
Multiversion Divergence Control of Time Fuzziness

Calton Pu* Miu K. Tsang, Kun-Lung Wu and Philip S. Yu

Department of Computer Science and Engineering IBM T.J. Watson Research Center

Oregon Graduate Institute P.O. Box 704

Portland, OR 97291-1000 Yorktown Heights, NY 10598

Abstract

Epsilon Serializability (ESR) has been proposed to man-

age and control inconsistency in extending the classic trans-

action processing. ESR increases system concurrency by tol-

erating a bounded amount of inconsistency. In this paper,

we present multiversion divergence control (mvDC) algo-

rithms that support ESR with not only value but also Itirne

fuzziness in multiversion databases. Unlike value fuzziness,

accumulating time fuzziness is semantically different. A sim-

ple summation of the length of two time intervals may either

underestimate e the total time fuzziness, resulting in incorrect

execution, or overestimate e the total time fuzziness, unnec-

essarily degrading the effectiveness of mvESR. We present a

new operation, called TimeUnion, to accurately accumulate

the total time fuzziness. Because of the accurate contrcd of

time and value fuzziness by the mvDC algorithm, mvESR is

very suit able for the use of mult iversion databases for real-

time applications that may tolerate a limited degree of clata

inconsistency but prefer more data recency.

1 Introduction

In conventional transaction processing (TP) systems, the

correctness criterion has been serializability y (SR) [3]. Ep-

silon Serializability (ESR) [11, 17, 10] is a compatible ex-

tension that relaxes SR’S consistency constraints. In ESR,

each transaction, called epsilon transaction (ET), has a spec-

ification of the inconsistency (fuzziness) allowed in its exe-

cution. ESR increases TP system concurrency by tolerating

a bounded amount of inconsistency. For example, in a bank

database the inconsistency bound can be defined by dollars.

In this paper, we apply ESR to a database system that

maintains multiple versions of data, called rmdtiversion ep-

silon seriakzabditg (mvESR), and present multiversion di-

vergence control algorithms (mvDC) that guarantee mvESR.

Note that multiversion databases and multiversion concur-

rency control (mvCC) algorithms have been proposed to effi-

ciently support concurrent processing of update transactions

● This work was partially supported by National Science Founda-
tion and Oki Electric.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice Is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
@ 1994 ACM 0-89791-674-3/94/001 1..$3.50

and read-only queries by allowing update transactions and

queries to access different versions of data. In a way similar

to mvCC algorithms improving concurrency of single version

concurrency cent rol (IvCC), mvDC algorithms presented in

this paper allow more concurrency, compared with single

version divergence control (IvDC). One particularly impor-

tant contribution of this paper is the addition of the time

dimension to mvDC algorithms to bound not only the value

fuzziness of the result of a query ET but also the timeliness,

or recency, of the data that a query ET accesses. In fact,

mvDC algorithms allow the results of query ETs to be less

obsolete than mvCC algorithms since non-serializable exe-

cutions are possible and query ETs can access more recent

versions. As a result, version management can be greatly

simplified by only maintaining the most recent few versions.

More importantly, mvESR becomes attractive for the use of

multiversion databases for real-time applications that may

want to trade off a bounded degree of data inconsistency for

more data recency.

In this paper, we describe mvDC algorithms that sup-

port ESR along two dimensions: time fuzziness and value

fuzziness. Unlike value fuzziness, accumulating time fuzzi-

ness is semantically different. A simple summation of the

length of two time intervals may underestimate the total

time fuzziness, resulting in incorrect execution, or signifi-

cantly overestimate e the total time fuzziness, unnecessarily

degrading the effectiveness of mvESR. We present a new

operation, called TimeUnion, to correctly accumulate the

total time fuzziness imported by a query ET or exported by

an update ET. Two mvDC algorithms are presented: one

based on a timestamp ordering mvCC algorithm and the

other based on a 2-phase locking mvCC algorithm. The se-

rialization order of the timestamp ordering mvCC algorithm

is determined by the initiation timestamps of transactions or

queries, while that of the 2-phase locking mvCC algorithm

is determined by the commit timest amps. We demonstrate e

first the bounding of time fuzziness in the timestamp mvDC

aIgorithm and then the bounding of both time and value

fuzziness in the 2-phase locking mvDC algorithm.

The rest of the paper is organized as followa. Section 2

summarizes the background and motivation for this work.

Section 3 introduces the concepts related to time fuzziness.

Section 4 briefly discusses a few version selection functions

for picking a version. Section 5 describes the timestamp

ordering multiversion divergence control for time fuzziness

only. Section 6 discusses the bounding of both time and

value fuzziness. Section 7 then describes a 2 phase locking

mvDC algorithm that bounds both value and time fuzziness.

Section 8 concludes the paper.

195

2 Background and motivation

2.1 Multiversion databases

Multiversion concurrency control algorithms have been pro-

posed to decrease the number of conflicts between reads and

writes by separating writes (creation of new versions) from

reads (on immutable versions). Most of the proposed mvCC

algorithms allow a multiversion history that is equivalent

to a standard serial multiversion schedule. For example, a

transaction T; reads the most recent version of data items

according to the serialization order of T;. These algorithms

are particularly effective for long queries, which otherwise

cannot finish without stopping the update activity.

However, most of the classic mvCC algorithms implic-

itly assume the database accommodates an infinite number

of versions for each data item [1, 2, 3, 4, 5, 6, 13, 15]. If

not, a long-running query may have to be aborted because

some of the versions that it needs have been garbage col-

lected prematurely. Thus} both storage overhead and ver-

sion management complexity, such as version selection and

garbage collection, can be a severe problem. Recently, a new

class of mvCC algorithms, such as dynamic finite versioning

(DFV) [16, 8] and transient versioning [9], have been pro-

posed to allow a choice in the trade-off between the number

of versions available (i.e., the storage space occupied) and

the obsolescence of data being accessed. Queries are guar-

anteed to read from a consistent database state, but that

consistent state may be out-of-date [8]. Usually, a smaller

number of versions available means less up-to-date versions

being read. In contrast to these versioning algorithms that

maint sin a finite number of versions and preserve serializ-

ability, multiversion DC algorithms offer a different kind of

trade-off. Instead of obsolescence, ESR allows query ETs to

access more recent, but maybe non-SR versions. This is or-

thogonal to these finite versioning schemes and in princip~e

the two approaches can be combined.

Compared to single version DC algorithms, multiver-

sion DC can provide results with smaller fuzziness, sim-

ply because more versions are available and query ETs can

carefully choose the “right” version. Furthermore, many

long queries are generally simple aggregate functions (or

composed of these functions) over large portions or the en-

tire database such as summations. Usually, these aggregate

functions can tolerate a limited amount of fuzziness. For ex-

ample, the total amount in the checking accounts of a bank

is reported in millions of dollars; consequently an inconsis-

tency of a hundred thousand would be washed out by the

rounding error. In these applications, ESR offers a higher

degree of concurrency because limited non-serializable con-

flicts are allowed, and a higher degree of recency for the

same reason.

2.2 Real-Time database applications

One important application of mvESR is the use of time-

stamped multiversion databases for real-time applications

that also require timely results. Real-time jobs have dead-

lines, beyond which their results have little value. Further-

more, many real-time jobs may have to produce timely re-

sults as well, where more recent data are preferred over older

data. Classic TP based on SR does not include time or

timeliness in the database model. Consequently, lvCC algo-

rithms may postpone a job too much into the future (blocked

because of access conflicts), causing it to miss the deadline.

On the other hand, mvCC algorithms may push a job too

much into the pas t (in an effort to avoid conflicts), pro-

ducing obsolete results. We say that real-time jobs have tw-

gency requirements to finish before the deadline and recency

requirements to avoid old data. Although algorithms con-

trolling only value fuzziness can help increase concurrency

of real-time databases [14], most real-time applications may

also require a tight control over the time fuzziness in addi-

tion to value fuzziness. Intuitively, time fuzziness denotes

how wide-spread in time the accessed data objects are, from

the viewpoint of a serializable schedule.

One common problem of DFV or transient versioning

algorithms is the lack of programmer control over the de-

gree of obsolescence of data being read by queries. Conse-

quently, most of the multiversion CC algorithms have seri-

ous drawbacks in the context of real-time database applica-

tions. These drawbacks are particularly severe for the real-

time applications that need to access recent data, not just

an arbitrarily old version, in addition to completion before

the deadlines. Usually, real-time transactions may tolerate

some limited amount of inconsistency (SR not required),

but they prefer data timeliness (versions not too old). In

these situations, classic multiversion CC algorithms become

inadequate, since they do not support the notion of data

timeliness. The goal of mvDC algorithms described in this

paper is to use the tolerance for time fuzziness to increase

the number of versions selectable for each query ET, thereby

guaranteeing data timeliness.

One way to deal with the trade-off between data consis-

tency and timeliness is the conservative scheduling of data

access. Data consistence y is maintained by scheduling trans-

actions under SR, and data timeliness is maintained by the

application programmers. In addition, the system must

schedule the jobs carefully to guarantee that real-time trans-

actions will meet their deadlines. But this conservative aw.
preach is too restrictive, since SR may not be required in

many real-t ime applications, where sufficiently “close” ver-

sions may be more important than strict SR. Thus, mvESR

offers an attractive solution in this case.

More recently, Mok [7] has introduced the notion of 9im-

darities to allow some fuzziness in the trade-off of data con-

sistency and timeliness. Our work has the same goal as

Mok’s, but we build on the existing ESR framework, using

ESR concepts, notation, and algorithms. In this paper, we

apply ESR to transaction processing in multiversion data-

bases, aiming to support real-time applications that have

both urgency and recency requirements. Our algorithms al-

low application designers a tine-grained control by explicitly

quantifying imprecision of data (in time and in value) due to

bounded fuzziness in non-serializable execution, This way,

queries may read inconsistent data as long as the data ver-

sions being read are “close enough” to serialization in data

value and timeliness. Therefore, we can have many queries

running without keeping all the versions that would have

been otherwise needed for a serializable execution.

3 Time fuzziness in mvESR

3.1 Specifying time fuzziness

A database is a set of data items, The set of all possible

values over the entire database is the database state space,

denoted by SDE. In this paper, we consider only cartesian

database state spaces (e.g., integers, real numbers, sets, and

strings). In practice, many important data fall into this cat-

egory (or the application semantics allow for the definition

of a cartesian distance function over the state space). For

every pair of states u, v e SDB (a cartesian database state

196

space), we define dist(u, v) as the distance between u and v.

The dist ante between a potentially inconsistent state and a

known consistent state is called fizziness.

In ESR, each (epsilon) transaction has a specification of

the fuzziness allowed in its execution, called epsilon specij%

cation, or ~-spec for short. When C-spec = O, an ET reduces

to a classic transaction and ESR reduces to SR. As in previ-

ous ESR papers, we adopt a restricted model of ESR where

update ETs are serializable with each other while query IETs

need not be serializable with update ETs. Thus, fuzziness

is allowed only between update ETs (denoted by UET) and

read-only query ETs (denoted by QBT). The ~-spec of a

UET refers to the amount of fuzziness allowed to be ex-

ported by the UET, while the ~-spec of a QET refers to the

amount of fuzziness allowed to be imported by the QBZ’.

Each Q BT has an ~mPort_tame_lamitwhich specifies the

maximum length of time fuzziness the QET can accumulate.

Similarly, each U~T has an export-time-limit which s ecifies

the maximum amount of time inconsistency the U 1. can

export to other QE~s. (For value fuzziness the respective

limits are import.value-limit and export.value.litnit.) ‘The

fuzziness limits can be specified by the application designers

for each ET, and they can also be changed during run-time.

The time interval [ts(T;) – ~-spec, ts(Ti) + ~-spec] defines

all the legitimate versions accessible by Ti, where ts(T;) de-

not es the timest amp of (epsilon) transaction T;. Namely,

as long as the distance between timestamps is within Ti’s

~-spec, a version can be accessed by T~. (Note that, unless

for the purpose of specific contrast, for the rest of the paper

we may omit epsilon when referring to an epsilon transaction

in mvESR.) Several criteria could be used for the choice of

versions within the interval [ts(T~) – C-spec, ts(T~) + ~-spec],

but it is not our intention to decide here the policy issues in-

volved. We will discuss some concrete examples in the next

section,

3.2 Calculating time fuzziness

In a multiversion database, we model the different versions

of a data item x as separate data objects in the database.

Let ts(~i) be the timestamp of data object z;. Such a ts(~i)
may determine the serialization order of transaction Ti that

created the object. Each data object has a value and an

index denoting the transaction number that created the ob-

ject. Note that, when we discuss tzme in this paper, we refer

to the timestamp of data versions. However, our results also

apply to time as part of the database state space (e.g., ac-

count creation date in a bank database). In this paper,, we

focus on the fuzziness in metadata, i.e., the timestamp in

data versions.

Informally, the time fuzziness for the non-SR execution of

a query operation is defined as the distance in time between

the version a query ET reads in an mvESR execution and the

version that would have been read in an mvSR execution.

Concretely, consider w and ~ as two time points (and a ~ /3

unless otherwise stated). Let us adopt the notation:

● [a, L3], as the time interval between a and ~;

c [a, P] as the length of time between a and ~; and

● distt(cr, ~) = [a, /3], as the distance in time between a

and ~.

The problem with accumulating time fuzziness is that a

simple summation of two time intervals may underestimate

or overestimate the total time fuzziness. For example, if

two time intervals [a, /3] and [y, 6] are completely disjoint

(w.1.o.g. assuming a </3 < v < 6), we have

—— .
[cI,6]> [al P]+ [7,6]; or

dist,(a, 6) > distt(a,~) + dist,(y, 6). (1)

Namely, a simple summation of the lengths of two disjoint

intervals underestimates the total time fuzziness. On the

other hand, if two intervals overlap, then a summation will

overestimate the total fuzziness. For instance, if a < 7 <—.
$< ~, then the simple summation of [a, /3] and [~, 6] would

overestimate e the total time fuzziness. Therefore, we need a

different accumulation operator for time fuzziness manage-

ment.

In this paper, we present an accurate time interval ac-

cumulation operator, called TimeUnion, which operates on

time intervals instead of their lengths. For two time intervals

[a, ~] and [7,$] we define:

TimeUnion([a, P], [~, 6]) = [min(cs, y), maz(/3, 6)].

An alternative and equivalent definition is:

TlmeUnion([a, P], [~, 6]) = [K, v] such that

~is maximal Vp c [a,~],v E [7,6].

The first definition is intuitive while the second defini-

tion makes explicit that the TimeUnion operator will not

underestimate or overestimate time fuzziness when used as

an accumulator. As an example, TimeUnion([2, 5], [9, 10]) =

[2, 10]. Thus, for time intervals [a, ~] and [7, 6],

TimeUnion([a, /3], [7,6]) = [a,6], Va s ~,7 S 6. (2)

Thus, TimeUnion over a set of intervals returns the smallest

interval that covers all of them, i.e., its lower bound is the

minimum of all the lower bounds and its upper bound is

the maximum of all the upper bounds. As a result, if time

fuzziness between a and ~ is represented as dist t(a, ~) =

[a, ~], then the above TimeUnion operator can be used to

accurately accumulate the total time fuzziness of different

intervals by following Eq. 2.

3.3 Bounding time fuzziness

The objective of an mvDC algorithm is to keep the time in-

consist ency accumulated by each ET below its ~-spec. Let

;mpOTt-t~me-fUZZ;neSSQ, be the accumulated amount of

time fuzziness that has been import ed by a query Qi. Simi-

larly, let ezport-time-fuzzinessu, be the accumulated time

fuzziness exported to other query ETs by Uj. The objective

of an mvDC algorithm is to maintain the following invariants

for all Qi and Uj:

● ~mpOTt_t~me_fUZZ~neSSQ, < hpOTt_t~??R_hZ~tQ% i

● ezport-time-fuz zinessu, < ezport-time.lim itu, .

We call these the Sa.fe~i~, conditions for an mvESR sched-

ule.

When a query Qi accepts a data item ~i as input in

an mvESR execution, zi may render the execution non-SR.

However, this can be allowed if the dist ante between zi and a

serializable version does not make import _time-f uzziness Q,

exceed ;mpo?’t-thdi??’dQ,. GOIIVerSdy, time fUZZh3S can

be exported from an update ET when other query ETs ac-

cept a non-SR version created by the update ET. Therefore,

the time fuzziness also has to be accumulated for the update

ET as well.

197

4 Version selection

In most classic multiversion CC algorithms, it is straightfor-

ward to determine which version should be accessed given

a transaction Ti’s timestamp, ts(?’;). Usually, it is the ver-

sion created before ts(T~) but with the closest timest amp

to ts(T~). This choice ensures the serializability y of T;. In

contrast, mvDC does not have to ensure serializability y when

~-spec >0. Therefore, mvDC may choose from a potentially

larger number of versions for each transaction access.

The function that chooses a version given a transaction’s

timestamp and ~-spec is called Pick V. There are several

trade-offs involved in the choice of an appropriate version

for a given situation. Detailed analysis and simulation may

be needed for a systematic exploration of the design space,

policy parameters, and application environments. However,

for the description of mvDC algorithms, the specific details

of the version selection function is not important. Thusj

we only suggest some possibilities here and analyze their

advantages and disadvantages in a qualitative way.

The first and simple example (PickVI) is to assume that

~-spec = O and choose the version that makes T; serializ-

able. This example shows that the Pick V function can be

a generalization of the version selection function of a classic

multiversion CC algorithm. The second example (PickV2),
ignores ~-spec and always chooses the most recently com-

mitted version of the data item being accessed. This policy

emulates a single version database with private workspaces

for update transactions. Note that mv2PL algorithms work

this way, but timestamp based algorithms need to be com-

bined with some other mechanism.

The third example (PickVs) tries to minimize the fuzzi-

ness by approximating the classic mvCC. It chooses the

newest version Z3 of dat a item z such that t~(zj) < ts(!Z’;). If

such an Zj is no longer available because it has been garbage

collect ed, PickV can simply returns an available version z k

such that ts(zj) < ~s(zk) < (ts(T,) + ~-spec). (h the other

hand, if Xj is not available for any other reason (e.g., a

disk error), PickVO may return any version z~ such that

ts(zm)< ts(~j)and (ts(Ti) – E-spec) < t~(zm) < ts(Ti).

The fourth example (PickVA) takes into account the re-

cency (birthline) and urgency (deadline) requirements of a

real-time query Ti. Regardless of ts(T;), PickV4 could re-

turn a version that is near the midpoint between T;’s birth-

line and deadline. This policy effectively redefines the se-

rialization order of Ti, moving it from its t imest amp to

the midpoint. This is a heuristic to approximate the likely

CPU scheduling order of Ti. If there is more information

about how Ti’s CPU requirements are being scheduled, then

PickV4 could choose the versions that are close to its CPU

run time. Of course, these choices all assume they are within

the interval [ts(T;) – E-spec, ts(T;) + ~-spec].

5 Timestamp ordering mvDC for time fuzziness

In this section, we present a timest amp ordering mvDC

algorithm wit h an emphasis on bounding time fuzziness.

Namely, we assume that the C-spec’s of other dimensions

are infinitely large. In Section 7, we will describe a 2PL

mvDC algorithm that bounds both time fuzziness and value

fuzziness.

Analogous to the divergency control algorithms which

support ESR in a single version environment, we now de-

scribe the mvDC method to guarantee mvESR for a time-

stamp ordering multiversion concurrency cent rol. We will

extend the methodology described in [17] for lvDC algo-

rithms and modify a classical mvCC to produce the mvDC

that supports mvESR. Our objective is to provide a sys-

tematic methodology to extend an existing mvCC protocol

by relaxing the correctness criteria from mvSR to mvESR.

Despite the differences in implementing various mvDC algo-

rithms for different types of mvCC protocols, the key aspects

of mvDC common to all algorithms are: (1) the database is

always kept in a consistent state, (2) non-mvSR operations

may be allowed for ET’s, and (3) the import or export fuzzi-

ness of an ET is bounded by the mvDC algorithm according

to the ET’s ~-spec.

Typically, a classical mvCC algorithm implicitly assumes

that an unrestricted number of versions can be accessed.

However, in practice most of them are refined to operate on

a finite number of versions. In such a case, if a data version

needed for a serializable execution has already been garbage

collected, the corresponding transaction will be aborted in

an mvCC algorithm. In an mvD C algorithm, however, we

can allow a query ET to read a non-SR data version with

the amount of inconsistency bounded within its C-spec. only

when the inconsistency grows beyond the ~-spec do we then

either abort the ET (in a timestamp-based or optimistic

mvDC) or block its execution (in a lock-based mvDC), just

like a traditional mvCC algorithm.

5.1 Summary of a classic timestamp ordering mvCC
algorithm

Classical timestamp ordering concurrency control guaran-

tees an SR execution of transactions by choosing a version

that makes the transaction serializable. Here we summarize

a multiversion timestamp ordering (mvTO) algorithm in [3]

as an example. In such an mvTO CC algorithm, each trans-

action is assigned a unique timest amp, denoted as ts(Ti).

Each operation carries the timest amp of its corresponding

transaction. Each version is labeled by the timestamp of the

transaction that updated it.

This mvTO CC algorithm maintains SR by translat-

ing a read operation ?’i(z) into 7;(Zk), where ts(zk) is the

largest timestamp less than or equal to ts(T,), and then

reads z k. It processes a write operation w,(z) by consider-

ing two cases. If the database system has already processed

a read rj(zk) for another transaction T, such that ts(zk) <

ts(Ti) < ts(T3), then it rejects w;(z) and aborts or restarts

Ti. Otherwise, wi (z) creates a new version z;. To ensure

recoverability, any transaction Tj that reads a version cre-

ated by another transaction Ti must wait and commit after

Ti has been committed.

5.2 ~t~~n of a timestamp ordering mvDC algo-

To eliminate the complexity of maintaining an unrestricted

number of data versions and the expense of high storage

overhead, a finite number of data versions are assumed for

each data item in the description of the timestamp ordering

mvDC algorithm. Moreover, we assumed that some Pzck V

function is used to select a version for a query ET read oper-

ation. However, specific details about the selection function

is not critical to the design of the mvDC algorithms, In

fact, mvDC algorithms provide more room for the Pick V

function to choose an appropriate e version.

Extension stage

The extension stage of an mvDC algorithm identifies the

conditions where a non-SR operation may be allowed. For

198

a timest amp ordering mvDC algorithm, there are two such

conditions. First, a query Q~ may access a non-SR data

version by the Pick V function if the serializable version does

not exist or if it cannot satisfy the recency requirement. For

example, using PickV4 described in Section 4 to select a

version may allow Qi to read a non-SR but more recent

version for a real-time application. Secondly, a late arriving

update ET may still create a new version that is non-SR

with respect to some previously arrived query ETs.

Note that, for a query ET, a read operation qi(z) from

a query Qi can be processed by choosing a proper version

~k (e.g., by Pkk V4). However, for an update ET, a read
operation rj(z) from an update ET Uj is restricted to a se-
rializ able data version in order to maintain the overall dak a-

base consistency. As a result, only for query read operations

can the different version selection functions described in Sec-

tion 4 be used. For the read operations of an update ET,

the system must always return the serializable version.

For a late arriving write operation w;(z) from an up-

date ET U~, where there exists an Zk that has been read by

another query Q, such that t~(zk) < ts(U,) < t~(Qj), we

may still allow w;(z) to proceed and create a new version

z;. However, this non-SR version z; must be “close enough”

to the serialization timest amp, In other words, the differ-

ence between the timestamp of the non-SR version and the

serialization timestamp must be within the time fuzziness

~-spec.

Relaxation stage

In the relaxation stage, we calculate and bound the inccm-

sistency resulted from the non-SR executions. On a query

read gi(z) from query Q~, it is translated into ~i(zj), where

~ j is chosen. based on a selection function (see Section 4).

Suppose z~ IS the sermlizable version. Then, the time fuxzi-

ness caused by allowing Qi to read z j instead of z k for Q4

is the time distance between ts(zj) and t.9(Zk).Namely,

impod_time_fuzzines sQ,,= = export.time-fuzzinessu,, z =

diSt~(t8(Uk), ts(~j)). Here, import_time_fuzzinessQ=,= rep-

resents the imported time fuzziness of Qi due to z amd

ezpo~t_time_fuzzinessu ,= is the exported time fuzziness

f’through z. This time uzziness is accumulated using ithe

TimeUnion operation described in Section 3.2 for Q; smd

Uj. If the resulting accumulated time fuzziness does not ex-

ceed the corresponding E-spec, then the non-SR operation

can be allowed. Otherwise, it has to be rejected.

On the other hand, the time fuzziness incurred by a write

operation w,(z) (of Ui) being processed even after a qj (:Ck)

(from Qj) with ts(zk)< t.(Ui)< t~(Qj) has been com-

pleted, is the time distance between t.9(Uk) and ts(U;), where

vk is the update ET that has created Zk. This time funzi-

ness is accumulated into U; and Qj’s time fuzziness using

the TimeUnion operation. Only if the resulting fuzziness
does not exceed the corresponding e-spec for both Ui and

Qj is the late arriving write operation allowed to proceed,
Note that there may be multiple such query ET’s that has

read a version of z before the late arriving update operation

Wi (z) arrives. In such a case, the time fuzziness has to be

accumulated for all the query ETs.

5.3 Proof of correctness

We first identify the cycle prevention properties for the cor-
responding multiversion serialization graph of t he original

multiversion timest amp ordering algorithm [3]. Following

these properties, we show that the Safet;m, condition is

hold for any violation of the properties. Thus, database

consistency and bounded inconsistency for ETs are guaran-

teed.

In [3], every successful multiversion timest amp ordering

execution history H has the following properties to guaran-

tee its serializability y [3]:

1.

2.

3.

4.

For each T,, t~(’Ti) = ts(T’) iff i = j, i.e., a unique

timest amp for each transaction;

For every Tk(Z~) C H, Wj(zj) < rk(z~), and t~(ff”) s

ts(Tk), i.e., each transaction Tk only reads data objects

with timestamps sma~er than ‘t.?(Tk);

For every Tk(Zj) and ~i(z;) E H, i #j, either

a) t~(T’)< ts(Tj) or

b) t9(Tk) < t~(Ti) or

C) ~ = k and Tk(Zj) < Wi(zi),

i.e., when the scheduler processes ~k(zj), Zj is the ver-

sion wit h the largest timest amp that is less than or

equal to t~(Tk);

IfTj(zi) E H,i # j, and c, c H, then ci < c;, wherec;

rep~esents cornrnit_ of tra&action Tj (recov~rability). “

In a timestamp ordering mvDC algorithm, Rule 3 may

be violated if the Pick V function returns a non-serializable

data version for a query ET, or if a late arriving write opera-

tion ~i(z) is allowed even if a qk(zj) with t~(itj) < t~(~i) <

tt?(~k) has been processed. However, for these cases the

time inconsistency is accumulated for the involved query

and update ETs when the conflict is detected. For rule 4,

we do not delay query ET to commit until after the update

ET is committed. In this case, the data versions that an al-

ready committed query ET has read may be discarded later

on. However, the time inconsistency has already been taken

into account for the query ET, As a result, the Safetime

condition is ensured in all cases and the resulting schedule

is guaranteed ESR. •1

6 Bounding both time and value fuzziness

The calculation of value fuzziness in mvDC is similar to

lvDC, where the value fuzziness of each non-SR conflict is

estimated by calculating the distance between the old value

and the new value. While the accumulation of time fuzzi-

ness requires a special TimeUnion operator (see Section 3.2),

the accumulation of value fuzziness for an ET can be accom-

plished simply by adding together the value fuzziness caused

by each non-SR operation.

Similar to the Sa$e,,~e conditions previously presented

in Section 3.3 for time fuzziness only, to bound both value

and time fuzziness, an mvDC algorithm must maintain at

all time the following Safeti~=,value conditions for every ~i

and U3:

● hTJpOTtNLZhLt?.f UZZh?SSQ, < hpOTtN13!?L&lim~tQ,;

●

●

●

impo7t-time-fuzzine.ss G, < import_timelimitQ,;

ezpovt-value_fuz zinessu, < ezpovt_value-lim itu3 ;

ezport-time-fuz zinessu, < ezpo7t-time-limi tu,.

199

In the above conditions, impo7t.vahe.f uzzinessQ, repre-

sents the accumulated value fuzziness imported by Qi, and

ezport-vaiue_fuzzinessu, represents the accumulated value

fuzziness exported by U3. For a non-SR operation to be

processed, all these conditions must be satisfied. If any of

them does not hold, the non-SR operation cannot be al-

lowed.

In mvDC, in addition to time fuzziness, value fuzziness

is also int reduced by choosing a non-SR version (e.g., by

PickVs or PickV4) and it can be calculated by taking the

difference between values from the non-SR version and the

SR version. Note that, in a non-SR environment, value

fuzziness and time fuzziness are always present. Given two

versions, value fuzziness is the difference between their val-

ues and time fuzziness is the distance between their version

timest amps.

Consider the following example. Let operation op~,j (z~)

be the jth operation of transaction i on data item Zk. As-

sume that the following schedule is an example of IvDC.

wo,l(z)wo,2 (v)corl,l (z)w2,1(v)rl,2 (v)clw2,2(z)c2. (3)

In a multiversion environment where each ~~(~i) creates a

version z;, the above lvDC schedule may become the fol-

lowing mvDC schedule:

wo,l(zo)wo,2(vo)coTl,l (ao)w2,1(v2)?l,2 (y2)clw2,2(z2)c2.
(4)

In Eq. 4, both TO and 771 are supposed to be serialized before

272, but T1 reads Tz’s output with ~l,z (YZ). Thus, the corre-

sponding value fuzziness and time fuzziness due to T1,2 (yz)

are increased by dist v (VO, yz) and dist t(ts(To), ts(Z’2)), re-

spectively.

In some applications, the calculation of value inconsis-

tency can be further simplified. If the data change of an

application is generally small enough to be negligible with-

out affecting the system, or if there is a relatively constant

rate of change of data, we can calculate the value distance

simply using the timestamps of data versions without ac-

tually accessing their values. For example, radar reports of

civilian airplane locations usually have their value changes

bounded by the elapse time, and the vahe differences among

data objects could be estimated accordingly.

In the following section, we describe a 2PL mvDC algo-

rithm that bounds both value fuzziness and time fuzziness.

7 Two-phase locking mvDC for both time and value
fuzziness

7.1 Summary of a classic 2PL mvCC algorithm

In this 2PL mvCC [3], there are two phases of transaction

execution: the locking phase and the unlocking phase. Dur-

ing the locking phase a transaction must obtain all the locks

it requests. The moment when all the requested locks are

granted, which is equivalent to the end of the locking phase

and the beginning of the unlocking phase, is called the lock

point of a transaction.

Each transaction and each data item in the database is

initially uncertified. Any write operation w(z) prepares a

new and uncertified version of data item z. When a t rans-

action read data item z, the scheduler attempts to set a read

lock on z before it can read it. At the end of execution, the

transaction and the new versions it has prepared, will be cer-

tified. Upon certification of transaction Ti and all the data

versions it has crested, we set certify locks on all these data

E
RIT WIT CIT

R1’1’ Aok Aok Nok

wlT Aok Aok Aok

~~T Nok Aok Nok

Table 1: Compatibility matrix for a 2PL mvCC.

items. These locks are governed by the compatibility ma-

trix in Table 1, where RIT, W~T and CiTrepresent the read

lock, writ e lock and certify lock, respectively. Note that, in

Table 1, columns represent locks held while rows represent

locks requested. Also, a write lock is compatible with any

other locks for multiple versions, and attempt to set write

lock on data object can be rejected only when the memory

management protocol fails to create new data versions.

Data versions and transaction Ti are marked certified if

all certify locks are successfully obtained and the following

conditions are satisfied:

● At the moment of transaction Ti’s certification, the

versions of all data items read by T~ are certified;

● For each data item z that Ti wrote, all transactions

that has read a certified versions of z are certified.

In order to satisfy the first condition, a certifi token can

be allocated to each data item so that all the read opera-

tions can only read the latest certified version of the data

item. The second condition can be maintained by delaying

the certification of an update transaction until after other

transactions that have read the certified version of the same

data that it updated become certified.

7.2 Design of a 2PL mvDC algorithm

Extension stage

To process a query read operation, we again invoke a version

selection function Pick V (see Section 4) to choose a version

of the data, certified or uncertified, to be read. However, for

a read operation from an update ET, it has to read the data

item that holds the certify token as in the classical algorithm

in order to guarantee the final database consistency. In order

to allow a query ET to read uncommitted data, an update

ET can prepare a new version of a data item as soon as

the WJ lock is acquired without waiting until its commit

point. The locking compatibility matrix for the 2PL mvDC

is shown in Table 2, where Q1
,$

represents the read lock by

a query ET and RIETrepresents the read lock by an update

ET.

When an ET successfully sets all the locks and ready to

certify, the two corresponding conditions required for certi-

fication are extended as follow:

Any data version returned by the function Pick V may

be accepted for a query read, but the data version for

an update ET is restricted to the latest certified one;

For each data item z that Ui wrote, all the update

ET’s that have read a certified data version of z have

to be certified before Ui can be certified.

200

@ET ~~ET ~[ET ciI?T

f_#ET Aok Aok Aok Lok-1

Rl13T Aok Aok Aok Nok

wlET Aok Aok Aok Aok

c~BT Lok-2 Nok Aok Nok

Table 2: Compatibility Matrix for 2PL mvDC.

Note that even though there is a limitation on storage,

at least the latest certified version of the data item must be

kept in order to ensure consistency. For data items which

is frequently updated, we may try to obtain more memory

for them by negotiating with other less frequently updated

data items. If memory space is limited, write operations

may be blocked until more space is available. Moreover,

we do not allow an update ET to import any inconsistency

from other ETs. Therefore, when the certified version thmt is

serializable to an update ET is not available, the update ET

should be aborted immediately without further considering

the inconsistency it acquires. Finally in the relaxation sttage,

we calculate and bound the inconsistency arising from the

conflicting operation for query and update ETs to ensure

the Safet~me,ValU. conditions described in Section 6.

Relaxation stage

We relax the lock management at Lok-1 and Lok-2 for the

2PL mvDC (see Table 2) by calculating and restricting both

the time and value inconsistency acquired in non-mvSR con-

flicting operations. We associate with each query ET an

import-time-fuzziness and impoTt-vaiue-fu zziness, and

each update ET with an expoTt.time_fuzziness and ex-

port.value.fuzziness. Each uncertified data version, when

it is created by a write operation, is associated with a Con-

jWct-Q list which is initialized to nil. The Conj7ict-Q list is

used to remember all queries that have read the uncertified

data version, and we calculate the time and value fuzziness

for these queries by the time this data version is certified.

For each data item z, we define a function certi~v-token(z)

to return the latest certified version of dat a item x. Now let

us look at the details for each operation.

Read operations of a query ET

● If query Qi tries to read a certified data version Xj

prepared by Uj through Lok-1, the time inconsistency

and value inconsistency to be accumulated for Qi are

defined as follows:

~mpOrt-t~me-fUZZ~neSSQ,,= =

dist,(t.(Uj), ts(certify_token(z)));

~mpOrt-Uahe-fUZZine55 Q,,= =

distv(Zj, cem!if y-token(z)).

The same time fuzziness is accumulated to the existing

time fuzziness of both Q~ and Vi using the TimeUrLion

operator described in Section 3.2. Similarlyj the value

inconsistency of Q~ and that of Uj are also increa,aed

by the value difference between versions Zj and cer-

tify.token(z). The Lok-1 request can be allowed only

if the resulting fuzzineaa doea not exceed its corre-

sponding ~-spec. Namely, the Safeii~~,~~tti~ condi-

tions must hold true. Otherwise, the Lok-1 lock re-
quest cannot be granted.

c On the other hand, if a query is allowed to read an
uncertified data version Zh through Lok- 1, then Q;

is first added to the Con flict-Q list of ZJt, and the

calculation of time and value fuzziness is delayed until

the data version is certified.

Note that, for application which cannot afford to delay

the certification, one can use external information to esti-

mate the timestamp and value of the data version that is

serializable to it, and then accumulate the fuzziness to the

total time and value fuzziness of the corresponding ETs. If

it exceeds any of the bounds, specified in Safei;~~,”~[ti~, we

either abort Qi or re-invoke the Pick V function for another

version of the data item. Otherwise, the query is allowed

to be certified. Note that when an estimation ia wrong and

inconsistencies go beyond the bound, a query may need to

be rolled back at the time when data veraions are certified.

Read operations of an update ET

In order to maintain the final database consistency, the read
operations of an update ET are restricted to see conaiatent
data objects and hence the latest certified versions must be
read.

Certification of ETs

To certify a query ET, we check the time and value inconsis-

tency incurred to decide whether to certify or abort it. To

certify an update ET through Lok-2, the process is a little

more complicated. For an update U;, when all the certify

locks are successfully aet on data items, we further check the

following conditions before certifying it:

● For each data item that U; wrote, if there is a read

operation from Uj which acceaaed certified veraion of

the data item, we delay the certification until after V,

ia certified.

● For each data item zi that Ui wrote, the time and

value inconsistency of any query Qj in Con flict-Q of

xt that has read the uncertified version zi, AND any

uncertified (active) Qk that has read a certified version

of z before z~ is created, are increaaed by the following

respective amounta:

diat,(ts(cem!ify doken(z)), ts(zi));

distv(certify-token(z), zi).

If the Saf e,;~=,valve conditions are all held, then Lok-

2 can be granted and U; can be certified.

● After Lok-2 ia granted, we can discard the Con flict_Q

of each data object, pass the certify token and certify

all the versions Vi has created. Then we certify Ui.

201

8 Conclusions

In this paper, two multiversion divergence control algorithms
were described for epsilon serializability y in multiversion data-
bases to allow for more concurrency by tolerating bounded

inconsistency. The inconsistency tolerance were divided into
two dimensions: value fuzziness and time fuzziness. To cor-

rectly control the total time fuzziness, a new operator called
TimeUnion, was introduced. Because of the accurate control

of both time and value fuzziness, multiversion ESR repre-
sents a very useful solution to real-time transactions that

may tolerate some degree of data inconsistency in order
to gain more freedom in version selection and scheduling.

With mvESR, a real-time application designer can control
the data inconsistency and data timeliness independently.

The design of multiversion divergence control algorithms
were built on an existing single version ESR framework.
The existing design methodology for single version diver-
gence control was used to derive new multiversion diver-
gence control algorithms from the corresponding multiver-
sion concurrency cent rol algorithms. First, a certain non-

serializable operations are identified for possible relaxation.
Then, the time fuzziness and/or value fuzziness due to the

non-serializable operations are accurately accumulated for

the corresponding query and update epsilon transactions. If
the accumulated fuzziness does not exceed its specified limit,
then a non-seriabable operation is allowed to proceed. Oth-

erwise, it is rejected.
Finally, the multiversion divergence control algorithms

described in this paper were not combined with any CPU
scheduling algorithms such as earliest-deadline-first. How-

ever, multiversion divergence control algorithms do provide
more room for CPU scheduling algorithms, since real-time
transactions can run unimpeded within their inconsistency

tolerance. Moreover, they also allow more room for version
selection functions to pick the appropriate versions because

of the carefully controlled relaxation in both value and time
fuzziness.

References

[1]

[2]

[3]

[4]

[5]

[6]

D. Agrawal and S. Sengupt a. Modular synchronization
in multiversion databases: Version cent rol and concur-
rency control. In Proc. of A CM SIGMOD Int. Conf. on

Management of Data, pages 408-417, 1989.

P. A. Bernstein and N. Goodman. Multiversion con-

currency control—theory and algorithms. ACM Trans.

on Database Systems, 8(4):465-483, Dec. 1983.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-

currency Control and Recovery in Database Systems,

Addison-Wesley, 1987.

P. M. Bober and M. J. Carey. On mixing queries and

transactions via multiversion locking. In Proc. of lnt.

Conf. on Data Engineer%g, pages 535–545, 1992.

M. J. Carey and W. A. Muhanna. The performance

of multiversion concurrency control algorithms. ACM

Trans. on Computer Systems, 4(4):338–378, Nov. 1986.

A. Chan and R. Gray. Implementing distributed read-

only transactions. IEEE Trans. on Software Engineer-

ing, SE-11(2):205–212, Feb. 1985.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T.-W. Kuo and A. K. Mok. Application semantics and

concurrence y control of real-time data-intensive applica-

tions. In Proc. of Real-Time Systems Symposium, pages

35-45, 1992.

A. Merchant, K.-L. Wu, P. S. Yu, and M.-S. Chen. Per-

formance analysis of dynamic finite versioning for con-

current transaction and query processing. In Proc. of

1992 ACM SIGMETRICS and PERFORMANCE ’92,
pages 103-114, 1992.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flex-

ible methods for transient versioning of records to avoid

locking by read-only transactions. In Proc. of ACM
SIGMOD Int. Cont. on Management of Data, pages

124-133, 1992.

C. Pu, W. Hseush, G. E. Kaiser, K.-L. Wu, and P. S.

Yu. Distributed divergence control for epsilon serializ-

ability y. In Proc. of Int. Conf. on Distributed Computing

Systems, pages 449-456, 1993.

C. Pu and A. Leff. Replica control in distributed sys-

tems: An asynchronous approach. In Proc. of ACM

SIGMOD Int. Conf. on Management of Data, pages
377-386, 1991.

K. Ramamrithan and C. Pu. A formal characterization

of epsilon-serializability. Technical Report CUCS-044-

91, Department of Computer Science, Columbia Uni-

versit y, Dec. 1991.

D. P. Reed. Implementing atomic actions on decentral-

ized data. ACM Trans. on Computer Systems, 1(1):3–

23, Feb. 1983.

S. H. Son and S. Kouloumbis. Replication control for

distributed real-time database systems. In Proc. of Int.

Conf. on Distributed Computing Systems, pages 144-

151, 1992.

W. E. Weihl. Distributed version management for read-

only actions. IEEE Trans. on Software Engineering,

SE-13(1):55-64, Jan. 1987.

K.-L. Wu, P. S. Yu, and M.-S. Chen. Dynamic finite

versioning: An effective versioning approach to concur-

rent transaction and query processing. In Proc. of ht.

Conf. on Data Engineering, pages 577-586, 1993.

K.-L. Wu, P. S. Yu, and C. Pu. Divergence control for

epsilon-serializability. In Proc. of Int, Conf. on Data

Engineering, pages 506-515, 1992.

202

