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ABSTRACT 
Photograph retrieval systems face the difficulty to deal with the 
different ways to apprehend the content of images. We consider 
and demonstrate here the use of multiple index representations of 
photographs to achieve effective retrieval. The use of multiple 
indexes allows integration of the complementary strengths of 
different indexing and retrieval models. The proposed 
representation supports multiple labels for regions and attributes, 
and handles inferences and relationships. We define links between 
indexing levels and the related query modes. The experiment 
conducted on 2400 home photographs shows the behavior of the 
multiple indexing levels during retrieval. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – query formulation, retrieval models, search 
process.  

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Image Access, Fusion/Combination. 

1. INTRODUCTION 
Content-base image retrieval systems have been the subject of 
many research works in the 90s. They allowed discovering 
adequate processes related to image indexing, efficient content 
representation for retrieval according mainly to low level features 
like colors/textures/shapes, and query modes related to the 
specificity of the image data. At the same time, different query 
input modes, inspired from text information retrieval, have been 
used for such image retrieval systems. 

 

 
 
 
 
 
 
 

The systems that are dedicated to image retrieval (as described in 
[25]) use mainly features like colors, textures and shapes as bases 
for the representation of image content. For applications dedicated 
to non-experts (as described in [10]), users prefer to use the 
elements present in images than the rough color/textures/shapes.  
The work of the MPEG-7 committee [18] also represents such 
elements for video documents. Inspired by previous work like 
EMIR2 [17] and VIMSYS [9], we represent three facets for the 
representation of photographs content: 

• The first level, namely Feature Level, represents numerical 
abstractions of image regions. Such abstractions express the 
colors, textures and shapes of visible elements in photographs. 
Systems like Virage[1], NETRA[16], QBIC[6, 7], 
VisualSEEk[26, 27], or proposed by [22], consider this level of 
representation. Such approaches do not at all rely on symbolic 
representation of images, however they have the great 
advantage of being fully automatic and to be usable in many 
contexts with (almost) no tailoring. In the remaining of the 
paper, this level one is not considered because they are 
relatively further from the semantic level of human users’ query 
expectation.  

• The second level (namely “Visual Object Level”) of 
representation supports the notion of labeling of photograph 
parts. This level intends to bridge a gap between the signal 
aspects (first level) and the symbols that represent the image’s 
content. If the process of labeling is manual, then the labels 
may be certain. In the context of automatic labeling processes  
[4, 14, 30], the labeling may be uncertain, leading to multiple 
potential labels for image regions. This level also supports the 
representation of the elements of the images. 

• The third level (namely “Relational Concept Level”) is 
dedicated to represent relations between image elements, or the 
explicit characteristics of the images elements of the second 
level. The characteristics of the image elements may be of 
several natures: absolute spatial (like the position of an element 
in the photograph), descriptive (like face expressions or person 
postures). The relations between image elements may be 
relative spatial (like relative positions between elements) or 
actions (like the fact that “a person is carrying a hat” for 
instance). Thus this level is able to weigh the relationships and 
concepts to reflect their importance in the image representation. 
The third level representation may be able to support inference 
(as mentioned in [20]), for instance IsA hierarchies of labels 
and relations, and to include properties of relations like 
symmetry, in a way to extend the retrieval capabilities. 
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Figure1. Indexing levels. 

 
If we examine a notion of abstraction targeted at each level (left 
part of Figure 1), the Feature Level corresponds to low abstraction 
(because it remains at a signal level), the Visual Object Level is a 
medium abstraction representation (because it abstracts the signal 
but does not go further), the Relational Concept Level is a high 
abstraction level because it assumes a priori relationships between 
relations and concepts and allow interpretation of scenes. The 
structure of Figure 1 shows that the three levels of indexes are 
obviously not independent from each other. However, the gray 
parts that represent the transition between the levels are far from 
being easy tasks: going from signal features to visual objects is 
usually based on some learning process or on manual image 
annotations, whereas going from Visual Object Level to 
Concepts/Relations needs human input. The right part of Figure 1 
exhibits this fact by showing that human input increases when the 
abstraction representation of the image content becomes higher. 
This human input during the indexing process is the way to give 
relevant human knowledge to the indexing system, keeping in 
mind that the retrieval will take advantage of this input. In this 
paper, we propose a way to tackle these different levels as well as 
steps to bridge the gaps among the three levels. 

Another very important aspect of document and image retrieval is 
related to the user interactions supported by the retrieval system. 
According to previous works, the user can specify a query for 
image retrieval by different query modes: 

• Query By Example (QBE). This kind of query was proposed in 
Virage [1] and QBIC [6] in the early 90s.The query by example 
(related to the well known Relevance Feedback technique of 
Information Retrieval) exploits a user’s input in the form of one 
or several images and generates a query. It suffers from the 
bootstrapping problem. Moreover, the user’s need is implicit: 
the system has to guess a query using its knowledge of the 
given image(s) and of the user. So, the query input mode is very 
simple for the user (in terms of actions [19]), but the implicit 
information is very difficult to extract for the image retrieval 
system if we consider uncertain labels at the level 2 or the 
complex representations of level 3. Because of this problem, 
the use of low-level abstraction representations in conjunction 
with QBE modes is common. A way to deal with the 
abstraction problem with QBE is to provide “penetrable query 
by example” (inspired from [11]). The system is supposed to 
provide more accurate results, but the user has to support this 
additional step to reduce the ambiguities. 

• Query By Canvas (QBC). The QBIC, Virage and VisualSEEk 
systems propose this kind of interface. A user draws an 
example of what he/she is looking for. This drawing is 
considered as a schematic representative of the ideal searched 
images. In this case, the user has to make extra efforts to "fit" 
into the system representation, so it is more difficult to the user 

to express his/her needs at the articulation level [19]. When 
considering simple interaction (i.e. the user selects the features 
first (e.g. color, texture, shapes) and then draws on the working 
space the regions with the selected features, representations of 
level 1 and level 2 may be used. This interaction lowers 
ambiguities because the drawing is supposed to focus on the 
relevant aspects of the searched images. However the user 
expects the system to understand his/her query semantics 
represented by the drawing that is based on primitive features 
(e.g. blue rectangle, red circle etc). Lim [13,14] elevates the 
semantics level of the drawing to layout of visual objects with 
spatial constraints with very promising retrieval results on 
family photographs. Nevertheless, the abstraction level 
supported by such query mode is higher than that allowed by 
QBE, even if ambiguities may arise from the interpretation of 
the relations among objects. 

• Query By Symbols (QBS) [17, 20]. The query by symbols mode 
requires a user to explicit specify each of the elements, features 
and relations that he/she is looking for. On one hand, this 
expression is obviously more demanding for the user, but on 
the other hand the expression is closer to his/her actual 
information need. This query mode is able to handle highly 
abstracted representations of level 3. 

Figure 2 summarizes the links among the three query modes 
described above and the abstraction level representations targeted 
by the corresponding query expressions. The three query modes 
have both their strengths and weaknesses, and the choice of using 
one or the other should be left to the user. 

Figure 2. User input complexity vs. query abstraction levels. 
 
In the following of this paper, we describe in section 2 the way we 
use two different approaches, namely Visual Keywords (VK) and 
Conceptual Graphs (CG), to support the indexing levels 2 and 3. 
Section 3 is dedicated to present the experiment we conducted on 
a set of 2400 home photographs, showing how the two 
approaches are integrated. We conclude in Section 4. 
 

2. SYMBOLIC BASED INDEXING AND 
RETRIEVAL 
2.1 Overview 
As described above, a content-based image retrieval system 
should be able to support a wide range of query input modes, 
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from QBE to QBS. The representation of image content should 
support and to use simple and complex query expressions 
effectively. To realize the image content representations of levels 
2 and 3 (Figure 1) as described in the introduction, our approach 
adopts Visual Keyword (VK) [13-15] and Conceptual Graph [17, 
20] that together handle: 
1. Uncertainty recognition values of image elements (level 2) 
2. Spatial characteristics of image elements (level 3) 
3. Relations among image elements (level 3) 
4. Inference support (level 3) 
We integrate the Visual Keyword and Conceptual Graph based 
representations because they complement each other in the 
following ways: 

• The VK handle multiple fuzzy labels for image regions 
efficiently (level 2) 

• The VK approach manages spatial attributes of image 
elements (level 3) 

• The CG approach handles relations among image elements 
(level 3) 

• The CG approach incorporates inference capabilities for the 
descriptions (hierarchies of concepts and of relations), and 
the retrieval operator of the CG approach is a deduction 
process (level 3) 

• The weights of image elements and relations are represented 
by the CG approach. 

 
Figure 3 presents graphically the indexing levels realized by the 
VK and CG approaches with respect to the image indexing levels 
2 and 3 of Figure 1. 
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Figure 3. Indexing levels by VK and CG. 

2.2 The Visual Keywords Approach 
 
The Visual Keyword approach [13-15] is a new attempt to 
achieve content-based image indexing and retrieval beyond the 
feature-based (e.g. QBIC [7]) and region-based (e.g. VisualSEEk 
[26]) approaches. Visual keywords are intuitive and flexible 
visual prototypes extracted or learned from a visual content 
domain with relevant semantics labels. An image is indexed as a 
spatial distribution of visual keywords whose certainty values are 
computed via multi-scale view-based detection. 

The indexing process has the following steps. First a visual 
vocabulary and thesaurus is constructed (keyword definition) 
from samples of a visual content domain. Then an image to be 
indexed is compared against the visual vocabulary to detect visual 
keywords (keyword detection) automatically. Last but not least, 
the fuzzy detection results are registered as a Fuzzy Object Map 
(FOM) and further aggregated spatially (spatial summary) into a 
Spatial Aggregation Map (SAM). 
Visual keywords are visual prototypes specified or learned from 
domain-relevant regions of sample images. A set of labels SL

VK is 
assigned to these visual prototypes as a vocabulary. Suitable 
visual features (e.g. color, texture) are computed for each training 
region and visual keyword into feature vectors. Figure 4 shows 
some examples of visual keywords used in our experiment. 

 
Figure 4. One visual keyword for the visual classes: face, 

crowd, sky, ground, water. 
 
An image to be indexed is scanned with windows of different 
scales. Each scanned window is a visual token reduced to a 
feature vector to those of the visual keywords previously 
constructed. Figure 5 shows a schematic diagram of the 
architecture of image indexing (please refer to [14] pp.127-128 
for details). 

Figure 5. Automatic Indexing using VK. 
 
Visual keywords can be regarded as co-ordinates that span a new 
pseudo-object feature space. The scale on each dimension is the 
fuzziness (∈[0,1]) of that visual keyword being detected at a 
specific spatial locality in the visual content. 
As SAM summarizes the visual content of an image, similarity 
matching between two images can be computed as the weighted 
average of the similarities between the corresponding tessellated 
blocks of the images, 
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where ω(a,b) is the weight assigned to the block (a,b) in SAM and 
λ(a,b) is computed using city block distance |.| between two 
corresponding blocks (a,b) of the images. For the query 
processing of QBE in our experiment, we adopted the tessellation 
(and their relative weights ω(a,b)) as depicted in Figure 6. 

Figure 6. Tesselation and similarity matching in QBE. 
 
When multiple query examples (say q1 to qk) are selected for 
QBE, the RSV for an image d in the database is computed as 
RSV(SAMd, {SAMqi}) = maxi( λ(d,qi) ).  
In summary, the VK approach provides a simple, compact, and 
efficient representation for multiple labeling of image elements. 
The simple and fast similarity matching process also takes care of 
absolute spatial relations as specified in the tessellation of SAM. 

2.3 The Conceptual Graphs based Approach 
 
The chosen framework that handles concepts and hierarchies of 
concepts as well as relations and hierarchies of relations easily is 
the knowledge representation formalism called Conceptual 
Graphs [28, 29]. The formalism has already been used on 
photograph content representation [17, 20]. It has also been 
shown to be compatible with inverted file implementation [20]. 
Conceptual graphs are bipartite finite oriented graphs composed 
of concept nodes and of relation nodes. Concepts node are 
composed of a concept type and a referent (generic or individual). 
A generic referent, noted *, denotes the existence of a referent, 
while an individual referent (like #IMG0232 in figure 7) refers to 
one instance of the concept type. In our case, the concept type set 
SL

CG includes the objects of the real world present in the 
photographs. They are application dependent and organized in a 
lattice LL

CG that reflects generalization / specialization 
relationships. The relationship set SR

CG includes absolute spatial, 
relative spatial and structural (like Comp, Label in the left part of 
Figure 7) relationships. Absolute spatial relationships link the 
image and the object concepts and indicate the position of the 
center of gravity of the regions sub-sampled to be an integer in 
[0,5].  
The weighting scheme is inspired from [20], but we only consider 
media dependant weights. Compared to the tf*idf values as 
defined in [24] that models both the importance of a term in the 
document and with respect to the document collection, we limit 
ourselves to weights that compute visual term frequencies. 
However we input the certainty of the recognition of the concepts 
that is used in our representation. Hence we associate one concept 
with two values: 

• The weight of the concept wi, that represent the importance 
of the concept in the photograph. Many parameters may 
influence the weight of the objects. We compute the weight 

of an object as the probability that one pixel of the 
photograph may be in its region: wi = 
surface(regioni)/surface(image). 

• The certainty of recognition of the concept ci. The results 
reported use certainty values that come directly from the VK 
labeling process. 

A concept is then represented as a [Type: referent | wi | ci]. Figure 
7 shows a part of a conceptual graph describing a real photograph. 
In this figure, the graph represents the content of the image 
IMG0232 that contains 2 regions: one corresponds to sky while 
the second one corresponds to mountains. 

 
Figure 7. The conceptual graph of an image. 

 
The query is also a conceptual graph generated from a natural 
language query. The query graph has the same components as the 
documents, except that the object labels are certain, have a weight 
of 1.0, and have only generic referents. 
The matching process is two fold: 

• We select the images that answer the query. This selection is 
based on the projection operators on a conceptual graph [28]. 
The projection operator intends to determine if the query 
graph is a sub-graph of an image graph, taking into account 
the lattices of concept types and of relations. Because a query 
graph may be projected into an image graph more than once, 
more than one projection may exist.  

• We compute the relevance status value (RSV) for one query 
graph gq and one document graph gd. This matching value is 
computed according to the weights of the matching arches ad 
(a component of a graph of the form [Typedi: referentdi | wdi | 
cdi]  (Relationdj)  [Typedk: referentdk | wdk | cdk].) and the 
weights of the matching concepts cd of gd. The relevance 
status value for one query graph gq and one document graph 
gd is defined as: 
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where πgq(gd) is the set of possible projections of the query graph 
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product where the actual importance of arches and concepts of the 
image graph is one vector and the matching of the image parts and 
query parts forms another vector. The matching value matchc 
between an image document concept cd [Typedi: referentdi | wdi | 
cdi] and a query concept cq [Typeql: referentql | 1.0 | 1.0] is 
computed as: wdi ⋅ cdi . The matching value of arches is based on 
the importance of the considered arch [Typedi: referentdi | wdi | cdi] 

 (Relationdj)  [Typedk: referentdk | wdk | cdk] of the document: 
min(wdi ⋅ cdi, wdk ⋅ cdk); this value is inspired from an fuzzy logic 
interpretation of conjunction. We remind that these values are 
computed only when we know that the query graph has at least 
one projection into the image document graph, so we ensure the 
meaning of the computed values. 

2.4 Integrated Indexing 
The indexing process, as presented on Figure 1, is a bottom-up 
task. The intermediate representation, Fuzzy Object Map (FOM), 
as depicted in Figure 5, is used to generate fuzzy labels for object 
regions based on a clustering algorithm in the fuzzy object space 
(see [15] for details). At the graph-based representation level, the 
most probable label is kept, and inference allows keeping 
specificities of relationships like symmetry and transitivity. As 
described previously the label set SL

VK is the set of labels for the 
VK representation and SL

CG is the set of concept types of the 
hierarchy of CG. The link between the indexes enforces SL

VK ⊆ 
SL

CG. Then, by keeping the two levels of representation, we are 
able to take into account recognition uncertainties as well as 
relationships among image elements. 
 

2.5 Integrated Retrieval 
The retrieval process is based on a combination of the VK and CG 
approaches. We combine the normalized relevance status values 
coming from the VK and CG sub-systems. Such combinations 
have been shown [2, 21] to be effective for text retrieval. The 
combination used is a weighted extension of the summation 
"CombSUM" [12], considering the normalized relevance status 
values of both VK (RSVnorm_VK) and CG (RSVnorm_CG): 

RSVRSVRSV CGnormVKnorm __ )1( αα −+=   

We used α = 0.8 in our experiments below which was determined 
via empirical tuning. 

3. Experiments 
Our experiments were conducted on a set of 2400 genuine family 
photographs collected over a period of 5 years. Figure 8 (on last 
page) displays typical photographs in this collection and Figure 9 
(on last page) shows some of the photographs with inferior quality 
(left to right): fading black and white, flashy, blur, noisy, dark, 
and over-exposed photographs. These inferior quality 
photographs could affect any automatic indexing system but they 
were kept in our test collection to reflect the complexity of 
original and realistic family photographs. We focus on actual 
family photographs instead of the more general image collections 
like Corel images because our research aims to create useful 
automatic tools for mass consumers to organize and retrieve their 
home photographs. Moreover, we are convinced that dealing with 
real home photographs taken by average consumers is more 
challenging than working with professional stock photographs 
(like the Corel collection) used by many other researchers (e.g. 

[30]) because the quality and content of home photographs are 
more varied and heterogeneous. In fact, experiments reported in 
[30] confirmed that classification and retrieval results for the 
amateur home photographs were on the whole worse than those 
for the Corel images. 

 

Table 1. The queries defined on the family collection. 

Q1: Close-up of people VOL 
Q2: Small group of people at the center CRL 
Q3: Large group of people at the center CRL 
Q4: Any people at the center CRL 
Q5: Close-up of people, indoor VOL 
Q6: Small group of people, indoor VOL 
Q7: Large group of people, indoor VOL 
Q8: Any people, indoor CRL 
Q9: Any people CRL 
Q10: People near/besides foliage CRL 
Q11: People between foliage CRL 
Q12: People near building (or artifacts) CRL 
Q13: People in front of building (or artifacts) CRL 
Q14: People in front of mountain/rocks CRL 
Q15: People between water CRL 
Q16: People on one side of water CRL 
Q17: Flowers in a garden VO:L 
Q18: In a park or on a field VOL 
Q19: Close-up of building VOL 
Q20: Road/street scene in a city VOL 
Q21: Cityscape (view from far) VOL 
Q22:  Mountain, view from far VOL 
Q23: At a (swimming) pool side VOL 
Q24: Object at the center, indoor CRL 

 

The 2400 photographs were indexed automatically as described in 
Section 2. From only 53 images (i.e. 2.2% of the whole test 
collection), we define and label 85 visual keywords. The detection 
of faces in the photographs was further enhanced with specialized 
face detector [23]. The overall number of labels for VK and CG 
are thus 85 and 110 respectively. CG also uses 48 relations, and 
applies symmetry and transitivity among relations when needed. 

We defined 24 queries and their ground truths among the 2400 
photographs (Table 1): the queries cover a wide range of potential 
queries, like close-up portraits (queries Q1, Q5), relative locations 
of objects (queries Q10, Q12 etc), absolute location of objects 
(queries Q2-4, Q24), and generic concepts (“large group of 
people”, “indoor”, “object” etc). We indicate for each of the 
queries listed in Table 1 if it is based mostly on the Visual Object 
Level (VOL) or the Concept-Relation Level (CRL) as described 
in the introduction. 
Consider the 11 queries corresponding to the Visual Object Level:  

• The query Q1 is only related to the occurrence of a face,  

• The queries Q5, Q6 and Q7 look for close-ups of people and 
also on groups of people in the context of indoor 
photographs by looking into indoor objects. 
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• The other queries (Q17-Q23) consider the occurrences of 
objects like flowers, foliages, road, buildings, mountain and 
water. 

Consider now the 13 queries corresponding to the Concept-
Relation Level: 

• The queries Q2 and Q24 and involve spatial relationships 
between elements, 

• The queries Q4, Q8 and Q9 are based on the use of a generic 
concept People that correspond to any kind of people (face of 
a close-up, people in small and people in large groups), 

• The queries Q10 to Q16 involve any people with specific 
relationships with other concepts (any kind of water for 
instance). 

For each query listed in Table 1, we selected 3 relevant 
photographs as QBE input to the VK subsystem and constructed 
relevant textual query terms as QBS input to the CG subsystem. 
The query processing for QBE/VK, QBS/CG, and RSV 
integration are carried out according to subsections 2.2, 2.3, and 
2.5 respectively. 
We first discuss the reason why the VK results are more precise 
than those of the CG. The CG approach represents only the most 
probable label of an element recognized in a photograph. When 
the indexing is manually assisted we have very accurate 
descriptions. But here, the indexing is automatic and errors are 
inevitable, and this leads to the lack of precision of the CG 
approach in our results. On the contrary, the VK approach 
preserves the fuzziness of the labels during similarity matching 
and this helps to increase the quality of the results. The HSV 
Local method provides good results, but less accurate than those 
of the VK, and much less than the combined method. 
We focus first on the general results related to the experiment. 
The Table 2 presents the average recall/precision results (over the 
24 queries) obtained for the color-based indexing method, for VK 
and CG only respectively, and for the best combination of both. 
The first method, namely, “HSV Local”, can be seen as a special 
case of visual keywords method. The visual keywords chosen are 
eleven key colors (red, green, blue, black, grey, white, orange, 
yellow, brown, pink) in the HSV color space adopted by the 
original PicHunter system [5]. The indexing of “HSV Local” was 
carried based on the tessellation shown in Figure 6. Hence the 
“HSV Local” method is equivalent to locally weighted color 
histograms. The “HSV Local” method is only presented here to 
compare the results of usual non-symbolic approaches to our 
work. In Table 2, the values in brackets in the last column indicate 
the relative difference between the combination versus the 
individual HSV Local, VK and CG results, respectively. For the 
recall/precision results for VK and HSV Local, we removed the 3 
query images from the relevant set to be fair. 
The combined result shows that our integrated approach 
outperforms each of the individual subsystems by 8.1% to 32.2% 
(last row of Table 2). We also notice that significant 
improvements of the precision values happen at low recall values. 
This is very important for a practical system to be used by home 
users. For the query Q11 for instance, “people between foliage”, 
the average precision is 0.56 for the VK and 0.36 for the CG, but 
the combination provides an average precision of 0.62 (+10.7% 
over VK). This shows that, to a great extent, when the query is 
general, the query by example process is not appropriate and the 

use of a higher-level representation such as CG that includes 
hierarchies of relevant concepts is useful even if the CG 
representation may not be perfect. 

Table 2. Recall/Precision table. 

Recall 
HSV 
Local VK CG Combined 

0 
 

0.969 0.969 0.959 
     0.969  
(0.0%, -0.6%, +1.0%)  

0.1 
 

0.503 0.659 0.453 
     0.705  
(+40.1%, +7.0%, +55.6%) 

0.2 
 

0.367 0.457 0.345 
     0.515  
(+40.2%, +12.5%, +49.2%) 

0.3 
 

0.304 0.365 0.304 
     0.392  
(+28.9%, +7.5%, +28.8%) 

0.4 
 

0.278 0.290 0.248 
     0.323  
(+17.1%, +11.4%, +29.9%) 

0.5 
 

0.254 0.261 0.212 
     0.279  
(+9.7%, +6.8%, 31.4%) 

0.6 
 

0.234 0.237 0.198 
     0.251  
(+7.6%, +6.2%, +26.8%) 

0.7 
 

0.214 0.215 0.187 
     0.229  
(+7.3%, +6.3%, +19.0%) 

0.8 
 

0.197 0.194 0.175 
     0.205  
(+3.9%, +5.5%, +17.2%) 

0.9 
 

0.179 0.176 0.164 
     0.182  
(+1.7%, +3.5%, +10.9%) 

1 
 

0.141 0.141 0.138 
     0.044  
(-6.9%, -6.9%, -6.8%) 

Avg. 
Prec. 

 
0.305 0.334 0.273 

     0.361  
(+18.4%, +8.1%, +32.2%) 

 
To be more precise about the results for low recall values, Table 3 
presents the average precision values at the top 20, 30, 50, and 
100 retrieved images for the HSV Local, VK, CG and the 
integrated approach. We chose these recall points comes from the 
fact that for image retrieval, the system is able to present 20 or 30 
image thumbnails per page (or screen), and browsing a set of 50 
or 100 images is not too painful for users (for instance, the well 
known Google web retrieval system (http://www.google.com) 
presents by default 20 query results for images, and 10 query 
results for text). 

Table 3. Precision at 20, 30, 50 and 100 documents. 
 HSV 

Local 
VK CG Comb. 

Avg. prec. at 
20 images 

0.493 0.592 0.408 0.621 

Avg. prec. at 
30 images 

0.433 0.517 0.363 0.569 

Avg. prec. at 
50 images 

0.378 0.437 0.330 0.488 

Avg. prec. at 
100 images 

0.323 0.351 0.305 0.403 

 
Once again, from Table 3, we observe that our combined 
approach outperforms all the other methods. In particular, on 
average, the combined approach retrieves between 0.6 and 4.3 
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more relevant images among the top 20 images. Applying the 
same argument to the 30, 50 and 100 retrieved image precision 
values implies that the combined approach finds between 1.6 and 
6.2 more relevant images in the first 30 retrieved images, between 
2.6 and 7.9 more relevant images in the first 50 retrieved images, 
and 5.2 and 9.8 more relevant images in the first 100 retrieved 
images. In short, our experimental results show that by combining 
the VK and CG approaches to take advantage of different levels of 
indexing representations, we achieve better retrieval performance 
over individual approach for heterogeneous queries on a large 
home photograph set. 
Last but not least, we illustrate a sample retrieval result for query 
Q10 (People near/besides foliage) using our combined approach 
in Figure 10 (on last page). The retrieved photographs are 
displayed in the decreasing order of RSV in top-down, left-to-
right manner. In this case, all the top 18 photographs returned by 
the system are relevant. 
 

4. CONCLUSION 
In this paper, we have presented a multi-level indexing and 
retrieval approach for photographic image retrieval. We 
differentiate the elements taken independently and their 
relationships in two indexing levels. The link between these 
levels, realized by the Visual Keywords [13-15] and the 
Conceptual-Graph approaches [17, 20], is proposed. We studied 
different query modes and the links among them as well as the 
links to the indexing levels during retrieval. Last but not least, we 
demonstrated the effectiveness of our proposed approach on 2400 
home photographs with 24 queries. 
However for each query in our experiments, a user has to issue a 
QBE with 3 query images and construct a QBS that expresses the 
relevant concepts and relations. It should be possible to invoke 
only QBE for the VK subsystem (or QBS for the CG subsystem) 
and automatically generate the QBS for the CG subsystem (or 
QBE for the VK subsystem). In the future, we will explore in 
greater depth the interaction between indexing and query 
processing levels as well as learning of semantic classes from 
examples and domain knowledge. A theoretical model for 
integrating different indexing representations and query 
processors will also be defined. 
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Figure 8. Typical photograph used in our experiments. 

 

 

Figure 9. Inferior quality photographs used.�

 
Figure 10. Top 18 images for Q10 (People near Foliage). 
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