
Tools for View Generation in Object-Oriented Databases

Elke A. Rundensteiner”

Dept. of Electrical Eng. and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122

rundenst@eecs. umich. edu, phone: (313) 936-2971

Abstract

This paper discusses two aspects of the object-

oriented view management system, Multi View, which we

designed to simplify view specification. First, we iniro-

duce a query language for view customization that op-

erates on a complete schema, rather than deriving only

individual virtual classes. This graph algebra promises

to reduce the effort involved in view specification by low-

ering the number of queries necessary to dejine a view.

Second, we introduce a tool that guarantees the compo-

sition of view classes into arbitrarily complex, yet con-

sistent, view schemata. Unlike for relational views, gen-

eralization relationships in 00 views must be validated

so that they are consistent with the global schema. In

our system, we solve this problem by reformulating view

schema construction as a classical graph theory prob-

lem, called minimal covering. This allows us to develop

eficient algorithms that automatically generate a com-

plete, minimal and consistent view schema. Proofs of

correctness of these algorithms can be shown.

1 INTRODUCTION

The goal of our project is to develop an environ-

ment for the design, specification and management of

views for object-oriented databases (OODBS) by non-

database specialists. 00 views promise to be more pow-

erful than relational views, since they can customize not

only data structures but also the associated operations.

Furthermore, they can be used to restructure the gener-

alization hierarchy to classify objects in a manner most

meaningful for a particular user group. Lastly, the view

*The author is grateful for support from the Univemity of

Michigan Faculty Award Program, and from NSF (IRI-9309076).

Permission to copy without fee ell or part of this material is

granted provided that the copies are not mode or distributed for
direct commercial edventege, the ACM copyright notice end the

titfe of the publication end its dete epprrer, end notice ie given

that wrpying is by crermission of the Association for Ctim~utino
Machinery. To copy otherwise, or to republish, requires a fee
end/or specific permission.

CIKM “93 -1 l/93/D.C., USA

Q 1993 ACM 0-89791-626-319310011$1.50

update problem can be successfully addressed due to the

concepts of object identity and encapsulation [6, 17, 9].

The construction of these virtual, possibly restructured,

subschema graphs of the global schema raises a num-

ber of challenging research issues in terms of how to

restructure view schema graphs and how to maintain

them consistent with the global schema.

We have developed and implemented a view support

system, Multi View, that successfully addresses these is-

sues [14, 10]. Multi View breaks view specification into

two tasks: (a) the derivation of virtual classes via an

object-oriented query and their integration into one con-

sistent global schema and (b) the definition of view

schemata composed of both base and virtual classes on

top of this augmented global schema. A key feature of

this approach is that view classes (both their member-

ship extent and their type description) are completely

defined by view derivation (task a) rather than being

further modified by view schema construction (task b).

In this paper, we describe two components of this envi-

ronment designed to simplify view specification: (1) a

graph-based query language that minimizes the number

and size of queries needed for view specification (task a)

and algorithms for the automatic generation of consis-

tent view schemata (task b).

When using a simple object algebra for defining views

for interfacing CAD tools with a CAD database, we

found that the specification of most views was repeti-

tious requiring many similar types of queries [16]. In this

paper, we therefore introduce a new query language that

simplifies view specification by grouping similar types

of simple queries into queries on schema graphs. The

graph algebra takes as input a schema and generates aa

output another schema, wheress conventional object al-

gebra haa one class as input and another class as output

[17]. Graph algebra operators can be arbitrarily com-

bined with the “regular” object algebra for view gener-

ation. This graph algebra promises to lower the number

of queries necessary for defining a view. For example, if

we want to remove the modify-salary method from the

Employee class and from its subclasses Professor, Staff,
and TeachingAaaistant in a particular user view, then

we use the following graph algebra statement: “hide*

modify-salary from Employee* .“ With conventional al-

635

gebra, we would have to specify a separate query for
each class in the subgraph rooted at the Employee class,

i.e., “hide modify-salary from Employee;” “hide modify-

‘“ “hide modify-salary from Sta~”salary from Professor,

and “hide modify-salary from TeachingAssistant .“

Unlike for relational views, generalization relation-

ships in 00 views must be validated so that they are

consistent with the global schema. Inserting arbitrary

is- a relationships between view classes may result in

an inconsistency. For instance, it is incorrect for the
view definer to assert an is-a arc between two classes in

the view that are not is- a related in the global schema.

Our characterization of is-a validity of a view schema

in terms of the completeness, rninimality and consis-

tency of its view generalization hierarchy allows for the

identification of different types of such inconsistencies.

Rather than requiring manual entry of view is-a arcs by

the view definer and then checking the entered informa-

tion for validity, we propose to automate the generation

of the view generalization hierarchy.

For this purpose, we reformulate view schema con-

struction as a classical graph theory problem, called

minimal covering. This allows us to apply well-known

graph-theoretic algorithms, e.g., transitive reduction, to

solve the problem. In this paper, we describe efficient al-

gorithms for automatically generating consistent views,

for both single and multiple inheritance schema graphs.

Sections 2 and 3 present background material and

describe Multi View. The graph algebra is described in

Section 4, and Section 5 presents the algorithms for au-

tomatic view generation. We compare Multi View to re-

lated work in Section 6, and conclude with Section 7.

2 OBJECT-ORIENTED VIEWS

2.1 The Object Data Model

Our view system is based on a typical object model

like for instance COCOON [17], Morsi et al.’s model

[12], and IRIS [7]. BeIow we review terminology re-
quired for the remainder of the paper. A class Ci has

a unique class name, a type description and a set mem-

bership. The type of a class Ci, type(Ci), consists of a

number of propert y functions, properties. A prop-

erty function p ~ P could be a value from a simple

enumeration type, an object instance from some class,
an arbitrarily complex function, or an object method.

Each p 6 P has a name and signature. For each type

t,properties denotes the set of property functions of

t and dontainP (t) denotes the domain of p in t. A

class is also a container for a set of object instances,

denoted by extent (C’i) [13]. Given two classes Cl

and C2. Cl is called a subset of C2, denoted by C 1

C C2, if and only if (V o E O) ((ocC1) =+ (ocC2)).

Cl is called a subtype of C2, denoted by Cl ~ C2,

if and only if (properties(Cl) ~ properties(C2))
and (V p E properties(C2)) (domainP(type(Cl)) ~

domainP(type(C2))). Cl is called a subclass of C2,

denoted by Cl is-a C2, if and only if (Cl < C2) and

(cl g C2).

Definition 1. An object schema is a rooted directed

acyclic graph S=(V, E), where V is a finite set of vertices

and E is a finite set of directed edges. Each element in

V corresponds to a class Ci, while E corresponds to a bi-

nay relation on V x V. Each directed edge e from Cl to

C2, denoted by e = <Cl, C2>, represents the direct is-a

relationship (Cl is-ad Cn). There is one designated root

node, called Object, which contains all object instances

of the database and its type descm”ption is emptyl.

2.2 Object-Oriented Views

We distinguish between base and virtual classes.

Base classes are defined during initial schema defini-

tion, with their object instances stored as base objects.

Virtual classes are defined during the lifetime of the

database using object-oriented queries. A virtual class

has an associated membership derivation function that

determines its exact membership based on the state of

the database. The extent of a virtual class is not explic-

itly stored, but rather computed upon demand.

Definition 2. .

1.

2.

9.

The base schema (BS) is an object schema

S=(V,E), with all nodes in V being base classes.

The global schema (GS) is an extension of BS

augmented by all virtual classes defined dum”ng the

lifetime of the database.

Given a global schema GS=[V, E), then a view,,
schenta (VS), or short, a view, as a schema VS=

(VV, VE) with: (a) VS has a unique view identifier

denoted by < VS >, (b) VV c V, and (c) VE ~

transitive-closure(E).

View classes (including their extent and type descrip-

tion) are completely defined by class derivation, and this

definition is not modified by organizing them into a view

schema. In other systems [12], the same class often ex-

hibits different behavior in different views.

2.3 The Validity of the View Generaliza-

tion Hierarchy

Next, we introduce criteria that indicate whether the

class generalization hierarchy of a view schema is con-

sistent with the one of the underlying global schema.

1The root class provides a unique entry point into the

database, M done in GemStone.

636

reqtire

.
atomgotype *“n

(a) Gbbal Scheme GS. (b) View VS1 is not minimal. (c) Vii VS2la notmmplete. (d) View VS3 lanotmnaiatent

Figure 1: View Validity Example: Minimality, Completeness and Consistency Criteria.

Definition 3. For all classes Cl ,Cz in VV, an is-a arc

from Cl to C’z is defined to be:

required in VS, if (Cl is-a C’2) in GS and there is

no C= in VV such that (Cl is-a C=) and (C= is-

a C2) in GS. VS is complete, if VE contains all

required vie w is-a relationships in VS.

redundant in VS, if there is a class C= in VV such

that (Cl is-a C=) in GS and (C= is-a Cz) in GS.

VS is minimal, if none of the view is-a arcs in VE

is redundant in VS.

incompatible in VS if the edge <Cl ,C2> is in VE

and not(Cl is-a C2) in GS. The view VS is con-

sistent, if none of its view is-a arcs in the set VE

is incompatible.

Definition 4. A view VS=(VV, VE) for GS=(V, E) is

is-a valid (or valid) if the set of all view is-a relation-

ships VE among its view classes VV is complete and

minimal and consistent.

ExampIe 1. Figures 1. b, 1. c, and 1. d depict views

defined on the GS schema shown in Figure I.a. In

Figure 1. b, the edge e = <Adders, Components> can

be removed from the view VS1 without losing the in-

formation that (Adders is-a Components). There-

fore VS1 violates the minimality criterion. The view

VS2 in Figure 1. c violates the completeness crite-

rion, since the required edge e=< Logic lJnits, AL Us>

is missing. In Figure l.d, the edge e = <

LogicUnits, Storage Units > is incompatible in VS,

since the relationship (LogicUnitsis – aStorageUnits)

does not hold in GS. VS3 is not is-a valid. •1

3 THE Multi View METHODOLOGY

We provide a short overview of Multi View here to set

the context for the remainder of the paper [14]. Mu/ti-

View breaks view specification into two tasks:

a. the derivation of virtual classes and their integra-

tion into one consistent global schema graph and

b. the specification of arbitrarily complex view

schemata composed of both base and virtual classes

on top of the augmented global schema.

The first task of Multi View supports the virtual CU5

tomization of existing classes by deriving new classes

with a modified type description and/or membership

content, which effectively controls the visibility of data

and the access privileges to property functions. The cur-

rent prototype of Multi View utilizes an object algebra

for this purpose [14]3. In this paper, we present a new

language for class derivation, called graph algebra, that

simplifies view specification by grouping similar types

of simple queries into queries on schema graphs.

Multi View integrates all virtual classes into one

global schema [15]. Global schema integration ensures

the explicit capture of all class relationships between

stored and derived classes in terms of type inheritance

and subset relationships (rather than only between base

classes as typically done in 00 DBs). This is useful for

sharing (inheriting) property functions and object in-

stances consistently among classes without unnecessary

duplication. It also asaures the consistency of all views

with the global schema and with one another. Last but

not least, it is vital for the consistent derivation of se-

mantically correct view schema composed of both base

and virtual classes (i.e., for the second task).

The second task of Multi View utilizes the augmented

global schema for selection of both base and virtual

chimes and for arranging these view classes in a consis-

tent view schema hierarchy. This supports for instance

the virtual restructuring of the is-a hierarchy by allow-

ing to hide from and to expose classes within a view

schema. Since during the first task of Multi View the se-

mantics of a virtual class (including its type description

z While the Comistency criterion is necessary to =%mre the cor-

rectness of the view schema, the completeness and minimality

criteria are useful but not always mandatory for some situations.

3 Becauae we r=trict the query language used for virtual ClaSS

derivation to be au object-preserving algebra, views in MultiView

are updatable [14, 17].

637

and membership content) are determined, the specifi-

cation of a view schema consists simply of picking out

the classes and/or subschema graphs that are of interest

for the particular application. We do not support fur-

ther modification of this virtual class specification due

to its inclusion in a view schema; rather a virtual class

will look the same, and exhibit the same behavior, in

any of the view schemata in which it is included. This

feature of Multi View is a significant difference to other

approaches [12]. Rather than requiring the manual in-

sertion of view is-a relationships by the view definer, we

have developed algorithms that automatically augment

the set of selected view classes by these relationships to

generate a va/id view schema. Algorithms and examples

can be found in Section 5.

4 Using Graph Algebra for Class Cus-

tomization

4.1 Graph Algebra

While the query languages used by other view sys-

tems generally derive individual view classes [1, 6, 17].

we propose a query language for deriving complete view

schemata. The development of this graph algebra was

driven by our observations obtained from using ordinary

object algebra for defining views for interfacing CAD

tools with a design database [16]. Namely, we found

that the specification of most views was repetitious re-

quiring many similar types of queries. We hence have

developed a solution to this problem by extending the

well-known object algebra which operates on individual

classes to operate on complete schema graphs. Our def-

inition of this graph algebra is based on the ‘ordinary’

object algebra we presented in [14], with some example

operators depicted in Figure 2.

In the following, we demonstrate that these operators

can be built by composing primitive operators on indi-

vidual classes into meaningful operators on schemata.

These graph operators serve two purposes. First, they

simplify the creation of a virtual schema by grouping

the primitive class operators into more complex, yet

well-defined, graph operators. Second, they simplify the

integration of the set of virtual classes into the global

schema by explicitly stating (and thus preserving) the

is-a relationship between the set of virtual classes that
make up the remlting virtual subschema.

For this section we assume the following notations.

The term <class>* with <class> the name of a class of

a schema S refers to the complete subschema of S that

is rooted at <class>. The system will generate a unique

class name for each newly generated class in <virtual-

class>* (e.g., append the ‘prime) symbol to the names

of classes), but explicit renaming of these classes by the

view definer can and should take place.

-.-..-.s.

NcddCm :{Oi.~.m.04.-i) —gg:a:b
wmiu-awh . WE [Stlsde,
aewa] hull SWM3*

(4 Hide-.
(d)Uniosopofa!or.

s9#mu**-==&%z+z%#2s2&
-. u-m

%
{01,02) $D—

“%...”._.AiE%y—
—

Fu@cd -MEmmr T=-% ~fw
(.) hlmodbs epmtor.

.%.yz%e=.
~~ 101,02,031) 8.

Cc.llbm { [09,04. caT) j

“%.......””’.’--...’

Mdm =SELEcT (r.m+tq NGtIGC+mS = DFF (Smwm ALUS)
-Whw%h
(c) sold OpOrator. (q DifhraIe4 qualcfc

Figure 2: Examples of Class Derivation.

4.2 The Hide* Graph Operator

The hide* operator, an extension of the hide oper-

ator (Figure 2 .a), takes on a complete schema graph aa

input and returns a virtual schema graph as result. It

removes one or more functions from all classes in the

source schema, while preserving all other attributes vis-

ible in the source schema4. It has the following syntax:

<virtuaLclass>* := hide* [<prop-functions>] from

(<source-class>*).

The semantics of the hide* operator are: to de-

rive a virtual class Ci’ for all classes Ci in the in-

put schema <source-class>* by the query Ci’ := hide

[<prop-functions>] from (Ci). We can deduce the fol-

lowing is-a relationships:

(V Ci, Cj in <source-class>*) (V Ci’, Cj’ in <virtual-

class>*) (Ci is-a Cj ~ Ci’ is-a Cj ‘).

(V Ci in <source-class>’) (V Ci’ in <virtuaLclass>*)

(Ci is-a Ci’).

Example 2. In a jloorplan view, the structure of the

design may not be permitted to be modified (via the

‘It now becomes apparent why we prefer the hide over the

project operator. Both accomplish the same effect when applied

to an individual class, namely, for the hide operator we specify

which property functions to remove (hide) while for the project

operator we specify which property functions to keep. For a com-

plete schema, project* projects out a j%ed set of attributes for all

its result classes; and thus alf resulting classes wifl have the same

projected result type. The hide* operator hides the same Jbei!

set of at tributes from all ckses; and thus alf resulting classes will

potentially have different types - namely their original functions

minus the hidden functions.

638

1 OomP’=hide” [create-hst]
tlem Cu’nfz 4

(a~GS befere hikToparation. (b) Global Sohema GS after hide”.

Figure 3: The hide* Graph Operator.

create-instance or delete-instance functions). However,

the geometric placement of components can be modi-

fied, e.g., by changing its position or resizing. We thus

could use the hide * operator to remove the ‘forbidden’

functions from the schema while leaving all other oper-

ators intact. In Figure 3, the quey ‘Comp’* := hide*

[create-instance] from (Comp*)” removes these meth-

ods from all classes in the Comp * subschema. This

creates a virtual subschema Comp ’* composed of three

classes, Comp, Reg and Irreg, which are identical to

their source classes ezcept for the removal of the for-

bidden function create-instance.

4.3 The Refine* Graph Operator

The refine* operator adds one or more new derived

property functions to all classes in a subschema, while

preserving all visible ones. Its syntax is:

<virtual-clsss>* := refine* [<prop-function-clefs>]

for (<source-class>*).

with <prop-function-clef> the definition of one or

more new property functions. Its semantics are to refine

the types of all source classes by adding the property

functions listed in <prop-function-clefs> to their type

definitions. This can be achieved by deriving a virtual

class Ci’ for all Ci in the source schema <source-class>*

by the query Ci’ := refine [<prop-function-clefs>] for

(Ci).

(V Ci, Cj in <source-class>*) (V Ci’, Cj’ in <virtual-

CISSS>*) (Ci is-a Cj e Ci’ is-a Cj’).

(V Ci in <source-class>*) (V Ci’ in <virtuaLclasa>*)

(Ci’ is-a Ci).

Example 3. In Figure 4, the query “Comp’* := re-

fine * [moueposo = { fct – body}] for (Cornp*)” ex-

tends the component classes with a method to modify

the jloorplan position.

4.4 The Select* Graph Operator

The select * operator haa the following syntax:

JL’k
~&rmlmOw-rl*t] true ~~

true ~

* om set-pm

om $et-pim

Rag
Stadc +m#32*

Irlag -“

......
ReCI

Stati
hag r

..... ,.

(RefJ’: Irreg!
.......””

(a) GS ~fore the ~fim. Omntlon. (b) Global schema GS after refine” OpWdht.

Figure 4: The refine* Graph Operator.

<virtua&class> * := select* from (<source-class>*)

where (<predicate>),

with <predicate> some possibly complex predicate

function on the source class and its type description.

Its semantics are to select a subset of objects from

all classes in the given source subschema based on the

given predicate. For all classes Ci in the source schema

<source-class>*, derive a virtual class Ci’ by the query

Ci’ := select* from (Ci) where (<predicate>). We

can deduce the following:

C?&P
canp’. mb&tcmcmQ
- (~Y-T-tit~ b-w $W

NC -
- W-PM

pred(comp) %
pm Cemp’)=
cm ,

= ‘two’;
M-pm . . .

RW -
rwb em’

kreg “- ..

w- Illeg’
.$..... .,

[Reg’j $@

&!!7m’$c &m!!2!
~FW~~R&WIn

\~p.%$% ~
(a) GS beforeW select” operation. (b) Global schema GS after sabot” operatiin.

Figure 5: The selection* Graph Operator.

(V Ci, Cj in <source-class>*) (V Ci’, Cj’ in <virtuaL

class>*) (Ci is-a Cj + Ci’ is-a Cj ‘).

(V Ci in <source-class>”) (V Ci’ in <virtuaLclass>*)

(Ci’ is-a Ci).

Example 4. In Figure 5, the query Comp’*:= 8elect *

from (Component *) where (company= Texas Instru-

ments) is used to dem”ve a virtual view schema Comp ‘*.

The select * operator effectively removes all components

manufactured by Texas Instruments from all classes in

Comp*.

4.5 The Union* Graph Operator

The extended set operators have two input argu-

ments, a schema and a class. The union* operator

639

adds additional object instances to all classes in the in-

put schema; with the additional object instances gotten

from its second argument:

<virtual-class>* := union*(<soa7-ce-classl>*,

<source-classx>).

The union* operator creates the virtual schema

< virtzwLclass>* that is composed of Ci’ defined aa fol-

lows: for all Ci in <source-class>*, derive a class Ci’

by the query Ci’ := union(Ci,<source-classx>). The

following is-a relationships hold:

(’d Ci, Cj in <source-classl>*) (V Ci’, Cj’ in <virtuak

class>*) (Ci is-a Cj ~ Ci’ is-a Cj’).

(V Ci in <source-classl >*) (V Ci’ in <virtua~

class>*) (Ci is-a Ci’ and (<source-classx> is-a Ci’).

Since <source-classx> is a subclsss of all virtual

classes Ci’, it is sufficient to only maintain the 1s-a rela-

tionships between <source-classx> and the leaf classes

Ci’ of <source-classl>*. All others are derivable by

transitive closure.

Figure 6: The union* Graph Operator.

Example 5. Assume thai the Mathematics and Com-

puter Science departments are to be merged, and

hence their courses should be combined for administra-

tive purposes. In Figure 6, the query CSClass ’* :=

union *(CSClass *, Math Class) is used to add the Math-

Courses to all classes describing the CS-Courses. Meth-

ods that have been de~ned for both types of courses are

now applicable to these combined courses, i.e., the name

method is applicable to CSClasses ’, AdminAuth ’ and

Teach erAccess ’. The other methods, such as addstudent

or responsible-instructor, are only applicable to their

original source classes.

4.6 The Intersection* Graph Operator

The intersect * operator removes all object instances

that are members of both source classes from all classes

in a subschema. Its syntax is:

<virtuaLclass>* := intersect*(<sozwce-classl>*,

<source-classx>).
The intersect * operator creates the virtual schema

< virtuaLclass>* that is composed of Ci’ defined as fol-
lows: for all Ci in <source-classl>*, derive a Ci’ :=

intersect (Ci,< source-classx>).

(V Ci, Cj in <source-clsssl>*) (V Ci’, Cj’ in <virtuaL

chss>*) (Ci is-a Cj ~ Ci’ is-a Cj’).

(VCi in <source-classl>”) (VCi’ in <virtual-class>’)

(Ci’ is-a Ci and Ci’ is-a (<source-classx>).

Since all Ci’ are subclasses of the class <source-

Clsssx>, it is sufficient to only maintain the is-

a relationship between the root <source-classl > of

the schema <source-class>* and the class <source-

Classx>) .

& -tie
C12 ● G2T%

(a) GS before the intetseaim” cperation. (b) GS alter the intersection” cperation.

Figure 7: The intersection* Graph Operator.

Example 6. We want to review courses taught by both

the Mathematics and Computer Science departments,

e.g., their prerequisites, etc. In Figure 6, we use the

query CSClass ’* := intersect *(CSClass*,Math Class)

to isolate these courses. Methods that have been de-

jined for either of these two types of courses are now

applicable to the collection of these combined courses.

4.7 The Difference* Graph Operator

The difference* operator removes a subset of ob-

ject instances from all classes in the input schema (its

first argument) which are contained in the set of objects

modeled by its second argument. This corresponds to

the select * operator with the predicate of selection de-

fined by the expression (o E Ci and not(o E C=)) with

Ci, ifori=l,..., n, referring to all classes in the <source-

CISSS1> * schema.

4.8 Operator Composition

In this section, we have developed an algebra of

graph-operators. We have demonstrated how this ex-
tended graph algebra can be defined in terms of a set

of queries expressed in the well-known object algebra.

It is straightforward to combine both algebras into one

query, as long as we make the following assumptions:

(1) the “regular” object algebra operators work on the

root class of the schema when applied to a schema, and

(2) the graph algebra operators treat an individual class

as a trivial schema graph with one single class when ap-

plied to a class. Furthermore, we have shown how the

640

virtual schemata created by the graph operators are in-

tegrated with their source schemata.

5 ALGORITHMS FOR AUTOMATIC

VIEW GENERATION

5.1 Mot ivation and Problem Definition

As explained in Section 3, we automate the specifi-

cation of the view generalization hierarchy rather than

requiring manual entry of the view is-a arcs by the view

definer. Automatic view generation offers numerous ad-

vantages, some of which are detailed below:

1.

2.

3.

4.

5.

It simplifies the view specification process for the

users by automating tedious tacks.

It guarantees the consistency of the view schema

(i.e., correctness of view query processing).

It prevents the introduction of redundant subclass

relationships into the view (and thus supports a

cleaner model of application domains).

It may reduce execution times for query processing

on the view.

It assures the completeness of the view semantics

by guaranteeing the presence of all required sub-

class relationships (provide maximal information).

In Multi View, all subclass relationships are calculated

a priori for each pair of claases and the result of this eval-

uation is entered into the global schema. Hence, a valid

view schema can be derived from a valid global schema

(Definition 4) by exploiting the syntactic graph struc-

ture of the global schema rather than by requiring the

semantic comparison of class specifications for each pair

of classes. For a global schema classification algorithm

see [15].

The view generation problem can thus be reformu-

lated M a graph-theoretic problem. Let GS = (V,E)

be a global schema. Assume that a subset of classes

VV ~ V of GS has been selected (marked) to belong

to < VS > (see Section 3). We wish to develop an al-

gorithm that automatically determines a set VE of is-a

edges among classes in VV, such that VS = (VV, VE) is

a valid view schema (Definition 4). View generation has

thus ben reduced to the classical graph problem called

graph covering. In the next sections, we will discuss

graph algorithms that automate the view creation for

both single and multiple inheritance graphs 5.

5The algorithms are baeed on the view validity criterion (Def-

inition 4). They enforce the resulting view to be minimal, com-

plete and consistent. Sometimes, it may be desirable to relax this
strict requirement such as to allow for redundant y or incomplete-

ness (but of course not inconsistency) in the view. However, to

avoid inconsistent class relationships, a view consistence y checker

would have to be developed for manually specified views.

5.2 View Schema Generation For Global
Schemata wit h Single Inheritance

Assuming single inheritance in GS, the algorithm for

the automatic view generation is based on a simple

graph traversal of GS. The algorithm traverses GS in a

breadth-first manner from the root down to the leaves.

For each node Ci in GS that is marked by < VS> it

searches all branches in the subtree rooted at Ci. An

is-a edge is inserted into VS between the parent Ci of a

subtree and all subclasses of C’i that (1) are also marked

by < Vfi and (2) are the closest to Ci in the tree. More

formally, if (Cl, Cz G VS) and (Cl is-a* Cz) in GS and

(~ Ci in VS)((C1 is-a” C’i) and (Ci is-a* C’z)), then

the Edge-Creation algorithm inserts the edge (C1 is-a

Cz) into VS. By Definition 4, this newly inserted edge
is a required edge. The algorithm terminates when all

marked classes Ci have been used as parent nodes once.

See Figure 8 for the detailed algorithm.

Asmmpt ion: Single inheritance GS.
Input: GS = @,E) and Vieu W= (W, VE)

vith VV C V marked by <VS>, V&@.
output : Determine set of is-a edges VE on VV,

such that VS = (VV, VE) is valid on GS.

Data Structures:

PQueue, CQueue: queues for nodes of GS.

Parent, Child: hold one class each.

Algorithm Al: Creation of Is-A Arcs for a View Schema.

algorithm Edge-Creation(GS, VS) is

Add the root of GS onto PQueue6.
while (Parent : = remove (PQueue)) do

end

Add all children of Parent in GS on CQueue.

while (Child : = renove (CQueue)) do

if Child is in VS then

insert isa(Child ,Perent) into edges (VS) ;

Add Child onto Pqueue;
else
Add children of Child in GS on C@teue;

algorithm;

Figure 8: The Edge-Crest ion Algorithm.

Theorem 1. (Correctness) The Edge-Creation algo-

riihrn generates a valid view schema VS=(VV, VE) as-

suming the global schema GS=(V, E) does not have mul-

tiple inheritance.

Proofi See [15] for the proof. w

Theorem 2. (Complexity) The complezit y of the

Edge-Creation algorithm is linear in the number of

nodes in GS, i.e., O(IGS[), assuming the class hierarchy
oj GS is a tree.

Proof: See [15] for the proof. w

6 we ~~me that e~ view schema includes the root object

claes of GS, i.e., it’s a DAG.

641

5.3 View Generation For Global Schemata
with Multiple Inheritance

For a schema with multiple inheritance (a DAG) the
Edge-Creation algorithm does no longer guarantee the
creation of a valid view schema.

Lemma 1. For a global schema GS with multiple in-

heritance, the Edge-Creation algorithm in Figure 8 gen-

erates a view schema with all required but possibly also

redundant is-a arcs.

Proof: See [15] for the proof. ■

Input: GS=(V,E.), VS=(VV, K??) with VV~V, VE=@.

output : VS=(VV, W) a valid view

(with Mvequired its incidence matrix).
Data Structures:

D, HgMal are boolean aatrices of size n = IGSI.

A, B, C, Hv,.w, Mcons:stents Hredundant , Hrequired are

boolean matrices of size n = IVSI .

Algorithm A2: View Generation.

procedure Transitive-Closure (A) return B is

for k fron 1 to IAI do

B := A;

for i,j from 1 to IAI do

A[i, j] := B[i, j] or (B[i, kl and B[k, j]);

endfor endfor

procedure Bool-Hultiply (A,B) return C is

for i,k from 1 to IVSI do

C[i,k] := v~=l (A[i,jl andll[j,kl);

procedure Graph-Subtract (A,B) return C is

for i,j from 1 to lVSI do

if (A[i,j]=l and B[j,k]=O)

then C[i,j] := 1; else C[i,j] := O; endif

procedure Reduce-Hatrix (D) return B is

for i,j from 1 to 11)1 do

if (Ci G VS) and (C3 C VS) then

B[CL, CJ] := D[C’i,cj]; endif

algorithm Viev-Generation2(GS, VS) is

o. HgMaI incidence matrix for GS.

i. Hg/oba[:= Transitive-Closure(H~/Oba/);

2. H.~~.,.tent = Reduce-Hatrix(Hgt,j+,.[);

3. &dundant :=

Bool-Hultiply(Hvtew$McOn~i~tent);

4. Hrequired :=

Graph-Subtract(Hv,.w,Hredtindant);

5. Hrequ:red is incidence matrix for VS;

end algorithm;

Figure 9: View Generationi Algorithm.

In this case, we need to remove all redundant arcs
from the view schema graph. For this, we reformulate
our problem of view generation as the graph-theoretic
problem called transitive reduction [2]. Namely, there-

quirement of keeping all required and removing all re-
dundant edges from VS is equivalent to finding agraph
G for a given directed acyclic graph G such that (1)

there is a directed path from vertex utovin G’ when-
ever there is a path from u to v in G and (2) there is
no graph with fewer arcs than G’ satisfying the first
condition” [2]. G’ is called the transitive reduction of
G. Since the transitive reduction removes allredundant
edges from a view schema, we are not concerned with
preventing the creation ofredundant edges during the
edge creation stage. We therefore use a transitive clo-
sure algorithm for the initial generation of all required
but also all redundant is-a edges of the view schema.
See Figure 9 for the complete algorithm.

Example 7. In Figure IO, the View-Generationl a/go-
n“thm is applied to an example. The input is GS de-

picted in Figure 10. a. Step O initializes the incidence

)

mat fl’z M@baJ for GS (Figure 10. b . Step 1 computes

the transitive closure on the is-a reationshipsin GSas

shown in Figure 10. c. Step 2 reduces the incidence ma-

ifixM{obal for GSdownto the incidence matrix MWieW

for V! byselecting allclasses that belong to VSand all

arcs of GS among these classes. (Figure 10. d). The cor-

responding view schema is depicted in Figure 10. e. We

apply the Transit ive-Closure procedure to MVieW to find

all required and redundant is-a relationships between all

pairs ofclassesin VS. Theresult isshown in Figure 10.f

and 10. g. Then we apply boolean matrix multiplication

to ~view and Mconsistent to W all redundant edges.
For instance, the edge <C5, C1> is redundant because

~C51C~ in Mview and <C3, C1> in M=On8iStent. Fig-
ures 10. h and 10. i present the resulting incidence ma-

t~x Mre&ndant and the schema, respectively. Lastly,
the graph subtraction used in step 3 removes all (re-

dundant) edges of thematrix MredUndant in Figure 10.h

from those (all required and redundant edges) in the ma-

trix Mcon8i8tent in @Ure lu.f- ClearlY1 the resultin9 in-
cidence matrlz MreqUired contains all edges required for

VS and no others (Figures 10.j and 10.k). •1

Theorem3. The View-Generationl algorithm (Figure

9) generates a valid view schema.

Proofi Duetothe reformulation ofview generation as
transitive reduction, theproofof Theorem3 can be di-
rectly derived from theprooffor the transitive reduction
[15].

Theorem4. (Compleziiy) The worst-case complex-

ity of the View-Generationl algorithm is OflGS13) with

~GSl the number of classes in the global schema GS.

Proof: See [15]. ■
The complexity of the transitive closure and boolean

multiplication algorithms have been shown to be
0(n237(/ogn)2) for large n [3]. Since the size of a schema
graph is generally not large, a straightforward imple-
mentation of these algorithms as shown in Figure 9 with
cube complexity is generally preferable.

Note that the worst-case complexity O(IGS13) of the
View-Generationl algorithm is based on calculating the
transitive closure on the global schema during the first
part of the algorithm (See Figure 9). The second part
of the algorithm, which essentially reduces the edges
of the view graph, actual operates on the view schema
only. We can therefore replace the transitive closure al-
gorithm by the simpler Edge-Creation algorithm which

642

we introduced earlier (Figure 8). now called View-
Generation2. While the Edge-Creation algorithm may
generate some redundant is-a edgesz those would be re-
moved by the second part of the View-Generation2 al-
gorithm.

Ac1 ~
h Vs

%

C2 C3

C4

c,5 hVS w

In Vs

(a) GS WI m#U@e Iriwilarce
and Vswial W.(CI #e2,c5,c8),‘7 $i%rh

Figure 10: Example of View-Generationl Algorithm for

Creating A Valid Schema.

Theorem 5. (Correctness) Given a global schema

GS=(V,E with multiple inheritance and a set of view
4classes V ~ V, the View- Generation2 algorithm gen-

erates a valid view VS=(VV, VE).

Proofi This can easily be shown based on Lemma 1
and Theorem 3.

While the EdgeCreation algorithm defined in Fig-
ure 8 is of linear complexity when applied to a tree-
structured schema graph (Theorem 2), for a DAG
structure7 the complexity is quadratic in the number of
nodes and edges in GS, i.e., O(raodes(GS) * edges).

Theorem 6. (Complexity) The worst-case complexi-
ty of the View-Generation2 algorithm is O(min(lGSl *

h

edges(GS), IVS13)) with IGS the number of classes in
the global schema GS and IV 1 the number of classes in

the view schema VS.

Proof: For a proof see [15]. ■

7 we ~ve ~odjfjed the Edge-creation procedure defied for

tree-strictures (Section 5.2) to run efficiently on a DAG graph

structure, e.g., by using markers.

6 RELATED WORK

Most proposals for defining views for OODBS sug-
gest the use of the query language of their respective
object model to derive a virtual class, e.g., [9], [6], [8],
[17], and [1]. Bancilhon and Kim [4] have indicated
that current 00DBs offer at best some degraded form
of views, either through exports of schemas or through
encapsulation, but no complete and simple mechanism
is yet available. Our Multi View approach represents a
solution to this problem.

Most approaches in the literature do not discuss the
integration of derived classes into the global schema.
Instead, the derived classes are treated as ‘stand-alone’
objects [6] or they are attached directly as subclasses of
the schema root [9]. Scholl et al. [17] and Abiteboul
et al. [1] both indicate the need for the classification
of virtual classes into one schema, but they keep the
derived classes into several view schema graphs rather
than generating one underlying global schema. Further-
more, they do not consider the problem of enforcing the
consistency of view schemata using a view generation
approach.

Morsi et al. [12] are developing a graphical interface
for DAG rearrangement views of a class hierarchy. This
tool is part of a graphical environment for schema evolu-
tion and version support, and hence focuses on defining
a view using manipulation operations similar in flavor to
typical schema evolution operators. The use of a query
language to define arbitrary view classes or the classifi-
cation of such classes are not discussed by their work.
Tanaka et al,~ early work on schema virtualization [19]
does not distinguish between the task of integrating de-
rived classes into a common schema and the task of
generating view schemata. Since they allow for the ar-
bitrary addition of is-a edges in a virtual schema, their
approach would have to deal with identifying and cor-
recting inconsistent schema. They point out that work
is needed for developing a definition language for view
schemata. In this paper, we have provided a solution
for this. Shilling and Sweeney’s approach [18] propose
that a CISSShas multiple type interfaces instead of hav-
ing one type. Since their approach focuses on one class
only, neither a query language on a complete schema
nor the consistent generation of a view schema graph
are considered.

7 IMPLEMENTATION STATUS AND

CONCLUSIONS

In this paper, we have proposed two mechanisms for
simplifying the specification of views in 00DBs. First,
we introduced a query language for view customiza-
tion that operates on a complete schema rather than
on individual classes. This graph algebra promises to
reduce the number of queries necessary for defining a
given view. Second, we introduced a tool for generat-
ing arbitrarily complex, yet consistent, view schemata.
This tool automatically generates a valid and most in-

formative .view generalization hierarchy for a set of user
selected view classes, making the manual entry of view

is- a arcs by the view definer obsolete. Proofs of cor-
rectness of these algorithms can be found in [15]. We

643

have implemented a preliminary prototype of the Mul-

ti View system (including the view schema generator)
using GemStone. Further description of this implemen-
tation effort is reported in [10]. We are currently ex-
tending the system to also function as a consistency
checking tool for user-specified class relationships.

Acknowledgements. My thanks goes to several
students at the University of Michigan for their effort
on implementing the MultiView prototype, in particu-
lar, Harumi A. Kuno, Chris Ma, and Doug L. Moore.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Abiteboul, S., and Bonner, A., “Objects and
Views,” SIGMOD, 1991, pp. 238-247.

Aho, A, V., Garey, M. R., and Unman, J. D., “The
Transitive Reduction of a Directed Graph,” SIAM

J. Computing, Vol. 1, No. 2, June 1972.

Aho, A. V., Hopcroft, J. E., and Jeffrey, D. U.,
The Design and Analysis of Computer Algorithms,
Addison-Wesley Pub. Company, 1974.

Bancilhon and W. Kim, “OODB Systems: In Tran-
sition,” SIGMOD RECORD, Vol. 19, No. 4, Dec.
1990, pp. 49-53.

Bertino, E., A view mechanism for object-oriented
databases. In %d International Conference on Ex-

tending Database Technology, pages 136–151, March
1992.

Gilbert, J.
P., “Supporting User Views”, 00DB Task Group

Workshop Proceedings, Ottawa, Canada, Oct. 1990.

Heiler, S., and Zdonik, S. B., Object views: Ex-
tending the vision, In Proc. IEEE Data Engineering

Conf., Los Angeles, Feb. 1990, pg. 86-93.

D. Fishman et al., “Iris: An Object-Oriented
Database Management System,” ACM TOIS, vol.

5, no. 1, Jan. 1987, pp. 48-69.

Kaul, M., Drosten, K., and Neuhold, E. J.,

“ViewSystem: Integrating Heterogeneous Informa-
tion BMes by Object-Oriented Views”, Proc. IEEE

Data Eng. ConJ,-Feb. 1990, pp. 2- 10;

[10] Kim, W., A model of queries in object-oriented
databases, In Proc. Int. Conf. on Very Large

Databases, pp. 423-432, Aug. 1989.

[11] Kuno, H. and Rundensteiner, E, A,, Building A
View Manager System Using GemStone, Univ. of
Michigan, Technical Report, June 1993.

[12] Maier, D., Stein, J.? Otis, A., and Purdy, A., “De-
velopment of an Object-Oriented DBMS,” in Proc.

OOPSLA ’86, Sep. 1986, pp. 472-482.

[13] Morsi, M. M., Navathe, s. B., Kim, H. K., An
Extensible Object-Oriented Database Testbed, lnt.

Con~ on Data Eng., 1992, pp. 150-157.

[14] Richardson, J. P. Schwarz, Aspects: Extending Ob-
jects to Support Multiple, Independent Roles; Proc.
ACM SIGMOD 1991,298-307

[15] Rundensteiner, E. A., and Bit, L., “Set Operations
in Object-Based Data Models”, in IEEE Trans. on
Data and Knowledge Eng., Vol. 4, 1ss. 4, Aug. 1992,
pp. 382-398

[16] Rundensteiner, E. A., “Multi View: A Methodology
for Supporting Multiple View Schemata in OODBS”,
VLDB ’92, Aug. 1992.

[17] Rundensteiner, E. A., “Object-Oriented Views: An
Approach to Tool Integration in Design Environ-
ments,” Diss., Info. and Comp. Scie. Dept. Univ.
of Cal. Irvine, Tech. Rep, 92-83, Aug. 1992.

[18] Rundensteiner, E. A., “Design Tool Integration us-
ing Object-Oriented Database Views,” IEEE Int.

Conf. on CAD, Nov. 1993.

[19] Scholl, M. H., Laasch, C. and Tresch, M., Updat-
able Views in Object-Oriented Databases, Proc. 2nd
DOOD ConJ, Muenich, Dec. 1991.

[20] Shilling, J. J., and Sweeney, P. F., Three Steps to
Views: Extending the Object-Oriented Paradigm,
00PSLA ’89, New Orleans , Sep. 1989, 353-361.

[21]KTanaka, K., Yoshikawa, M., and Ishihara,
Schema Virtualization in Object-Oriented

D~tabases, In Proc. IEEE Data Engineering Conf,

Feb. 1988, pg. 23-30.

[22] Yu and Osborn, “An Evaluation Framework for
Algebraic Object-Oriented Query Models,” in Proc.

IEEE Data Eng. Conf, Feb. 1991.

644

