
discrepancy between the set of large itemsets generated by 
the sampling method and the set of real large itemsets. 

We now take a closer look at the difference between DS 
and SH. Although DS achieves smaller execution time than 
SH, it can also incur a higher level of inaccuracy for cases 
with low minimum supports. The ratio between cardinalities 
of these two sets in each pass will be studied in Section 
4.4. Finally, we observe that the execution time of DHP for 
2.0% minimum support in Figure 5 (a) is worse than that 
of Apriori. This is due to the fact that all large itemsets 
satisfying the minimum support in this case are l-itemsets. 
At the first pass, Apriori generates simply large 1-itemsets, 
whereas DHP generates large 1-itemsets and the hash table 
Hz. For cases where results involve large k-itemsets for h 2 
2, DHP in general outperforms Apriori. 

Let the percentage of cases with mismatches, cm, be the 
ratio of the number of cases with mismatched results from 
a sampling method to the total number of cases investi- 
gated. Figure 7 shows the percentages of mismatches by 
varying sample sizes under 5 different minimum supports 
for DS and SH. As expected, the percentage of cases with 
mismatches decreases as the sample size increases. In Figure 
7, for most cases the value of em drops rapidly as the sample 
size changes from 5% to lo%- In general, SH obtains more 
accurate results than DS, whereas the latter incurs shorter 
execution time (as shown in Figure 5). Since DS generates 
L’,, H& and Ci from a sample of transactions, the percent- 
ages of mismatches of DS are relatively larger than those of 
SH which uses Li to filter out some items from Hi. 

Note that though the sampling methods can introduce in- 
accuracy for low -&&mm supports and sample sizes, it is 
very useful to obtain large itemsets efficiently, in particular 
when one wants to know an approximate set of large item- 
sets. When the minimum support is larger than or equal to 
1.00/o, the value of E~ for both DS and SH is zero even for 

Figure 6: Execution time to sample sizes for DS. 

4.3 The Percentage of Cases with Mis- 
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Figure 7: The percentage of cases with mismatches cm 
to sample sizes. 

the case that the sample size is only lb% of the transaction 
database. 

4.4 The Fractional Amount of Discrep- 
=cY 

In the previous subsection, we observe that DS can have 
more cases with mismatches. We now take a closer look at 
how serious is the discrepancy, i.e. how many large itemsets 
are missed due to the fast sampling method. The amount 
of discrepancy shown below is averaged over the cases with 
mismatches. In other words, it is the expected amount of dis- 
crepancy given that we know a mismatch occurs. As pointed 
out earlier, neither DS nor SH would falsely introduce large 
itemsets. They could only miss some large itemsets. Since 
a Li is always a subset of Lk, the fractional amount of dis- 

crepancy Ed is defined as 
Figure 8 shows the of discrepancy be- 

tween 1;; by DS and the red & for each pass /c. The figure 
also shows how much of the fractional amount of discrepancy 
in L’, propagates to the next pass to affect the generation 

1.0 1 3 I I 

od% zz ii%5 AL- 0.75slQ -se- LOSS *.x-* 

z 3 4 5 b 
Passes 

i 

‘. 

7- 

, 

I 
10 

Figure 8: The fractional amount of discrepancy to each 
pass for DS. 

of Li+, for rl: 1.2. In Figure 3, we label each curve as XsJJ 

where z is the mmimum support in percentage, and g is the 
sample size in percentage of the transaction database. We 
tested five sets of minimum supports and sample sizes for 
the fractional amount of discrepancy. Recall that each value 
shown in the figure is the average value of fractional amounts 
of discrepancy over the cases which produced mismatched IC- 
s&s by DS. Hence, ifsuch an average is taken over the total 
number of cases, the fractional amount of discrepancy will 

be much smrdler than the values shown in Figure 8, 
The fractional amount of discrepancy decreases as the 

pass number increases, except for the case with a small sam- 
ple size (i.e., 5%). This means that the propagation of the 
fractional amount of discrepancy is very low for most sample 
sizes, confirming with our observation from an exnmple run 
of DS in Section 3.3. Figure 9 shows that if the sample size 
is greater than lo%, the fractional amount of discrepancy 
drops nearly to zero as the pass number approaches to 5. 

4.5 Effect of Relaxation factor 

Figure 9 shows the effect of relaxation factor for 10% sample 
size and various minimum supports. In Figure 9, the ordi- 
nate is the value of the relaxation factor and the abscissa 
represents the percentage of cases with mismatches, i.e., c,,,, 
In the first step of DS, we used the relaxation factor to re- 
lax the tight bound for a given minimum support. If (~8 is 
used instead of s for a minimum support, more 2-itemsets 
can be included in the candidate 2-itemsets ci, and this 
will make L& almost equal to Lz, the real large 2&msets, 
When or is low, the candidate Zitemsets ci may contain the 
real Iarge 2-itemsets La and cm approaches zero. However, 
the corresponding execution time increases because of the 
larger size of C$. For example, when CY changes from 0.6 to 
0.75 for 9.75% minimum support, the number of candidate 
2-itemsets reduces from 3208 to 2354, and the execution time 
changes from 49.29 set to 46.36 set, but E, deteriorates as 
its value increases from 0% to 15%. 

Figure 10 shows the sensitivity of the fractional amount 
of discrepancy to relaxation factor. The percentage is com- 
puted from the cases with mismatches using the following 
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Figure 9: The percentage of cases with mismatches (cm) 
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r&xation factor 

Figure 10: The fractional amount of discrepancy to re- 
laxation factor (a) 

equation: 
CL mk 

d = CL2 ILkI’ 
where p is the maximal j such that the set of large j-itemsets 
is nonempty and mk is the number of k-itemsets missed by 
DS. The percentage grows as the rdsxation factor increases. 

Figure 11 shows the execution time for varying relaxation 
factors under different minimum supports. As shown in Fig- 
ures 10, 11 and 12, reducing the relaxation-factor increases 
the execution time, albeit it improves the accuracy of the 
results. 

5 Remarks on Relaxation Fac- 
tor and Sample Size 

We now examine the approach of p~lrely sampling without 
relaxing the support level. We set CY = 1 and the minimum 
support to be 1% in our experiment here. As shown in Table 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 Osg5 1 r&xation factor 

Figure 11: The execution time to relaxation factor ((Y) 

5, even increasing the sample size to 50% of the database, 
the percentage of cases with mismatches is still 100%. Al- 
though increasing the sample size reduces the percentage of 
discrepancies, its efkct seems to become marginal for sample 
size larger than 40%. 

Next we use the method of DS with two different sample 
sizes and vary the relaxation factor a from 0.6 to 1.0 in Ta- 
ble 6. (Again the miniium support is l%.) Let’s consider 
the 5% sample size in Table 6. CIearly, the relaxation fac- 
tor provides another means of controlling the accuracy. By 
setting o to be less than or equal to 0.8, we start to have at 
least one-fourth of the cases without mismatches, showing 
clear improvement. The execution time for (Y = 0.8 is in 
fact shorter than that of the purely sampling approach with 
30% sample size in Table 5, where the latter even incurs mis- 
matches in all cases. This fact suggests that the approach 
of only controlling the sample size is inadequate. 

Certainly, one can do a combination of increasing the sam- 
pie size and reducing the relaxation factor to improve the 
accuracy while minimizing the increase in execution time. 
It is critical to have both of these control knobs, sam- 
ple size and relaxation factor, available in the sampling 
method. There is a trade-off between settings of the two con- 
trol knobs. Let’s focus on the 10% sample size. Compared 
with the 5% sample size, we can see that even the strin- 
gent case of 0% mismatch can be achieved by either setting 
(Y = 0.6 and using a 5% sample size orsetting (Y = 0.75 and 
using a 10% sample size. The latter in fact incurs shorter 
execution time. It also improves over the DHP method (See 
Figure 5 (b) which is for 10% sample size and 0.75 relaxation 
factor). The results suggest that the proposed sampling 
approach be applicable to improving execution eficiency 
even for the cases requiring near 0% mismatch. 

The proper choice of relaxation factor and sample size 
can be obtained experimentally. Since the same mining 
application will be applied repeatedly, this off-line invest- 
ment should be worthwhile. We note that although Chernoff 
bound has been mentioned in [S, 13,141, it is too loose a the- 
oretical bound to guide the selection of relaxation factor and 
sample size. The sample size implied by the Chernoff bound 
for a given level of accuracy and relaxation factor can be 
several orders of magnitude larger than what we observed in 
the experiment. Furthermore, it does not provide any clue 
on the impact on the efficiency (or execution time) of the 
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Table 5: DS with Q = 1 

Table 6: DS with two sample sizes, 5% and 10% 

o! (-4 Mi8matche8 Discrepancies 
5% 1 10% 1 5% 10% 1 5% 10% 

0.6 31.48 1 32.82 1 0 a cl 0 
0.65 30.69 1 31.43 1 5 0 0.16 0 
n 7 it 99.97 1 30.58 I 17.5 1 0 OS5 0 

different combinations of relaxation factors and sample sizes 
that provide the same level of accuracy. 

6 Conclusion 
We have devised and analyzed in this paper two algorithms 
for mining association r&s \vith adjustable accuracy. By 
dealing with the concept of sampling, both methods ob- 
tained some es.sentiaI knowIedge from a sampled subset first, 
and in light of that knowledge, performed efficient associa- 
tion rule mining on the entire database. A technique of re- 
la&g the support factor based on the sampling size was de- 
vised to achieve the desired level of accufiLcy. Performance of 
these two methods was comparatively analyzed. It is noted 
that the sample size and the relaxation factor can be ad- 
justed so as to ensure the required accuracy of the results 
and to maximiz e the efficiency of mining. Sensitivity analy- 
sis on various parameters was conducted. From our results, 
it is shown that with the advantage of controlled sampling, 
the proposed methods are very Aexible and eff?cient, and can 
in general lead to results of a very high degree of accuracy. 
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