
An Adaptive View Element Framework for Multi-dimensional
Data Management

John R. Smith and Chung-Sheng Li
IBM T.J. Watson Research Center

Data Management
30 Saw Mill River Road
Hawthorne, NY 10532

(jrsmith, csli}Qwatson.ibm.com

Abstract

We present an adaptive wavelet view element framework for
managing different types of multi-dimensional data in stor-
age and retrieval applications. We consider the problems of
multi-dimensional data compression, multi-resolution sub-
region access, selective materialization, progressive retrieval
and similarity searching. The framework uses wavelets to
partition the multi-dimensional data into view elements that
form the building blocks for synthesizing views of the data.
The view elements are organized and managed using dif-
ferent view element graphs. The graphs are used to guide
cost-based view element selection algorithms for optimizing
compression, access, retrieval and search performance.

We present the adaptive wavelet view element framework
and describe its application in managing multi-dimensional
data such as 1-D time series data, 2-D images, video se-
quences, and mcblti-dimensional data cubes. We present ex-
perimental results that demonstrate that the adaptive wavelet
view element framework improves performance of compress-
ing, accessing, and retrieving multi-dimensional data com-
pared to non-adaptive methods.

Keywords - Multimedia database systems, data man-
agement, OLAP, data cubes, content-based search, digital
libraries, and information retrieval.

1 Introduction

Enabling the efficient storage, access, query and retrieval
of large volumes of multi-dimensional data is one of the
important dmerging problems in databases. Many multi-
dimensional database systems are beginning to be deployed
on-line, such as those that serve time series data, large im-
ages, video sequences and views of data cubes. In many of
these applications, the data items have great size and re-
quire significant storage space and transmission bandwidth.
Furthermore, the large volume of data greatly complicates
the handling of the multi-dimensional data by the database
systems. As a result, specialized solutions are needed for
compressing, storing, accessing, retrieving and searching the
multi-dimensional data.

PermiSsiOn to make digital or hard copies of all or part of this work for
Personal or ClaSSrOOm use is granted without fee provided that
copies are not made or distributed for profit or commercial advant

-age and that copies bear this notice and the full citation on the first page.

To COPY otherwise. to republish, to post on sewem or to
redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 ? 1199 Kansas City, MO, USA

0 1999 ACM l-58113-146-1/99/0010...$5.00

Some of the problems are addressed by partitioning the
multi-dimensional data and adaptively compressing, stor-
ing, retrieving and querying the partitions. However, so
far, no attempt has been made to develop a unified frame-
work across different types of multi-dimensional data and all
of these functions. We previously explored applications of
storage and retrieval of large images [l], progressive retrieval
of video sequences [2], similarity query of multi-dimensional
vectors [3] and on-line analytic processing (OLAP) of multi-
dimensional data cubes 141. In this paper, we develop a
common wavelet view element framework that integrates
the adaptation strategies across all of the facilities of the
database for better managing multi-dimensional data.

1.1 Related work

One of the key elements of multi-dimensional data man-
agement is the partitioning of the data. By breaking the
data into smaller more manageable units, the data can be
more easily handled by the storage, retrieval and query sub-
systems. Once partitioned, the units can be differentially
compressed, stored, accessed, retrieved and searched.

Adaptive partitioning methods have been previously in-
vestigated for compression and storage. In particular, adap-
tive wavelet partitionings [5, 61 and spatial quad-trees [‘7]
have been shown to be effective in compressing images [S],
video [2] and time-series data [9, lo]. Similarly, wavelet par-
titionings have been used to speed-up access to sub-regions
of large images [ll]. For example, allocating wavelet parti-
tions of images to different storage facilities allows higher
image view access parallelism and data throughput [12].
Wavelet partitioning also enables progressive retrieval in
which data is incrementally retrieved from the server, cached,
and re-used by the client in synthesizing views locally. In
progressive retrieval, methods of dividing the view synthesis
computation between server and client have been shown to
speed-up the retrieval of views of large images [l, 131.

In database applications, similar problems are found in
OLAP [14, 15, 161. In OLAP, the queries perform range-
aggregations over the cells of multi-dimensional data cubes.
Previously, ? we applied wavelet partitioning to data cubes
to address problems of selective materialization of views [4].
Vitter,.et al. also used wavelets to compress and approxi-
mate the data cubes [17].

For similarity searching of multi-dimensional data, di-
mensionality reduction is a form of partitioning that speeds-
up querying and allows indexing. Previously, we used wavelets
to partition and compress multi-dimensional histogram data
for content-based image retrieval [3, 181. In general, dimen-

308

sionality reduction and multi-dimensional indexing can be
integrated to index high-dimensional data (for example, see
Fastmap [1911 RCSVD [20], SVDD [21], and QBIC [22]).

1.2 Overview

In order to provide a uniform approach for managing multi-
dimensional data, we develop an adaptive wavelet view el-
ement framework. The framework performs different struc-
tured iterative partitionings of the data managed by view el-
ement graphs. Depending on the application and data type,
the partitioning is performed along multiple dimensions in
space and frequency. Initially, the view element partition-
ings generate over-ddmplete and redundant representations
of the multi-dimensional data.

The framework uses different view element selection al-
gorithms that select among candidate sub-sets of the view
elements in order to optimize compression, storage, query
and retrieval. In general, we are concerned in the selection
processes with properties of completenessand non-redundancy
of the view element sets. We briefly discuss the signifi-
cance of completeness and non-redundancy and describe how
the wavelet view element framework provides advantages for
compression, access, storage, retrieval and searching.

1. Compression - the wavelet view element approach
partitions the multi-dimensional data in space and fre-
quency. Typically, much of the energy is compacted
into a small number of view elements. By assigning
a compression cost, i.e., entropy [5], energy, variance,
rate-distortion [6], to each view element, we select the
complete and non-redundant set of view elements that
yields the lowest total compression cost, or highest
compression performance [8].

2. View access - given that different views are likely to
be accessed with different frequency, the mult-dimensional
data can be adaptively partitioned and stored in a
form that minimizes the average access cost. To op-
timize the storage for efficient view access, we assign
each view element an access frequency (actual or es-
timated) and processing cost of supporting the query
population. We then select the complete and non-
redundant set of view elements that yields the lowest
total support cost.

3. Selective materialization - selective materialisa-
tion is similar to view access pattern adaptation ex-
cept that we relax the non-redundancy constraint of
the view element sets. View element sets are selected
to minimize a total cost for supporting the population
of queries without exceeding a storage budget. The
selected set of view elements is stored in the database
and used to generate the views at query time.

4. Progressive retrieval - in progressive retrieval, the
client caches view elements retrieved from the server.
For each client request, we determine the needed pro-
cessing at the server and client and which view ele-
ments need to be transmitted to the client. The choices
are made by assigning a support cost to each view el-
ement and selecting the least cost complete set that
intersects with the requested view. This determines
the necessary retrieval and processing operations that
produce the requested view in each stage of progressive
retrieval.

Similarity search - For M-D vectors and time-series
data, the selection of the view elements allows a flex-
ible trade-off in query precision and query response
time. Given a multi-dimensional query, we approxi-
mate the data using an incomplete set of view ele-
ments. In order to compare the query data to the tar-
get data, we select the set of view elements that min-
imizes the work for matching and guarantees a given
precision.

Outline

In this paper, we describe the adaptive wavelet view ele-
ment framework for managing multi-dimensional data. In
section 2, we describe different multi-dimensional storage
and retrieval applications. In section 3, we propose different
view element graphs for time series data, images, video se-
quences and M-D data cubes. In section 4, we present in de-
tail the cost-based view element selection algorithms. In sec-
tion 5, we describe application of the view element selection
algorithms for optimizing multi-dimensional data compres-
sion, access, selective materialization, progressive retrieval
and similarity searching, Finally, in Section 6, we evaluate
the adaptive wavelet view element framework in compress-
ing, storing and retrieving views of large 2-D images.

2 Multi-dimensional data management

Database systems for multi-dimensional data need to pro-
vide efficient storage and retrieval. The typical application
environment consists of facilities for compressing, storing,
accessing, analyzing, retrieving and querying the data, as
illustrated in Figure 1. The primary function of the stor-
age sub-system is to compress and store the non-structured
multi-dimensional data in the database.

Client application

MULTI-DIM.
ANALYSIS

Figure 1: Typical functions of multi-dimensional databases
include multi-dimensional data compression, efficient stor-
age, multi-resolution sub-region view access, progressive
view retrieval and similarity searching.

As described earlier, there are two dimensions for parti-
tioning multi-dimensional data: space (includes time) and
frequency (includes spatial- and temporal-frequency). Wavelets
partition the data in frequency into logarithmically spaced
subbands [23]. The low-frequency subband serves as a coarse
approximation of the data. On the other hand, spatial grids
and spatial quad-trees partition the data only in space.

309

For each of the different data types shown in Table I, we
develop a view element graph structure for partitioning the
data in space and/or frequency. For 1-D time series data,
vectors, and. images, we partition the data iu both space
and frequency using a space and frequency graph [g]. For
the video sequences, we partition the sequence first in time,
then each temporal unit is partitioned in both spatial- and
temporal-frequency. For M-D data cubes, we partition the
data in frequency along each dimension.

~1

video sequences Spatio-temporal video graph

Table 1: Overview of view element structures for managing
different types of multi-dimensional data.

3 View element graphs

In general, the view element graphs organize the hierarchies
of transitions between view elements. The transitions cor-
respond to the operations that partition (parent to child) or
synthesize (children to parent) the data. Each view element
is generated by applying the sequence of partitionings that
follow from the root node of the view element graph.

In general, we distinguish between three types of view
elements in a view element graph - views, intermediate view
elements and residual view elements. Typically, the views
and intermediate view elements are of most interest to users.
For example, the views and intermediate view elements of
the 2-D images correspond to image subregions depicted at
different resolutions. For Bf-D data cubes, the intermediate
view elements correspond to range-aggregations of the data.
The residual view elements are used in combination with
the views and intermediate view elements to synthesize the
more detailed views.

3.1 Space and frequency graph

The space and frequency graph is constructed by iteratively
partitioning the data in space and frequency [I]. For 1-D
data, the data is partitioned spatially (S) via binary seg-
mentation and in frequency (F) via a two-band Haar fil-
ter bank. For 2-D data, the data is partitioned spatially
(S) via quad-tree segmentation and in frequency (F) via a
four-band QMF filter bank. In order to guarantee commu-
tativity in the space and frequency partitionings, the filter
banks need to have a partitionable form. The Haar filter
bank inherently has this property, and in general, any QMF
filter-bank can be converted to a partitionable form [8].

The space and frequency decompositions are integrated
to iteratively partition the data into the view elements. Fig-
ure 2(a) illustrates the process for partitioning the data us-
ing the space and frequency graph. Each element Vi,j,k,L in
the library corresponds to a space and frequency localized
projection of the data, where i and j indicate the spatial and
frequency resolution of the projection, and k and 1 indicate
the space and frequency location of the projection.

3.1.1 Analysis

In order to partition the data, the space and frequency par-
titionings are iterated as follows:

*i, j+ 1 k 21+ 1 9 ,

d

*i,j+I k 21 > P

F4

Figure 2: Commutavitity of the space and frequency parti-
tioning operations in the space and frequency graph.

l Spatial partitioning S - So and S1 segment each view
element w;,j,k,l to generate projections v;+l,j,zk,l and
Vi+l,jJk+t,I aS fdh’s:

%+l,j,Zk,l = SOvi,j,k,l and (1)
vitl,j,2ktl,l = slvi,j,k,L.

s Frequency partitioning F - the frequency partition-
ing operators Ho and Hi segment each view element
Vi,j,k,l into two frequency subbands to generate the
projections ‘Ui,j+l,k,Zt and Z)i,j+l,k,21+1 as follows:

vi,jtl,k,Zl = &vi,j,k,t, and (2)
'JU;,j+l,k,ZI+l = HlVi,j,k.,l.

3.1.2 Synthesis

Given that each space (S) and frequency (F) partitioning
is non-redundant and complete , a parent view element is
synthesized from the children view elements. The synthesis
of parent view elements in the space and frequency graph
follows from:

%,j.k,L = vi+l.j,Zk,C + '%tl,j,Zkt1,1, and (3)

vinj.k,l = Govi,j+l,k,zl + GlVi,j+l,k,ZI+l n

where the view element is synthesized from its frequency
children using Gc and Gi, where Gi = HF since the QMF
filter banks, including Haar, satisfy the perfect reconstruc-
tion condition, HoGo + HiGl = I. The perfect reconstruc-
tion property allows that the data is reconstructed from any
complete set of elements.

3.2 Haar projection library (1-D)

For the 1-D data, the space and frequency partitionings are
generated as follows using a Haar filter bank, as follows [3]:

l Spatial partitioning S - the spatial partitioning oper-
ators So and S1 partition v into two halves as follows,
let 20 = SOW and 21 = Srv, then

ro[n] = * 1
v[n] n < N/2

otherwise.

a[n] =
0 n < N/2
V[TZ] otherwise.

310

l Frequency partitioning F - the frequency partitioning
operations correspond to the low-pass Ho and high-
pass HI signal transformations in the two-band Haar
filter bank, respectively, and split v into two frequency
subbands as follows, let ya = HOV and 91 = HIV, then

YO[4 = $424 + 2[2n + 13) (6)

y1[nl = $(+[24 - 2![2n + I]). . (7)

The Haar projection library is shown in Figure 3 for
a time-series of eight. points. The Haar projection library
provides an extremely large number of different ways for
representing the data. For example, for a time-series with
128 points, the library has 448 view elements that pro-
vide 0(1016) unique complete representations and 0(10a3)
unique incomplete projections of the data [3].

Figure 3: The Haar projection library partitions the 1-D
and time-series data into wavelet view elements in space
and frequency.

3.3 Space and frequency graph (2-D)

For 2-D data, the space and frequency partitioning oper-
ations are integrated symmetrically in a graph structured
cascade as shown in Figure 4 [l, 81. The partitioning com-
bines spatial-quad-trees (S) and 2-D wavelet packet trees
(F) to form a directed acyclic graph.

3.4 Video spatio-temporal graph (3-D)

For video sequences, we use a video graph to partition the
sequences into the wavelet view elements [2]. The video se-
quences are first partitioned temporally into fixed size units
(i.e., groups of 64 frames). Then, each unit is partitioned us-
ing the spatio-temporal video graph, as shown in Figure 5.
The video graph is constructed by integrating spatial and
temporal filter bank building blocks. Overall, the view ele-
ments generated by the video graph correspond to subbands
with different locations and sizes in spatial- and temporal-
frequency.

3.5 View element graph (M-D)

For M-D data cubes, the view element graph partitions the
data along each dimension by taking the sum (P;) and differ-

F S

Figure 4: The space and frequency graph partitions 2-D
lattice data such as large images into wavelet view elements
in space and frequency.

ence (Rf) of adjacent cells along each dimension i [4]. The
view element graph manages the view elements and pro-
vides a data structure for evaluating the completeness, non-
redundancy and benefits of different view element sets. The
view element graph organizes the view elements according
to the forward- and reverse-dependencies among the view
elements. An example 2-D view element graph for a 2-D
data cube is depicted in Figure 6.

4 Selection algorithms

Given the different view element graphs for 1-D time series
data, 2-D images, video sequences and M-D data cubes,
we develop a number of cost-based methods for selecting
sets of view elements that optimize the performance of com-
pressing, accessing, selective materialization, progressive re-
trieval and similarity searching. These methods utilize sev-
eral cost-based algorithms for the selection of sets of view
elements under different conditions of completeness and non-
redundancy. For simplicity, we describe the algorithms in a
form suitable for the space and frequency graph partitioning
of 1-D time-series data(Fig 3). However, application to the
other data types and view element graphs follows directly.

We consider first an algorithm for selecting a complete
and non-redundant set of view elements based on any ad-
ditive cost assigned to each view element.

Algorithm 1 (View element basis selection) Give; the
assignment of an additive cost Ci,j,k,l to each view element
viPj,h,l, the complete and non-redundant set of view ele-
ments of least total cost is found as follows:

1. Start from the root view element vo,o,u,n in the graph,
and recursively at each child view element Vi,j,k,[, com-
pute the cost C,~j,k,l of the selected least-cost path
given by:

where Ci,j,k,l is the cost of view element Vi,j,k,[,

311

SPACE L 0

.f
. . .

II

. . .

I

a=t . . .

I

TIME
w q=2 d&4

Figure 5: Video spatio-temporal graph partitions the video
sequences into view elements in spatial- and temporal-
frequency.

2.

3.

4.

is the optimal total cost of the S child path, and

c;l,j+l.k,21 + CTj+l,k.*l+l

is the optimal total cost of the F chid path.

Mark by Li,j,k,t the choice with lowest cost.

Start again from the root view element vc,s,o,c and fol-
low the paths according to the marked choices Li,j,k,l.

Traverse again the view element graph from the root
node. The set of terminal view elements encountered
in the traversal form the complete and non-redundant
set of lowest cost.

The view element basis selection algorithm is suited for
selecting representations of the multi-dimensional data that
do not expand the amount of data and reconstruct the data
without information loss. Basis selection is well suited for
compression. However, in some applications, such as simi-
larity searching, it is desirable to select an incomplete set
of view elements. The following rtlgorithm utilizes a greedy
approach for selection of an incomplete and non-redundant
set of view elements.

Algorithm 2 (Incomplete view element set selection)
Given the assignment of an additive cost Ci,j,k,l to each view
element 2)i,jsk,l, an incomplete and non-redundant set of
view elements of low total cost and set size K is found as
follows:

1.

2.

Initialize all view elements v;,j,k,l to be unblocked and
not selected.

For TZ = 0 to K - 1 do

(a) Find the view element Vrj k 1 that has lowest cost

cIj,k,l* is not blocked aid is not selected. Mark
Vi j,k I selected. , 1

(b) Find the remaining view elements that intersect
with w?j,k,l in the space-frequency plane. Mark
those view elements as blocked.

: : . . :

. . .

UC

U’:, Rb

Figure 6: The IK-D view element graph partitions M-D
data cubes into wavelet view elements in frequency along
each dimension. The view element graph organizes the view
elements into a two-way (analysis, synthesis) dependency
graph.

(c) Letntn+l.

3. Read off the K selected view elements.

Alg. 2 is not optimal since it uses a greedy approach.
However, Alg. 2 can also be used to select view elements for
a given storage capacity rather than based on the set size
limit K. We next consider the case of the selection of a
complete and redundant set of view elements.

Algorithm 3 (Redundant view element set selection)
Given the assignment of an additive cost Ci,j,k,l to each view
element Vi,j,k,l, the complete and redundant set of elements
of that has low cost and does not exceed a given storage ca-
pacity is found follows:

1. Use Alg. 1 to select the complete and non-redundant
set of view elements with least total cost.

2. Mark all of the selected view elements as blocked.

3. Use Alg. 2 to select additional view elements without
exceeding the storage capacity (greedy addition).

5 View element management

We next describe how to use the view- element selection al-
gorithms for compression, access, selective materialization,
progressive retrieval and similarity searching.

5.1 Adaptive compression

For both the lossless and lossy compression of multi-dimensional
data, we use Alg. 1 for selecting the basis that best compacts
the data. For example, in the case of large images, Alg. 1
adapts the partitioning of the image in space and spatial-
frequency. We assign each of the view elements a coding
cost, where in the lossless coding case, we base the cost on

312

the actual data size of each losslessly encoded view element.
In the lossy case, we compress each view elements using dif-
ferent compression factors to generate an operational rate-
distortion curve, from which we compute the compression
cost. Then, Alg. 1 is used to select the complete and non-
redundant set of view elements that has the lowest total
cost. The system deletes the remaining view elements, and
compresses and stores the selected ones in the database [a].

5.2 View access

For optimizing view access, we define a cost function that
provides a basis for improving view access performance as
follows: we derive the cost of processing each view element
from the volume of the intersection of the view element with
the requested view (as in [4]). Then, the total cost of gen-
erating a view is given by the sum of the view element pro-
cessing costs. This cost function allows us to measure the
view access performance of the system. Given a popula-
tion of queries, and given a set of stored view elements, we
compute the total cost of processing the queries. Next, im-
portantly, given a population of queries, we determine the
optimal set of view elements that need to be stored in the
database to give the lowest total processing cost [l].

For a given access pattern we determine the optimal set
of stored view elements, or equivalently, the space and fre-
quency partitioning of the image as follows:

Algorithm 4 (Access pattern adaptation) Given the QC-
cess frequency pi,j,k,[of each view element Vi,j,k,l, the com-
plete and non-redundant set of view elements with lowest
total access cost for the population of queries is found as
foliows:

1. For each view element Vi,j,k,l, compute the process-
ing Cost C(i,j,k,l

t

-(i, ,j, ,k,,l,) for supporting each other
view v;~,j~,kt,r, this cost is set to zero in absence of
dependency).

2. Let Ci,j,k,l = C ir~~r,k’,l’Pi,j,k,IC(i,j,k.I)~(i’,j’,k’,l’) give

the total cost of each view element l)i,j,k,l.

3. Use Alg. 1 to determine the complete and non-redundant
set of view elements with the lowest total processing
cost.

5.3 Selective materialization

We extend the access pattern adaptation method to the se-
lective materialization of view elements. In this case, we
have storage space that exceeds the volume of the multi-
dimensional data. We use this additional storage space to
further reduce the processing cost for the different views of
the data [4].

Algorithm 5 (Selective materialization) Given the ac-
cess frequency pi,j,k,l of each view element Vi,j,k,l, the COm-

plete and redundant set of view elements that has the least
total access cost for a population of queries is found as fol-
lows:

1. For each view element ui,j,k,l, compute the processing
cost C(i,j,k,l)--t(i’,j’,k’,1’) for supporting each other view
vi’ jr k’ 1’. , I I

2. Let Ci,j,k,[= ~,pi,j,k,I~(i,j,k,l)~(i’,j’,k’,l’) f3iJ’e the to-

tal cost of each view element Vi,j,k,l.

3. Use Alg. 3 to determine the complete and redundant
set of view elements with the lowest total processing
cost.

5.4 Progressive retrieval partitioning

In progressive retrieval, we consider the access cost of each
view using view elements at the client and server [I]. We
determine the optimal division of work between client and
server for each client request of view U;,j,k,l as follows:

Algorithm 6 (Progressive retrieval algorithm) Given
the (ICCeSS COSt c~~j,k~r of each view element Vi,j,k,l at the
server, and transmission cost C;t,j,k,l for transmitting Ui,j,k,l

to the client, the set of view elements to retrieve in each step
of progressive retrieval is found as follows:

1. Assign an access cost Ci:j,k,l = 0 to each of view ele-
ment Vi,j,k,& in the client cache, otherwise Ci:j,k,l = ~a.

2. Use Alg. 1 to select a complete and non-redundant set
of view elements from the server and client, considering
the server c,t,j,k,l and client C~,j,k,l access cost of each
view element.

3. Retrieve and process the view elements accordingly to
synthesize the view Vi,j,k,l.

5.5 Similarity search

The similarity search of the multi-dimensional data can be
computed with some precision loss using an incomplete set
of view elements. We devise a query computation procedure
that guarantees a query precision bound of 1 -E, where E can
be determined by the system or user. The query and tar-
get vectors are first partitioned into wavelet view elements.
Then at each successive stages of matching, the residual en-
ergy of the query and target vectors is compared to the
threshold 1 - l to terminate the similarity computation. We
make the worst case assumption that the residual energy is
retained in the same view elements for the query and tar-
get vectors. This alignment maximizes the residual energy
intersection and provides a bound for the error in the query
computation [3].

6 Evaluation

In order to evaluate the adaptive wavelet view element se-
lection methods, we performed experiments for compression,
access, progressive retrieval of large images.

6.1 Compression evaluation

In order to evaluate compression performance, we compare
the adaptive wavelet view element method using Alg. 1 to
compression algorithms based on JPEG, wavelets and spa-
tial segmentation. Figure 7 shows the resulting rate-distortion
compression results for two images. For JPEG, we com-
pressed each image several times using different JPEG qual-
ity factors. We obtained the rate from the compressed file
size. We measured the distortion from the fidelity (PSNR)
of the decompressed image. For wavelets, segments, blobs
and the space and frequency graph, we obtained the rate-
distortion results by partitioning the image, quantizing the
partitions, and measuring the entropy (rate) and fidelity
(PSNR).

Figure 7 shows that, in practise, the space and frequency
graph performs measurably better. The rate-distortion plots
in Figure 7(a) correspond to the compression of the 512x512
Barbara image [23]. For a given rate, space and frequency
graph gives 2.3 to 3.1 dB higher fidelity than wavelets and
3.7 to 4.9 dB higher fidelity than JPEG. Compression based

313

on spatial segmentation and blobs performs substantially
worse than the space and frequency graph.

PSNR (dB) PSNR (dS)

(a) (b)

Figure 7: Lossy compression evaluation using adaptive
wavelet view element framework: (a) results for 512 x 512
“Barbara” image, and (b) results for 5962 x 5962 satellite
image.

6.2 Access adaptation evaluation

In order to evaluate the wavelet view element access adap-
tation strategy using Alg. 4, we simulated different access
modes by randomly accessing views. We repeated the exper-
iments for the space and frequency graph of different depths
for large 2-D images. Figure 8 shows the significant reduc-
tion in view access cost by adapting the selection and storage
of the view elements to the access patterns. We compared
the view access performance to that of other image parti-
tioning and storage schemes based on segments, blobs and
waveletb [l].

(a) DEPTH

Cd)
Figure 8: Evaluation of average view access costs using the
adaptive wavelet view element framework (“sfgraph”) for
different access patterns (a) fixed-grid drill-down, (b) arbi-
trary spatial drill-down, (c) equal probability access, and (d)
arbitrary multi-resolution access.

(W DEPTH

1 Fixed-spatial grid drill-down. The view element
method adapts to this access pattern by storing a tiled-
wavelet set of view elements. Figure 8(a) shows a 22
- 231x reduction in access costs over the other meth-
ods. The fixed wavelet transform performs worse but
is somewhat more suited for this type of drill-down
browsing than segments and blobs.

2 Arbitrary spatial drill-down. The view element
method adapts to this access pattern also by storing a
tiled-wavelet set of view elements. Figure 8(b) shows
a 14.7 - 109x reduction in access costs over the other
methods. Interestingly, segments are somewhat better
for this type of drill-down than fixed wavelets. How-
ever, the space and frequency graph performs signifi-
cantly better than both methods.

3 Equal probability view access. When all views
are equally likely to be accessed, the adaptive wavelet
view element framework, as shown in Figure 8(c) gives
a 9.3 - 13.9x reduction in access costs over the other
methods. Fixed wavelets, segments and blobs are not
well suited for supporting this type of access.

4. Arbitrary multi-resolution access. When the users
drill-down into the images, but vary the spatial size
and location of the zoom, the adaptive wavelet view
element framework, as shown in Figure 8(d) gives s
9.8 - 29.1x reduction in access costs over the other
methods.

6.3 Progressive retrieval evaluation

In order to evaluate the retrieval adaptation strategy us-
ing Alg. 6, we simulated the random zooming and panning
of large images by a remote client. We varied the relative
processing power of the server and client, and varied the
transmission bandwidth. Figure 9 shows the comparison
of the adaptive strategy (“adapt”) where both client and
server participate in synthesizing views to strategies where
only the client (“client”) or server ((‘server”) synthesize the
views. In each user click shown in Figure 9, the user ran-
domly zooms-in, zooms-out or pans up, down, left or right.

The results in Figure 9 show that the adaptive strategy
minimizes the cumulative latency in progressively retrieving
the views over the network. For example, Figure 9(a) shows
the result for a thin client with 0.1x the processing power of
the server. Performing all of the processing at the client is
not optimal. On the other hand, performing all of the work
at the server does not take full advantage of the view ele-
ments in the client cache. The optimal strategy adaptively
partitions the space and frequency graph view synthesis be-
tween server and client [l].

7 Summary

We developed a common adaptive w’avelet view element
framework for managing different types of multi-dimensional
data. We considered the problems of optimizing storage,
compression, access, progressive retrieval and similarity search-
ing of i-D time series data, 2-D images, video sequences, and
multi-dimensional data cubes. We presented experimental
results on large 2-D images that demonstrate the significant
performance improvements of the view element framework
in applications that require efficient storage and compres-
sion, multi-resolution sub-region view access and progressive
retrieval of the multi-dimensional data.

314

Cd) CLICK
Figure 9: Progressive retrieval with adaptive partitioning of
view element synthesis between server and client: (a) thin
client, (b) powerful client, (c) thin client and low bandwidth,
(d) normal client and low bandwidth.

References

PI

PI

[31

PI

E51

PI

VI

PI

PI

J. R. Smith, V. Castelli, and C.-S. Li. Adaptive
storage and retrieval of large compressed images. In
ISBT/SPIE Symposium on Electronic Imaging: Sci-
ence and Technology - Storage E4 Retrieval for Image
and Video Databases VII, San Jose, CA, January 1999.

J. Il. Smith. VideoZoom spatio-temporal video browser.
IEEE Trans. MuZtimedia, 1(2):157 - 171, 1999.

J. R. Smith. Query vector projection access method.
In IS&T/SPIE Symposium on Electronic Imaging: Sci-
ence and Technology - Storage d Retrieval for Image
and Video Databases VII, San Jose, CA, January 1999.

J. Il. Smith, V. Caste& A. Jhingran, and C.-S. Li.
Dynamic assembly of views in data cubes. In Proc.
ACM Principles of Database Systems (PODS), pages
274-283, June 1998.

R. R. Coifman and M. V. Wickerhauser. Entropy-based
algorithms for best basis selection. IEEE Trans. In-
form. Theory, 38(2), March 1992.

K. Ramchandran and M. Vetterli. Best wavelet packet
bases in a rate-distortion sense. IEEE Trans. Image
Processing, June 1993.

E. Shusterman and M. Feder. Image compression via
improved quadtree decomposition algorithms. IEEE
Trans. Image Processing, 3(2):207 - 215, 1994.

J. R. Smith and S.-F. Chang. Joint adaptive space and
frequency graph basis selection. In IEEE Proc. Int.
Conf. Image Processing (ICIP), Santa Barbara, CA,
October 1997.

C. Herley, J. KovaEeviC, K. Flamchandran, and M. Vet-
terli. Tilings of the time-frequency plane: Construc-
tions of arbitrary orthogonal bases and fast tiling al-
gorithms. IEEE Bans. Signal Processing, December
1993.

WI

Pll

WI

1131

P41

P51

[161

1181

WI

PO1

Pll

P21

P31

S. MalIat and 2. Zhang. Matching pursuit with time-
frequency dictionaries. IEEE Trans. Signal Processing,
December 1993.

A. S. Poulikidas, A. Srinivasan, 0. Egecioglu, 0. Ibarra,
and T. Yang. A compact storage scheme for fast
wavelet-based subregion retrieval. In Proc. Compvting
and Combinatorics Conference (COCOON ‘97), 1997.

S. Prabhakar, S. AgrawaI, A. El Abbadi, A. Singh, and
T. R. Smith. Browsing and placement of multireso-
lution images on secondary storage. Technical Report
TRCS96-22, UCSB, 1996.

D. Andresen, T. Yang, D. Watson, and A. Poulakidas.
Dynamic processor scheduling with client resources for
fast multi-resolution WWW image browsing. In Proc.
Intern. Parallel Processing Symposium (IPPS), 1997.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data Cube: A relational aggregation operator general-
izing group-by, cross-tab, and sub-totals. .In Proc. of
the 12th Int. Conf. on Data Engineering, pages 152-
159, 1996.

C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in OLAP data cubes. In ACM Proc. Int.
Conf. Manag. Data (SIGMOD), May 1997.

R. Agrawal, A. Gupta, and S. Sarawagi. Modeing mul-
tidimensional databases. In 13th Int’l Conf. on Data
Engineering, April 1997.

J. S. Vitter, M. Wang, and B. Iyer. Data cube approx-
imation and histograms via wavelets. In Proc. ACM
Intern. Conf. on Information and Knowledge Manage-
ment (CIKM), Washington, DC, November 1998.

J. Il. Smith and S.-F. Chang. VisualSEEk: a fully au-
tomated content-based image query system. In Proc.
ACM Intern. Conf. Multimedia (ACMMM), pages 87 -
98, Boston, MA, November 1996.

C. Faloutsos and K.-l. Lin. FastMap: A fast algorithm
for indexing, data mining and visualization of tradi-
tional and multimedia datasets. In ACM Proc. Int.
Conf. Manag. Data (SIGMOD), pages 163 - 174, 1995.

A. Thomasian, V. Caste& and C.-S. Li. Clustering and
singular value decomposition for approximate indexing
in high dimensional spaces. In Proc. ACM Intern, Conf.
on Information and Knowledge Management (CIKM),
November 1998.

F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently
supporting Ad Hoc queries in large datasets of time se-
quences. In ACM Proc. Int. Conf. Manag. Data (SIG-
MOD), May 1997.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by image
and video content: The QBIC system. IEEE Computer,
28(9):23 - 32, September 1995.

M. Vetterli and J. KovaEeviE. Wavelets and Subband
Coding. Prentice-Hall, Inc, Englewood Cliffs, NJ, 1995.

315

