An Extensible Knowledge Base Management System for Supporting Rule-based
Interoperability among Heterogeneous Systems *

Stanley Y. W. Su, Herman Lam,
Javier Arroyo-Figueroa, Tsae-Feng Yu and Zhidong Yang

Database Systems Research and Development Center
University of Florida
Gainesville, Florida 32611-6125
Email: su@cis.ufl.edu

Abstract

The main objective of a virtual enterprise (VE) is to allow
a number of organizations to rapidly develop a working en-
vironment to manage a collection of resources contributed
by the organizations toward the attainment of some com-
mon goals. One of the key requirements of a virtual en-
terprise is to develop an information infrastructure to sup-
port the interoperability of distributed and heterogereous
systems for controlling and conducting the business of the
virtual enterprise. In order to achieve the objective and to
meet this requirement, it is necessary to model all things
of interest to a virtual enterprise such as data, human and
hardware resources, organizational structures, business con-
straints, production processes, and activities in work man-
agement. Additionally, a system is needed to manage the
meta-information and the shared data and to provide both
build-time and run-time services to the heterogeneous sys-
tems to achieve their interoperability. In this paper, we de-
scribe the modeling requirements for a virtual enterprise and
show how a global, mediated VE conceptual model can be
constructed at build-time and be used by a knowledge base
management system (KBMS) to provide run-time support
for the operation of a virtual enterprise. The KBMS differs
from the traditional database management system (DBMS)
in that it provides not only the traditional database man-
agement services (such as persistent, object management,
transaction management, etc.), but also a set of knowledge
base management services. Most notably, the KBMS pro-
vides a request/event monitoring service which monitors the
invocation of the methods which automatically triggers the
processing of rules by a rule processing service when certain
methods are invoked. We shall also describe how we apply
the KBMS technology in the R&D efforts of a project called
the National Industrial Information Infrastructure Protocols
{(NIIIP) to provide a rule-based interoperability among het-
erogeneous systems.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title _of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise
1o republish, to post on servers or to redistribute to lists, requires specific ’
permission and/or fee.

CIKM '95, Baltimore MD USA

© 1995 ACM 0-89791-812-6/95/11..$3.50

* Acknowledgement: This work is supported by the Ad-
vanced Research project Agency under ARPA Order #B761-
00. It is a part of the R&D effort of the NIIIP Consortium.
The ideas and techniques presented here are those of the au-
thors and do not necessarily represent the opinion of other
NIIIP Consortium members.

1 Introduction

In this age of global economy, many large and complex
projects require the cooperation and collaboration of multi-
ple organizations throughout a nation or across multiple na-
tions. For the purpose of carrying out the projects, virtual
enterprises (VEs) need to be formed by these organizations
to pull together the best of their resources. In order for a
virtual enterprise to success, it is essential that the organi-
zations participating in the VE are able to rapidly and flexi-
bly develop a common working environment to manage and
use their resources toward the attainment of their business
goals. Data and computer resources are key resources which
need to be shared. However, they are generally managed by
dissimilar software systems running on heterogeneous com-
puting platforms. Thus, one of the key requirements of a
virtual enterprise is to develop an information infrastructure
to support the interoperability of distributed and heteroge-
neous systems for the purpose of accessing the diverse data
and program resources.

In recent vears, the data and knowledge engineering com-
munities have been very active in researching and building
systems for accessing data stored in distributed and hetero-
geneous database systems. These systems are called het-
erogeneous database management systems, multi-database
systems, or federated database systems {1, 3, 6, 13, 15, 19,
22, 29] depending on the tightness of schema integration and
the degree of local autonomy that is allowed. The emphasis
of these existing systems is to achieve the sharing of data
managed by heterogeneous database management systems
(DBMSs). Other efforts have been made to tackle various
technical problems associated with the reuse of programs
in legacy systems and the sharing of data managed by in-
formation systems not just DBMSs (e.g., file management
systems, CAD systems, in-house developed application sys-
tems, etc.). Some good examples of these efforts can be
found in [5, 7, 11, 12, 30, 31]. Our work is closely related to
these works. However, in our work, we focus on the develop-
ment of a knowledge base management technology to solve
problems related to the interoperability of diverse software
systems by using a semantics-rich, extensible object model,

its modeling language, and a supporting KBMS to specify
and control their interoperations.

Under the support of the Advanced Research Project
Agency (ARPA), a group of industrial companies, universi-
ties, and government organizations have formed a consor-
tium (a virtual enterprise) to undertake a project called
the National Industrial Information Infrastructure Protocols
(NIIIP). The goal of the project is to establish an open,
standards-based software infrastructure protocol for inte-
grating heterogeneous and distributed processes, data and
computing environment across the US manufacturing base.
The main objectives of the project are to 1) commercialize
NIIIP Consortium members’ products, 2) incorporate legacy
manufacturing information systems to preserve existing in-
vestments, 3) provide functionality and usability to enable
virtual enterprises, and 4) encourage widespread adoption
of the NIIIP technology. The consortium is building its
technology by integrating a number of existing technolo-
gies; namely, the communication technology, the informa-
tion technology, the object technology, and the workflow
and knowledge management technology [20]. The knowlege
base management technology presented in this paper is a
part of the University of Florida’s contributions to the NIIIP
Consortium’s R&D effort. It provides an information mod-
eling facility for modeling the resources of interest to a vir-
tual enterprise such as data, human and hardware resources,
organizational structures, business constraints, production
processes, and work management activities. Additionally,
it provides a knowlege base management engine for man-
aging the meta-information and the shared data needed by
other NIIIP VE components and for providing both build-
time and run-time services to the heterogeneous systems to
achieve their interoperability.

The organization of the remainder of the paper is as fol-
lows. In the next section, an abstract model of the system
architecture of NIIIP and the modeling requirements for a
virtual enterprise are discussed. We describe how a me-
diated global VE conceptual model can be constructed at
build-time and be used by a knowledge base management
system (KBMS) to provide run-time supports for the oper-
ation of a virtual enterprise. In Section 3, the KBMS which
has been under development at the University of Florida in
the past several years is described. In Section 4, we describe
how this KBMS technology is applied in the NIIIP project
to provide rule-based interoperability. Finally, a summary
and some concluding remarks are given in Section 5.

2 NHIP System Architecture and Modeling Requirements

In order to develop an information infrastructure to sup-
port the interoperability of distributed and heterogeneous
systems and to control and conduct the business of a virtual
enterprise, it is necessary to model all aspects of the vir-
tual enterprise such as data, human and hardware resources,
organizational structures, business constraints, production
process, and work management activities. The resulting
conceptual model is an abstraction and a computational rep-
resentation of the real-world objects, each of which can be a
physical entity, abstract thing, concept, relationship, func-
tion, process, or anything of interest to a virtual enterprise.
It captures the structural and behavioral properties of these
objects as well as the constraints associated with them.

In this section, we first describe an abstract model of
the system architecture introduced by NIIIP to support the
operation of a virtual enterprise. In this context, we then
describe the modeling requirements for a virtual enterprise

and show how a mediated global VE conceptual model can
be constructed at build-time and be used by human and
software clients for accessing data and software resources at
run-time.

2.1 NHIP System Architecture

An abstract model of the NIIIP system architecture is shown
in Figure 1. It is based on the Common Object Request
Broker Architecture (CORBA) [21] introduced by the Ob-
ject Management Group (OMG). The main goal of NIIIP is
to provide an infrastructure to support the formation and
operation of an industrial virtual enterprise (VE). An indus-
trial virtual enterprise is formed by a group of organizations
to design, manufacture, and distribute products. Member
organizations possess data resources and program services
which are to be shared by other members of the virtual
enterprise. In the NIIIP environment, these resources and
services are provided by a set of servers, which are physi-
cally distributed, but are interconnected through an Object
Request Broker (ORB), as shown in Figure 1. The inter-
face to the services provided by each server is defined in a
NIIIP Common Language (NCL) [28], resulting in a num-
ber of "local schemas”, as described in the next subsection.
The modeling constructs of NCL allows each local schema
to describe its services in terms of their data properties, as-
sociations, keyword constraints, rules, and methods. The
integration and mediation of the local schemas, along with
the definitions of other global virtual enterprise resources,
forms the mediated global schema (This process will be de-
scribed in Section 2.2.). Both human and program clients
can access object services provided by the servers through
the interfaces specified in the global schema.

ST

NIIP VE Components

Figure 1: An Abstract Model of NIIIP System Architecture

The accesses are controlled by a set of NIIIP VE Compo-
nents shown at the bottom of Figure 1 which provide session,
workflow, data management, agent, negotiation, knowledge
management, mediation, and other services. These VE Com-
ponents are servers which are implemented by the NIIIP
consortium members to control the orderly and proper (with-
out violating security and access constraints) accesses to ob-
ject services. Just like the services provided by legacy sys-
tems, they are distributed and heterogenecous servers which
communicate with ore another through the ORB. Thus,
in an abstract form, all the software systems (legacy sys-
tems/applications and NIIIP VE servers) are connected to
and communicate through the ORB. They may act as clients
as well as servers depending on whether they are the re-
questers or the providers of services. Those functionalities
of the systems and their data which are useful to the virtual
enterprise are exposed to other systems as objects having
well-defined interfaces. For additional information on the
NIIIP project and the NIIIP system architecture, please re-
fer to [20].

2,2 VE Modeling Requirements

In order for a virtual enterprise to represent, manage, and
control the use of the shared, distributed, and heterogeneous
resources, it is necessary to define the computational mod-
els of these resources and their inter-relationships by using
an information modeling facility. Furthermore, the access
and use of these models by either human users or computer
programs should be supported by an operation invocation
and/or a querying facility and its underlying information
processing engine. We define some modeling requirements
below and describe a processing engine in Section 3.

Object-oriented Representations of Existing Data
and Application Systems’ Resources. Member organi-
zations possess all sorts of data and application systems’
resources which are generated and used by different types
of information users and/or heterogeneous information sys-
tems (e.g., relational application systems, CAD systems,
SDAI/STEP applications, etc.). In a virtual enterprise en-
vironment, these data and application systems’ resources
can be uniformly modeled as objects in an object-oriented
framework. Their data properties, associations (i.e., se-
mantic relationships between or among object types and
their instances), constraints and operations (or methods)
are defined by their object types resulting in 2 number of
”object-oriented local conceptual schemas”. Each of these
schemas captures the semantic contents of the data and ap-
plication systems’ resounrces of a member organization that
are deemed useful for the business operations and activities
of a virtual enterprise. This step of the modeling process is
shown at the bottom of Figure 2.

Modeling of Virtual Enterprise Components. As
described in Section 2.1, a number of VE Components are
being developed by the NIIIP consortium to control the
access and use of data and software resources of heteroge-
neous systems. They can be modeled in an object-oriented
paradigm as object classes and their inter-relationships by
various association types. These components’ interfaces need
to be explicitly defined so that their functionalities (or object
services) are made known to NIIIP’s human and software
clients as well as to the components themselves. Activation
of these services are done by either local message passing
or by remote method calls through an ORB or other multi-
transport data services. The models of these components
are again captured in a number of object-oriented local con-
ceptual schemas.

Modeling of Other VE Resources and Global In-
formation. In addition to the modeling of existing data and
application systems’ resources and VE Components, other
resources, such as tools, people, hardware devices, organi-
zation units and structures, and physical capital and mon-
etary resources need to be modeled in the object-oriented
framework. Some of these resources can be modeled by
intelligent agents which represent the ”interests” of these
resources in the NIIIP environment. Furthermore, VE in-
formation which is "global” in nature and to be shared by
some VE Components will have to be modeled to inter-relate
the modeled objects. Examples of such global information
include:

e new associations that link object types of different lo-
cal schemas

e new constraints to be imposed on them

o work management models that control the VE project
or production activities

o negotiation procedures and rules that deal with the
requests and deliverables of services

o mediation rules and operations needed to resolve the
naming, structural and semantic conflicts and discrep-
ancies among local and global resources

Humes / Soltware Huzaa / Sohware Humae / Softwaee
Clomt Clcat Client

@ Matod Calls (OMG)

® Gobal Quory Langusge (DB)

® xQML 1)

@ Nawal Lasgusge (A

@ Hypeemodia

@ Easbiod Mul

Buaidume

Models of exusung dus and
applcabon systom’ s rosources

N~

SDAUSTEP
Appic.

Relsticaal CAD Applc.
Appie.
Figure 2: Modeling a Virtual Enterprise

2.2.1 Modeling VE Resources as Active Objects

An important requirement in modeling the resources of the
virtual enterprise is the ability to specify constraints associ-
ated with individual objects or with the associations among
objects of various types. It is important that the objects
which represent various types of NIIIP resources be *active
objects” so that they can interact automatically with one
another and take actions (i.e, perform operations antomat-
ically) under different external and/or internal events.

The active properties of objects can be introduced by an
event-condition-action-alternative-action (ECAA) rule spec-
ification language and event/request monitor and rule pro-
cessing facilities provided by an active knowledge base man-
agement system. An ECAA rule consists of three parts:
event {E) specifications, condition (C) specification, and ac-
tion/alternative action (AA) specification:

RULE rule_id;
[TRIGGERED triggered_time trigger_operation,
[, triggered_time trigger_operation,...]]
[CONDITION condition_clause]
[ACTION
statement_list]
[OTHERWISE
statement_list]
END_RULE;

The event part E contains a set of (trigger time, trigger-
ing operation) pairs. The triggering operations can be either
system-defined operations such as retrieval, update, deletion

and insertion or user-defined operations such as check-out-
design and display-part. The time specification can be ei-
ther Before, Immediate-after, or After which indicates that
the processing of the C part should take place before, im-
mediately after, or after the end of a transaction in which
the triggering operation is to be performed. The C condi-
tion part of a rule specifies a potentially very complex data
condition which exists in either the global VE knowledge
base or the existing heterogeneous information systems. It
evaluates to True or False. If the condition is true, an opera-
tion specified in the action part of the rule will be executed.
Otherwise, an alternative operation will be performed. An
example of a knowledge rule in NCL is given below:

RULE stock_and_use;
TRIGGERED AFTER create(),
update(qty_on_hand,used_in)
CONDITION EXIST p IN THIS *> [used_in] p:Product
{100 < qty_on_hand < 1000}
OTHERWISE
“RULE: Part::stock_and_use\n".display();

"*ERROR* If a part is used in some product, then

the quantity on hand should be between 100 and
1000".display();
abort () ;
END_RULE;

The rule, stock_and_use, is triggered after the creation of
a Part instance or after an update of the attribute qty_on.hand
or used_in. The condition part of the rule is a guarded ex-
pression which states if the part is not used in a product,
the rest of the rule is skipped. If it is used in a product, the
second expression is evaluated to make sure that the quan-
tity on hand is within the appropriate range. If it evaluates
to True, no action is taken. Otherwise, an error message is
displayed and the operation is aborted. For additional in-
formation on the NCL language and NCL rules, please refer
to [28].

Thus, the modeling of virtual enterprise resources in the
NIIIP environment is not restricted to the modeling of struc-
tural properties provided by the traditional database man-
agement systems (DBMSs). Nor is it limited to the mod-
eling of the structural and behavioral properties offered by
the existing commercial object-oriented DBMSs. Knowledge
rules with triggers are also needed to declaratively capture
all sorts of semantic constraints, expert knowledge, secu-
rity and integrity restriction, business policies, government
regulations, design and manufacturing constraints, media-
tion and negotiation rules, etc. Thus, the term "knowledge
base” instead of "database” or "repository” is used.

Also, the information processing engine that supports
the processing of the objects in the NIITP environment should
provide request monitoring and rule processing to automati-
cally trigger object operations. Thus, the term active ”knowl-
edge base management” instead of "database management”
or “repository management” is used.

2.2.2 Global Conceptual Schema

After the local schemas and the definitions of the global
virtual enterprise resources discussed above are integrated,
mediation rules are then introduced to specify the mediation
processes needed to bridge the structural and semantic dis-
crepancies between the modeled properties of heterogeneous
systems. The result is a mediated global schema which pro-
vides the global view of the virtual enterprise’s knowledge

base. The global knowledge contains 1) the meta-data use-
ful for the controlled access to data and program resources
in a heterogeneous network (note: the actual data and pro-
grams are distributed among different systems), and 2) the
common data which are used by the NIIIP-developed soft-
ware systems to control the accesses of the data and software
resources in the heterogeneous network.

As shown in Figure 2, the establishment of the medi-
ated global conceptual schema is the resuit of the VE build-
time activities. At run-time, the human and software clients
would make use of the conceptual views defined over the
global schema to issue all their object service requests. Ser-
vice requests can be issued as remote methods calls, or as
query statements in some query language. Higher-level lan-
guages such as KQML [8, 9, 10, 16] or a natural language
can also be used. Alternatively, a graphical user-interface or
a hypermedia facility can also be used to specify clients re-
quests. In any case, a request made in any type of language
or user-interface is eventually translated into method calls
which are transported through ORB or other NIIIP com-
munication facilities to relevant objects in the NIIIP envi-
ronment. It is envisaged that in a fully realized NIIIP VE,
the data and meta-data which are shared among software
systems to be developed by NIIIP are stored and managed
by some knowledge base management services. In addition,
private data used by individual NIIIP software systems (or
NIIIP objects) can be stored, maintained and used by these
component systems themselves.

The above may only be a partial list of modeling require-
ments which are necessary for running a successful busi-
ness in a virtual enterprise. However, it serves to show
that object-oriented modeling of existing VE resources, work
management, mediation, negotiation, and agents are impor-
tant concepts and techniques for controlling virtual enter-
prises. Also, 2 VE knowledge base and a knowledge base
management system are needed to support the operations
of the software systems to be developed in the NIIIP project
(i-e., the NIIIP virtual enterprise components). As will be
described in the next section, the KBMS provides not only
the traditional database management functions such as per-
sistence, naming, concurrency control, querying, recovery,
security, etc. but also the added functionalities such as re-
quest monitoring, rule processing, and constraint mainte-
nance.

3 An Extensible Knowledge Base Management System

In this section, we shall describe an extensible knowledge
base management system (KBMS) which has been under
development at the University of Florida in the past several
years. In Section 4, we shall describe how this KBMS tech-
nology is applied in the NIIIP project to provide rule-based
interoperability.

Shown in Figure 3 is the architecture of the knowledge
base management system, OSAM* KBMS [25, 26, 27], and a
number of supporting tools. A set of graphical tools called
XGTOOLS (its earlier version was described in [17]) can
be used to graphically define, edit, and browse schemas at
build-time and to query the schemas against their instances
stored in the knowledge bases at run-time. The KBMS pro-
vides an information modeling language called the NIIIP
Common language (NCL {28]). This language is an in-
tegration of STEP’ EXPRESS {14], OMG’s IDL [21] and
OSAM*.KBMS’ K.3 programming language. The latter is
the third version of an implemented language K reported in
{4, 23, 24]. The implementation of NCL is based on a trans-

lation to K.3 and its processing is supported by the KBMS.
NCL allows all things of interest to a virtual enterprise to
be modeled as objects. Each object class can be defined
by 1) its structural properties in terms of its associations
with other classes, 2) its behavioral properties in terms of
methods, and 3) its constraints in terms of keywords (the
frequently used constraints) and Event-Condition-Action-
AlternativeAction (or ECAA) rules. The modeler of a vir-
tual enterprise can use the graphical editor to define schemas
which can then be translated into NCL in its textual form.
XGTOOLS also provides the editing facility for the user
to enter NCL schemas in textual forms directly. In addi-
tion to these graphical tools, an EXPRESS-t0-NCL compiler
is available to import the existing EXPRESS schemas into
NCL. A translator is also being developed to convert the
existing IDL specifications into NCL. In the NIIIP project,
EXPRESS schemas and IDL specifications that define the
data and program interfaces of some legacy systems can be
converted into NCL and additional resources of a virtual
enterprise (data, software systems developed in the NIIIP
project, hardware devices, tools, organizational structures,
personnel resources, etc.) can be defined in NCL.

Figure 3: KBMS Components and Tools

The KBMS is extensible in the following way. The KBMS
is developed based on a kernel object model. The kernel ob-
ject model is used to model itself to produce a meta model
(i.e., 2 model of the model itself). In the meta model,
all the modeling constructs of the kernel such as Method,
ECAA Rule, Entity, Domain and Association are defined
by their corresponding meta classes. Thus, methods, rules,
entities, domains, associations are first-class objects. The
structural properties, methods and knowledge rules defined
in each meta class represent the semantic properties of the
corresponding modeling construct. Two built-in association
types are recognized by the kernel object model: generaliza-
tion which models the superclass-subclass or is-a relation-
ship and Aggregation which models a-part-of, a-component-
of or an-attribute-of relationship between classes. New ob-
ject class types, association types, and constraints types can
be added to the kernel object model by adding new meta
classes, thus extending the modeling power of the underly-
ing object model. In these meta classes, parameterized rules
are used to specify the semantic properties of these new con-
structs. They have structures similar to the ECAA rules
except that they contain variables which are bound to the
attribute and class names of those user-defined classes which

make use of the new class, association and constraint types.
The binding process takes place during the schema compila-
tion time. It translates parameterized rules into ECAA rules
which are then bound to these user-defined classes as if the
users have written the ECAA rules for the classes. In the
development of the KBMS, all its operations are "driven” by
the semantic contents of the meta model. Therefore, when
the meta model is extended to include new class, association,
and constraint types or when it is modified to specify the
new semantics of some modeling constructs, the underlying
object model of the KBMS is extended and/or modified. As
a result, the operational behaviors of the KBMS is automat-
ically extended and/or modified. A detailed description of
the concept and technique of model, langnage and KBMS
extensibilities is out of the scope of this paper. Interested
readers are referred to our technical reports [18, 28].

The KBMS provides two general types of services: build-
time and run-time services. At build-time, if NCL is used to
model a software system and to implement the methods of
its components (i.e., NCL can be used as a knowledge base
programming language), the resulting model and method
implementations are first translated into K.3 (our ”inter-
nal” knowledge base programming language). Then, a K.3
compiler is used to generate .h files and C+4 code that cor-
respond to the structural and semantic properties of the K.3
schema. The resulting C++ program is then compiled and
linked without the KBMS code to produce the executable
code, as shown in Figure 3.

During the translation process, the KBMS provides the
following build-time services:

(1) Data Dictionary Handler service. The K.3 compiler
interacts with the Data Dictionary Handler service to store
and retrieve meta-data to and from the knowledge base to
support the translation of the K.3 schema. The access to the
data and meta-data stored in the knowledge base is managed
by an Object Manager and a low-level Storage Manager.

(2) Rule binding for model and system extensibility. The
KBMS supports object model, language, and system exten-
sibilities. The underlying object model of NCL can be ex-
tended by adding new conmstraint types, association types,
and class types. The semantics of the new keyword con-
straints, association types and class types, are specified in
the corresponding meta classes in the knowledge base as pa-
rameterized rules. The Dynamic Expression Evaluator and
Rule Binder services of the KBMS are used to translate these
parameterized rules into bound ECAA rules. These rules are
bound to the classes in which the constraint, association and
class types are used.

(3) Code generation for Request Monitoring and Rule
Processing. During this translation, event specifications (i.e.,
E part) of all ECAA rules defined in the schema are used to
produce C++ code for monitoring requests for various ser-
vices (i.e., method calls) and are linked with the run-time
Request Monitoring service of the KBMS. In other words,
the generated code monitors the invocation of the corre-
sponding method and invoke appropriate rules. The CAA
parts of all the rules are also translated into C++ methods
and are linked to the run-time Rule Processing service of
the KBMS.

(4) Initiation of a Knowledge Base. An NCL schema
created by a client using a copy of the XGTOOLS installed
at the client site can be sent to the KBMS which initiates
the knowledge base by storing the meta-information in the
knowledge base. At run-time, the client can then populate
the instances of the knowledge base using a query language.

At run-time, the KBMS provides the following services

to a) software clients which require KBMS services or b)
human clients who access the KBMS through a Query Tool:

(1) Query Processing Service. Software and human clients
can access the contents of a knowledge base by issuing queries
to the KBMS either through the Query Tool or from exe-
cutable code. An object-oriented query language (OQL {2])
is used for this purpose. The Query Processor of the KBMS
is invoked to parse and process the queries to access the
knowledge base.

(2) Request Monitoring Service. When a method is in-
voked either from the program code or from an OQL query,
the Request Monitor for that method (i.e., the C++ code
generated during build-time) determines whether any rules
need to be invoked before and/or after this method is exe-
cuted.

(3) Rule Processing Service. If it is determined that a
rule needs to be invoked, the Request Monitor will invoke
the Rule Processor (i.e., the C++ methods generated at
build-time that correspond to that rule) to process the rule.
If another method needs to be called within the processing
of a rule, that method invocation may trigger another cycle
of request monitoring and rule processing.

In summary, the KBMS described in this section differs
from the traditional database management system (DBMS)
in that it provides not only the traditional database man-
agement services (such as persistent, object management,
transaction management, etc.), but also a set of knowledge
base management services. Most notably, the KBMS pro-
vides a request/event monitoring service which monitors the
invocation of the methods to automatically triggers the ex-
ecution of rules by the rule processing service. In the next
section, we also describe how we apply the KBMS tech-
nology in the NIIIP environment to provide a rule-based
interoperability.

4 KBMS Technology Applied to NIIIP

The KBMS technology developed at the University of Florida
is applied to the NIIIP architecture in the following two
ways:

(1) The KBMS is used as a VE component to provide
build-time and run-time services for the functioning of the
NIIIP VE information infrastructure as described in Section
3. It provides the knowledge base management services to
manage the NIIIP global knowledge base. As described be-
fore, the global knowledge base consists of the meta-data
useful for the controlled access to data and program re-
sources in a heterogeneous network and the common data
which are used by the other NIIIP Components.

(2) The KBMS provides additional build-time services
to distribute the Request Monitoring and Rule Processing
services to component systems to achieve a rule-based inter-
operability. We shall focus on this application of the KBMS
technology in this section.

4.1 Conventional CORBA Environment

As described in Section 2.1, the NIIIP system architecture
is based on the Common Object Request Broker Architec-
ture (CORBA) [21] introduced by the Object Management
Group (OMG). In the conventional CORBA environment,
the specification of a service is separated into an interface
part and an implementation part. The interfaces of all the
object services are defined in a standard Interface Defini-
tion Language (IDL) [21] and are translated into program
language bindings (e.g., C++/C stubs and skeletons). The

implementation of these systems can be in any programming
language in which there is a language binding supported by
the IDL compiler. Thus, a client software written in one
programming language can invoke services (i.e., methods)
written in another programming language, providing inter-
operability among heterogeneous systems.

However, the functioning of a virtual enterprise is not
simply ”a bunch of programs running and calling one an-
other”. There may be constraints and rules that need to
be enforced in the invocation of these services. These con-
straints and rules may be the result of some governmental
regulations and policies or some business rules and restric-
tions. For example, before a service (i.e., a method) is in-
voked, the NIIIP system may need to invoke a service to
check the security, or trigger another service to perform some
negotiation. After the service is performed, other services
may need to be invoked to initiate some notification and
perform some accounting. To enforce such constraints and
rules using the conventional CORBA architecture, program
code performing the enforcement has to be incorporated in
the client and server programs. In other words, the control
and logical relationship and constraints among the clients
and servers are embedded in program code as method calls.
If some governmental regulation or business rule changes,
we have to go into the code to recode the enforcement. This
can be a very time-consuming and costly process. Basically,
the interoperability of the CORBA architecture is "method-
based”.

The basic idea of the rule-based interoperability” is to
separate the code of the implementation of the methods from
the constraints and rules which define the control and se-
mantic relationships among the methods. Thus, in the NI-
IIP environment, the interfaces of the servers are defined in
NCL which, after the translation process described in a pre-
vious section, are essentially IDL specifications plus ECAA
rules which capture the semantics of keyword or other user-
defined constraints, association types and class types. In
this manner, rules can be used to define not only the con-
straints associated with data but also the control logic that
inter-relate the services of NIIIP VE servers. Furthermore, if
the interaction among servers and clients changes, we do not
have to go into the code to recode the program which car-
ries out their interactions. Instead, the ECAA rules can be
changed to reflect the new interrelationships among clients
and servers. In the following subsection, we shall present
the idea and technique of using these rules to achieve the
rule-based interoperability.

4.2 A Compilation Approach to Rule-based Interoperabil-
ity

The technique used to achieve the rule-based interoperabil-
ity is to use the ECAA rule specifications in NCL together
with the NCL’s method specifications (which are equiva-
lent to IDL specifications) to generate language bindings for
client and server programs at the build-time. At run-time,
the activations of object services as specified in the rules will
be carried out automatically across the ORB, meaning pro-
grams will be calling each other through the ORB following
the trigger and action specifications. For this reason, the
proposed technique is called “rule-based interoperability”.
To achieve this, we need not only a mechanism to generate
program stubs and skeletons to implement the methods in
NCL specifications but also a mechanism to monitor the ex-
ecution of the methods (request/event monitoring) and to
trigger the processing of methods which implement the CAA

parts of rules (rule processing).

Figure 4 illustrates the process of generating program
stubs and skeletons from NCL specifications. NCL is used
to model the resources of different organizations which form
a virtual enterprise. The integrated and mediated global
NCL schema gives the global view of all the resources. It
is first translated into the corresponding K.3 specification
which defines the semantic properties of classes in terms of
attributes and superclass-subclass associations, bound rules,
methods specifications, and method implementations. Next,
a K.3 compiler is used to translate the K.3 specification into
1) IDL method specifications and 2) extended methods in
C++ or C code for implementing the rules. The gener-
ated IDL specifications are compiled by an IDL compiler to
generate stubs and skeletons which are integrated with the
extended methods that implement the rules. The integrated
stubs and skeletons are then used by clients and servers to
achieve run-time interoperability. We shall elaborate on this
concept and technique by an example.

NIIP NCL Compiter

IDL specification .
Na_ﬂ'ﬂ{g;:ﬂ,".‘&'.‘ NipX 3 = Compiles I‘“’ (oo ket
schema Eﬁ}
ma {e C++ code to be inserted into
C++ code program skeieton
Attributes and Attributes and .
Supertypedsub A feube b fies ——
Associations M‘M
r
gg‘ociaﬁm Types C++ code to monitor
Keyword ____\~... Bound e the ion of each
Counstraints /' Rules method{request monitofing)
User-defined
Rules C4+ code 10 implement
methods which enforce
Method Method each rulke (rule processing)
Specification Specification IDL
Specification -h foe client program _,
for each '<.h for server program
Method Method method -c++ skeleton fof
2 i SCIVEr Progr:
C++ code to implement
cach K.3 method

Figure 4: Generation of Program Bindings from NCL spec-
ifications

4.3 An Example of Rule-Based Interoperability

Figure 5 illustrates the compilation of a method (M1) with
its associated before and immediate-after rules (R1 and R2)
into the compiled code for distributed request/event mon-
itoring and rule processing. Figure 6 illustrates the execu-
tion flow showing how a service request for M1 by a client is
monitored to trigger the processing of the appropriate rules.

4.3.1 Compilation Phase

In Figure 5, the definition of a class (named EXAMPLE) in
NCL is given which includes the specification of two meth-
ods (M1 and M4), and the specification of two rules (R1 and
R2). As described before, NCL rules are Event-Condition-
Action-AlternativeAction (ECAA) rules in which the trig-
gering event can be the execution of any method. The actual
NCL syntax for the two rules shown in Figure 5 are as fol-
lows:

RULE Ri;
TRIGGERED BEFORE M1()
CONDITION X AND (*B,
ACTION

1G)

M11(0);
OTHERWISE
M50);
END_RULE;

RULE R2;
TRIGGERED IMMEDIATE-AFTER M1()
CONDITION Y

ACTION
M4();
OTHERWISE
M3(0);
END_RULE;
IDL Speci
Definiton of a NHIP NCL g oL N
i i . Co+ Bindings
class in
NCL form Compiler Compiler
C++ Code
Class EXAMPLE:

i DL compile bindi
e Bk forM \ g:b) o o
mmﬂ'_/ M: Co+ implementation for the C++ skelcton for M1

Mi surrogate M1
: /* Request monitor for M1 */
y { calt MR1 .
Ma call M1 (original insert code
: call MR2 }
Rules: MRI: (/* Re processing for R1 /
Rule R1= Before M1 “;;(' code (?: én_xél)munm of insert code
e [et
ELSE call MS call MS} snsent code
i ode
Rule R2= After M1 MR2: (/* Rule p ing for R2 ——aCHLC
IFY C++ code for implementation of
THEN call M4 Fy oot
ELSE call M9 THEN cali M4 -
ELSE M) e oy M1

Figure 5: Compilation of an NCL method M1 and its asso-
ciated rules

Rule R1 specifies that before method M1 is executed, the
condition X AND (*B, IC) should be checked. This condi-
tion is an object pattern specification posted in an object-
oriented query language OQL [2]. It verifies if there exists
an X object instance which is associated with some object
instance of B (¥ is the association operator) but is not asso-
ciated with any object instance of C (! is the non-association
operator). If the condition evaluates to True, then method
M11 is called to perform some action. Otherwise, method
M5 is called instead. Also, R2 specifies that immediately
after method M1 is executed, condition Y is checked. If
condition Y evaluates to True, then method M4 is called to
perform some action. Otherwise, method M9 is called.

During the compilation of the class EXAMPLE by the
NIIIP K.3 compiler, a C++ method is generated for each
rule. For rule R1, the C++ code in method MR1 will eval-
uate the condition X AND (*B, !C) either locally or glob-
ally, and call method M11 or M5 based on the result of the
evaluation. Similarly, for rule R2, a C++ method MR2 is
generated.

For each method in the class, an equivalent IDL specifica-
tion is generated. For example, an IDL specification would
be generated for M1. Furthermore, a new implementation
of M1 (i.e., a surrogate M1 in C++ code) is generated. The
new implementation consists of three method calls. First,
a call to method MR1 is made to process rule R1 (i.e., a
BEFORE rule for M1). Then, a call is made to the original
implementation of the method M1 (i.e., the original M1)
to perform the requested service. Finally, a call is made

to method MR2 to process rule R2 (i.e., an IMMEDIATE-
AFTER rule for M1).

In the final step of the compilatior process, the IDL com-
piler is used to generate the C++ bindings for all the meth-
ods which have been specified in IDL, including method M1.
After the bindings have been generated, the corresponding
C++ implementation code for the surrogate M1, MR1, the
original M1 and MR2 can be inserted into the skeleton of
Mi.

4.3.2 Service Request Execution Phase

Figure 6 illustrates the execution flow showing how a ser-
vice request for M1 by a client is monitored to trigger the
processing of the appropriate rules. A client makes a service
request by using the programming language binding (i.e.,
IDL stub) generated by the IDL compiler for a particular
method. When the request is made, the ORB would dis-
patch that request to the appropriate server to invoke the
corresponding method. In the case of the method M4 (see
Figure 6), there is no associated rules defined for it. Thus,
the code which implements M4 is executed directly and no
additional overhead is incurred.

Server

(no assocrated rules)
M4 {ongmal
Call M4 M4 code)
Call M1
MI(onginal}

Mi{call MR1 |- {ongnal M1 eode)

call M1"(onginal) -]

M11 (M11 code}

KBMS evaluaton

Evaluate
X AND (*B.'C) THEN can mq— M4 M4 o0}

ELSE calt M9}

M5 (M5 code} M9 (M9 code)

Figure 6: The Execution Flow

When a request for M1 is made, the ORB again dis-
patches that request to the appropriate server to invoke the
implementation of M1. However, in this case, the original
code for M1 is not invoked directly. Instead, the generated
implementation (i.e., the surrogate M1 generated by the NI-
ITP K.3 compiler) is executed. First, the method MR1 is
invoked. The execution of MR1 involves the checking of the
condition X AND (*B, !C). In this case, let us assume that
it Tequires a remote call to a service in the KBMS to verify
the condition, as illustrated in Figure 6. The KBMS would
return a True or False back to MR1. Based on the condition,
MR1 either make a local call to method M11 or a remote call
to M5. Note that each call to another method may trigger
other rules, which will be handled by the Request Monitors
and Rule Processors that have been compiled as methods
and distributed among the corresponding methods.

After MR1 has been executed, a call to the original
M1 is made to execute the code which implements the ac-
tual service requested by the client. After the original M1
has been executed, a call to MR2 is made to process the

IMMEDIATE-AFTER rule associated with method M1. In
our example, we assume the checking of the condition Y is
done locally. Depending on the condition, either a local call
to method M4 or a remote call to method M9 is made.

The above example shows that knowledge rules which
capture all kinds of semantic information such as security
and integrity constraints, expert knowledge, agent behav-
iors, business constraints, policies, etc. as well as rules which
implement keyword constraints, association types, and class
types can be used in conjunction with CORBA/IDL to achieve
a rule-based interoperability in a distributed and heteroge-
neous environment.

5 Summary and Conclusion

In this paper, we have introduced an on-going project called
NIIIP which aims to establish industrial information infras-
tructure protocols to facilitate the interoperability of hetero-
geneous computing systems in a virtual enterprise environ-
ment. We first described the overall NIIIP system architec-
ture and the requirements for modeling various types of re-
sources in virtual enterprises. We then described an object-
oriented, extensible KBMS, a component of the NIIIP sys-
tem architecture, and its build-time and run-time services
to the software and human clients and servers in the NIIIP
heterogeneous network. The build-time services include: (1)
Data Dictionary Handler service, {2) Rule binding for model
and system extensibilities, (3) Code generation for Request
Monitoring and Rule Processing, and (4) Initiation of a
knowledge base. The run-time services include: (1) Query
Processing Service, (2) Request Monitoring Service, and (3)
Rule Processing Service. We have also explained how the
system extensibility is achieved by extending or modifying
the underlying object model of the system. The resulting ex-
tended object model can more adequately model the com-
plex structural and behavioral properties, constraints and
associations found in virtual enterprises. Finally, we pre-
sented a compilation and distributed approach to achieve
a rule-based interoperability among heterogeneous systems.
We have shown that, by using the rule specification facility
and the corresponding rule processing facility (rule binder
and rule processor) provided by the KBMS, object classes
defined in a semantics-rich object model can be translated
into rules and IDL specifications. These rules and IDL spec-
ifications can then be translated into C++/C stubs and
skeletons for binding client and server programs. At run-
time, client and server programs can then activate their
methods following the control information and logics speci-
fied in ECAA rules. The use of ECAA rules can also make a
heterogeneous network system active since events can be au-
tomatically monitored and intelligent behaviors associated
with objects can be antomatically triggered. The rule-based

interoperability and active feature are added values to the
OMG/CORBA.

References

[1] R. Ahmed, et al., ”The Pegasus Heterogeneous Multi-
database System,” IEEE Computer, 24:19-27, 1991.

[2] A. Alashqur, S. Y. W. Su and H. Lam, "OQL- A Query
Language for Manipulating Object-oriented Databases”,
in Proc. of 15th Int. Conf. Very Large Databases, Ams-
terdam, Netherlands, pp. 433-442, August 1989.

[3] M. Anderssor, Y. Dupont, S. Spaccapietra, K.
Yetongnon, M. Tresch, and H. Ye, "FEMUS: A Fed-

erated Multilingual Database System”, Chapter 18 in
Advanced Database Systems, N. Adams and Bhargava,
R. (Eds.), Lecture Notes in Computer Science, Springer-
Verlag, 1993, pp. 359-380.

[4] J. A. Arroyo-Figueroa, "The Design and Implementa-
tion of K.1: A Third Generation Database Programming
Language,” Technical Report, Database Systems R&D
Center, University of Florida, August 1992.

[5] R. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo,
and M. Schwartz, ”A Remote Procedure Call Facility
for Interconnecting Heterogeneous Computer Systems,”
IEEE Transactions on Software Engineering, 13(8), Au-
gust 1987.

(6] E. Bertino, ”Integration of Heterogeneous data Reposi-
tories by Using Object-oriented Views,” Proceedings of
the 1st International Workshop on Interoperability in
Multidatabase Systems, Kyoto, Japan, April 1991, pp.
22-29.

[7] P. Drew, R. King, and J. Bein, ”A la Carte: An Ex-
tensible Framework for the Tailorable Construction of
Heterogeneous Object Stores,” in Implementing Persis-
tent Object Bases: Principles and Practice, The Fourth
International Workshop on Persistent Object Systems,
Morgan Kaufmann Publishers, Inc. 1990.

{8] T. Finin, R. Fritzson and D. McKay, ”A Language and
Protocol to Support Intelligent Agent Interoperability,”
appeared in the Proceedings of the CE & CALS Wash-
ington ‘92 Conference, June 1992.

[9] T. Finin, D. McKay, R. Fritzson, and R. McEntire,
"KQML: An Information and Knowledge Exchange Pro-
tocol,” in Kazuhiro Fuchi and Toshio Yokoi (Ed.),
Knowledge Building and Knowledge Sharing , Ohmsha
and IOS Press, 1994.

(10] T. Finin, R. Fritzson, D. McKay and R. McEntire,
"KQML as an Agent Communication Language,” to
appear in The Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM’94), ACM Press, November 1994.

[11] J. Franchitti and R. King, "Amalgame: A Tool for Cre-
ating Interoperating, Persistent, Heterogeneous Compo-
nents,” Chapter 16 in Advanced Database Systems, N.
Adams and Bhargava, R. (Eds.), Lecture Notes in Com-
puter Science, Springer-Verlag, 1993, pp. 313-336.

[12] D. Heimbigner and D. McLeod, A Federated Archi-
tecture for Information Systems,” ACM Transactions on
Office Information Systems, 3(3):253-278, July 1985.

[13] D. K. Hsiao, *Federated Databases and Systems (Parts
I and II): A Tutorial on Their Resource Consolidation,”
VLDB Journal, Vol. 1, No. 1&2, July and Oct. 1992.

[14] Subcommittee 4 of ISO Technical Committee 184,
”Product Data Representation and Exchange - Part 11:
The EXPRESS Language Reference Manual,” ISO Doc-
ument, ISO DIS 10303-11, August 1992.

[15] W. Kim, et al., ”On Resolving Schematic Heterogeneity
in Multidatabase Systems,” in Distributed and Parallel
Databases, 1:251-279, 1993.

(16] Y. Labrou and T. Finin, A semantics approach for
KQML - a general purpose communication language for
software agents,” to appear in the Third International
Conference on Information and Knowledge Management
(CIKM’94), November 1994.

[17] H. Lam, S. Y. W. Su, et al., ”GTOOLS: An Active
GUI Toolset for an Object-oriented KBMS,” Interna-
tional Journal of Computer System Science and Engi-
neering, Vol.7,No.2,pp. 69-85, April 1992.

{18] H. Lam, S. Y. W. Su, et al., "Model Extensibility in an
Extensible Knowledgebase Management System,” sub-
mitted to IEEE Transactions on Knowledge and Data
Engineering.

[19] W. Litwin, L. Mark, and N. Roussopoulos, ”Interoper-
ability of Multiple Autonomous Databases,” ACM Com-
puting Surveys, 22:267-293, 1990.

{20] NIIIP Consortium, ”NIIIP Reference Architecture:
Concepts and Guidelines,” NIIIP Publication NTR95-
01, Jan 1, 1995.

[21] OMG Committee, ” The Common Object Request Bro-
ker: Architecture and Specification,” OMG Document,
Revision 1.1, No. 91.12.1, December 1991.

[22] A. Sheth, and J. Larson, ”Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and Au-
tonomous Databases,” ACM Survey, 2(3), Sept. 1 990,
pp. 183-236.

(23] Y. M. Shyy, S. Y. W. Su, "K: High-level Knowledge
Base Programming Language for Advanced Database
Applications”, ACM SIGMOD Int’l Conf. on Manage-
ment of Data, pp. 338-347, 1991.

[24] Y.M. Shyy, J. Arroyo-Figueroa, S. Y. W. Su, and
H. Lam, "The Design and Implementation of K: A
High-level Knowledge Base Programming Language of
OSAM*.KBMS,” accepted for publication in the VLDB
Journal, 1995.

[25] S. Y. W. Su, V. Krishnamurthy and H. Lam, ”An Ob-
ject Oriented Semantic Association Model (OSAM¥*),”
Al in Industrial Engineering and Manufacturing: The-
oretical Issues and Applications, American Institute of
Industrial Engineering, 1989.

[26] S. Y. W. Su and H. Lam, "An Object-oriented Knowl-
edge Base Management System for Supporting Ad-
vanced Applications,” Proc. of the 4th Int’l Hong Kong
Computer Society Database Workshop, pp. 3-22, Decem-
ber 12-13, 1992.

[27] S. Y. W. Su and H. Lam, et al,, "OSAM*.KBMS:
An Object-Oriented Knowledge-Base Management Sys-
tem for Supporting Advanced Applications”, Proc. of
the 1993 ACM SIGMOD Int’'l Conf. on Management of
Data, pp. 540-541, 1993.

[28] S. Y. W. Su and H. Lam, et al. "NCL: A Com-
mon Language for Achieving Rule-Based Interoperabil-
ity among Heterogeneous Systems”, Submitted for pub-
lication Journal of Intelligent Information Systems, Spe-
cial Issue, 1995.

[29] G. Thomas, et al., ”Heterogeneous Distributed
Database Systems for Production Use,” ACM Comput-
ing Survey, 22:237-266, 1990.

[30] G. Wiederhold, ”Intelligent Integration of Informa-
tion,” Proceedings of the ACM SIGMOD International
Conference on Management of Data, Washington, D.C.,
May 1993, pp. 434-437.

[31] J.C. Wileden, A. L. Wolf, W. R. Rosenblatt, P. L. Tarr,
”Specification Level Interoperability,” Proceedings of the
Twelfth International Conference on Software Engineer-
tng, Nice, March 1990.

10

