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Abstract

We argue that decidable classes of predicate logic com-

bhted with efficient decision methods are a suitable basis
for developing powerful knowledge representation languages.
The paper presents some methods for developing such lan-

guages based on decidable classes. Queries can be answered
and databases can be completed by using efficient dectilon
refinements of the resolution method. Severaf decidable

classes usable as new knowledge representation languages
are presented, cent aining some well-known ones, like the
base language ALC of KL-ONE type systems, along with
the resolution-based inference engines.

1 introduction

We argue that the basic characteristic of deductive database
languages (like DATALOG) and knowledge-representation

languages (eg KL-ONE) is decidabfity. I.e, any query must
terminate and give either a negative or a positive answer.
This is in sharp contr=t to using fulf first-order logic or
non-decidable sublanguages like Horn clauses (the basis of
PROLOG), where nonsucceasfttl queries do not, as a rule,
terminate.

We consider certain decision methods developed in the
context of automated theorem proving and show how these

methods can be put to immediate use as an efficient infer-
ence engine (with the property that every query terminates).
Some classes of predicate logic are suggested as languages for

knowledge-representation systems. In particular, the ALC
language used by KL-ONE systems is just a sublanguage of

one the suggested classes. The no-circularities restriction of
ALC is removed.

One of the advantages of the considered decision meth-
ods is their efficiency, clearly demonstrated in experiments
(see [FLTZ 93]). The principal reason for this is that those
methods are just further restrictions of a resolution method,
which has been a preferred method for first-order theorem
proving since its introduction. Roughly speaking, the deci-

sion methods at hand inherit the efficiency of resolution and
then extend it further to the point of making a search space

finite for decidable classes.
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Another advantage of using resolution-based decision
procedures is their usabifity for completing a database, i.e.
deriving a finite set of inferred clauses D’ from a database
D such that when asking queries or adding new clauses to
D in the future, no inferences from D or D’ alone have to
be considered. We could say that a dynamic use of D is
replaced by the static clause set D’.

2 K L-ONE type languages

The knowledge representation system KL-ONE was intro-
duced in [Brachmann, Schmolze 85] and a large number of
systems based on the similar ideaa have been built, for ex-
ample BACK [Nebel, von Luck 88], CLASSIC [Borgida et al
89], KANDOR [Patel-Schneider 84], KL-TWO [Vilain 85],
NIKL [Kaczmarek et al, 86].

KL-ONE type languages can be viewed as frame-based,
database-oriented languages of terminologicaf re-oning,
where stress is put on the definition of concepts. Concepts

can be viewed as urtary predicates. Another common fea-
ture of these systems is the separation of the knowledge into
terminological part (definitions of concepts), called “T-box”
and the asaertional part (database), called “A-box”. There
is a special concept language for defining concepts in the
T-box, with a simply defined meaning in predicate calculus.
The concept language can be viewed as a certain class of
predicate logic.

Example given the concepts “person”, “female” and “shy”,
the concept “persons who are female or not shy” can be
expressed by the formula

(and person (or female (not shy) ) )

in concept logic, with the translation

(Vz)(person(z) & (fende(z) V -shy(z)))

in predicate logic.

The user of the language can describe his concepts in
the T-box, write down known facts in the A-box, and ask
queries from the system, much fike is done in PROLOG.

The crucial difference from PROLOG is that the lan-
guage is decidable - any query must get either a positive or
a negative answer. Several other important properties are

also required to be decidable. For example, the question
whether T-box is satisfiable, the question about derivabdity
of formulae of the kind (VZ)(P(Z) ~ Q(z)) where P and Q
are arty concepts from T-box. The last question is called a
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“subsumption problem” in KL-ONE context: the problem
can be read as “are all objects of type P also of type Q?”.

For example, given a definition of “female” ss a “person”

who is not ‘man”, the concept “female” is subsumed by the

concept “person”. Several KL-ONE type systems have the
capability to compute the full tree of concept subsumption,

and this capability is considered to be rather important from
the practical point of view.

The language called ALC which has been introduced in
[Schrnidt-Schauss, Smolka 88] can be considered as a basic
language for KL-ONE systems, on which different exten-
sions can be built. In [Schmidt-Schauss, Smolka 88] it is
shown that satisfiability and KL-ONE-subsumption in ALC
are PSPACE-complete.

ALC contains two kinds of predicates - concepts (unary
predicates) and roles (bhary predicates). ALC is meant for
writing sets of concept definitions, Any formula in ALC has
one of the following forms (we give a form in ALC and a
well-known translation into predicate logic):

●

●

●

G

●

●

TRUS - top concept in subsumption hierarchy. Trans-
lation: constant truth value “true”.

FALSE - bottom concept in subsumption hierarchy.
Translation: constant truth value “fake”.

F, where F is an arbitrary concept. Translation: F(z),
where z is defined by the context.

(not F), where F is an arbitrary ALC-formula.
Translation: TJ”, where F’ is the translation of F.

(and F G), where F and G are arbitrary ALC-
formulss. Translation: (F’ & G’), where F’ and G’
are translations of F and G.

(or F G), where F and G are arbitrary ALC-
formulas Translation: (F’ V G’), analogously to con-
junction.

. (all R F), where R is a role, and F is an arbitrary
ALC-formula. Translation: (Vy)(R(z, y) s F’[y]),
where the free variable s is determined by the con-
text. F’[y] cannot contain any free variables except

Y.

● (exists R F), where R is a role, and F is an ar-

bitrary ALC- formula. Translation: (3y)(R(z, y) &
F’[y]), where the free variable z is determined by the
context and F’[y] cannot contain any free variables ex-
cept y.

The concept definition in ALC has the following form: P
= F, where F is an arbitrary ALC-formula. Translation;
(vZ)(P(z) * F’[z]).

An important additional restriction to the described lan-
guage is that no circularities are allowed in concept defini-
tions – that is, there must be a certain hierarchy of con-

cepts such that all concepts in the right side of any concept
definition are lower on the hierarchy than the defined con-

cept. For example, it is not allowed to define a human as
an animal whose mother is human: human = (and animal
(exists mother human) ), since this definition contains a
circularity.

We will present a sample T-box given by F. Baader.

female =
person =
parent =

(not male)
(some sex (or male female) )
(and person (some child person) )

mother = (end parent (some sex female) )
father = (and parent (not mother))
grandparent = (and parent (some child parent ) )
parent.uithsons-only = (and parent (all child

(some sex male) ) )

The following is a translation of this T-box into predicate
logic:

(Vz)(~erna/e(z) # -male(z))

(Vz)(person(z) # (3y)(sez(z, y) & (rnale(~) v /ernale(y))))

(Vz)(pareni(z) + person(z) &(3y)(chiid(z, y)&person(y)))

(Vz)(rnother(z) * parent(z) &(3y)(9ez(z, y)& femaie(y)))

(Vz)(father(z) % parent(z) & -mother(z))

(Vz)(grandparent(z) + parent(z)& (3y)(child(z, y)& par-

ent(y)))

(Vz)(parerd.wti% -sons-ordy(z) ~ parent(z)&
&(Vy)(chiM(z, y) * (3z)(9ez(y, Z) & male(z))))

3 Using resolution to decide ALC

3.1 The resolution method

Since its introduction in [Robinson 65] the resolution
method has been the most popular method of automated
theorem proving in classical predicate logic. A large body of
theory concerning various modifications and special strate-

gies of resolution has been developed. First we will define
the standard notions of the resolution. For further details

see, for example, [Chang, Lee 73].

Definition A clause is a finite set of literals. Any clause
{L,, L2,..., L~ } is interpreted as the disjunction L1 v L2 v
. . . V L“ of its member liter-als.

Definition The clause form of a jormula F is a set
of clauses {Cl, CZ, ..., Cm} obtained from F by Skolem-
ization (replacing quantified variables by new function
terms) and equivalent tmnsjormat:ons. Any clause set

{C1, C2,..., Cm} is interpreted as a conjunction C, & C2 &
. . . & Cm of its member clauses.

Any formula of classical logic can be brought to the clausal
form.

New clauses are derived by rules of binary resolution and
factorization. Before each resolution step, all the variables
in one of the resolved clauses have to be renamed, so that
the two clauses will be variable disjoint.

Definition If C and D are variable disjoint ciauses, LI
is a liteml in C, L2 is a literal in D such that L: and
L2 are unifiable by the most general unifier U, then E =
(C - L,)u U (D - L2)a is a resolvent of C and D.

The Iitemls L1 and L2 are called the literals resolved
upon.

Definition A factor of a clause C is a clause Co, where u
is the most general unifier of some C’ G C.

Definition For a clause set S we define Res-Fat(S) as the
set of resolvents of S and all factors of these resolvents.
Additionally we then dejine:

d(s) = s,

7t’+l(S) = 7?’(S) U Re.9Xac(R*(S)), and

7?*(S) = U7?’(S).

We say that a clause C is ~erivable
ifl C E ‘R”(S).
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The completeness theorem for resolution states that if and
only if some set of clauses S is unsatisfiable (i.e. has no
model), the resolution method will derive an empty clause
(i.e. contradiction) from S. Any formula F of classical pred-
icate calculus is true if and only if its negation YF is unsatis-
fiable. The last fact can be proved by the resolution method:
to prove that F is true, prove that the clausaf form of ~F
is unsatisfiable.

Presented with some unsatisfiable set of clauses S, the
resolution met hod always (provided there is enough time

and memory ) terminates with success (derivation of an
empty clause). However, as predicate calculus is undecid-
able, when presented with some satisfiable clause set G, the
resolution method generally fails to stop and give a nega-
tive answer: instead, it will infinitely continue deriving new
clauses.

Example Presented with the following satisfiable set of
clauses the unrestricted resolution method will continue pro-
ducing deeper and deeper clauses, without ever stopping:

{P(f(z)), P(z)}
{+( f(r)), -+(x)}

The unrestricted resolution method or even any of the stan-
dard variants and strategies like like hyperresolution, set of
support resolution, linear resolution and lock resolution are
not usable as inference engines for predicate logic transla-
tions of KL-ONE type languages. These strategies generally
fail to stop when presented with the underivable formula,
thus they cannot be used for getting negative answers.

3.2 Decision refinements of the resolution method

Several papers (eg. [Maslov 68], [Zamov 72], [Joyner 76],

[Zamov 89], [Leitsch 90], [Tammet 90], [Fermiiiler 91], [Tam-
met 92]) and a monograph [FLTZ 93] deal with the prob
lem of building special refinements of resolution for deciding
formulas in decidable classes. The refinement of resolution
decides some class of clauses C iff it always terminates on
any clause set S in the class C, giving either a negative or
a positive answer.

The main technique in the abovementioned papers for
devising decision refinements of resolution is using specird
orderings on literals, prohibiting resolution upon some liter-
als in a clause.

Quite obviously we are interested of refinements which
are complete on the given class of formulas.

Definition The resolution refinement is called complete for
a class C ifl the following holds: for any unsatisfiable set of
clauses in C, an empty clause will be derived from the set
by the resolution refinement.

Consider the following ordering !-,+ due to N. Zamov (see,
for example, [Zamov 89]). You may aJso wish to consult
[Tammet 92] and a monograph [FLTZ 93].

Definition The term t covers the term s ifjl at least one of
the following conditions is sati$fied:

(8) t = s.

(ii) t = f(tl, . . . . t~), s is a variable and s = t, for some
z,l~i <n.

Definition The relat:on >j:
A >j B ifi for every argument s of the litera2 B there :s
an argument t of the htera~ A such that t covers .s or s w a
subterm oft.

Definition The ordering hk:

A+k Bif7A+~Band B#~A.

Definition The k-refinement of resolution is binary resolu-

tion with the following restrictions:

● For any clause C = {Ll, . . . . L*) some literal L, (1 ~
i ~ n) in C is allowed to be resolved upon if7 there IS

no such literal LJ (1 < J < n) :n C that L] xk L

holds.

● For any clause C = {Ll, . . . . L“} some literals L, and

LJ (] < i, j < n) in C are allowed to be factored upon
iff the following holds: u is the most general unifier of
L,, L, and there is no literal Lk (1 < k < n) in C such

that Lk.U &k L,o.

For the purposes of our paper it is important that the k-
refinement is a decision strategy for G5del’s Class: the clsss
of formulas with no function symbols and the prenex form
of the negated formula having a prefix of the following form:
3... 3VV3 . ..3. The following class (Maslov’s Clsss K) con-
tains G6clel’s Class.

Definition The prefix of the literal L in a prenez predicate
formula F is obtained from the prefix of F by discarding
quantifiers for those variables which do not occur in L.

Definition Maslov’s Class K:

The prenez form of a negated predicate formula F is said to
belong to the Class K if it does not contain funct:on symbols
and there are variables XI, . . . . Z* in a set of variables of F
such that every z, (1 < i < n) is situated m the prefiz of F
to the left of all existential quantifiers (except the leading ex-
istential quantifiers, skolemized to constants) and for every
prefiz P of a literal in F at least one of the following holds:

● P cons:sts of the single general quantifier V.

c P ends with the existential quantifier 3.

. P is of the form (Vz1)(Vr2) .,. (Vz”).

Maslov’s Clsss K is introduced and shown to be ;olvable
in [M aslov 68]. Notice that it cent sins the Gi5del’s Class,
Monadic Class, Skolem’s Class, to name a few.

Theorem 1 The k-refinement of resolution is a dec:sion al-
gorithm for Maslov’s Class K. That is, k-refinement is com-
plete for this class and terminates on any formula in this
class.

Proof The proof is due to N. Zamov and can be found in
[Zamov 89] and [FLTZ 93].

The k-refinement of resolution is compatible with full back
subsumption, but forward subsumption and tautology elim-
ination have to restricted in the following way (see [Tammet

92], [FLTZ 93]):

● a literal P(. . .z, . . .y, . . .) must not be aflowed to
forward-subsume alitera.l P(... zz,.. z,...){z := t} for
any t.
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● a tautology

{... PZ,.. Z,...,,... Z,..., -+(... Z,... Z,...)]{Z :=
t} should not be eliminated for any t. Eliminat-
ing other tautologies, like { P(z, y), -IP(z, y)} preserves
completeness.

Example Presented with the following satisfiable set of
clauses the k-refinement can resolve only upon the first liter-
als of the clauses (since P(f(z)) >k P(z) and m~(j(z)) >k
-P(z)) and wilf produce a single clause {P(z), YP(z)}
which is a tautology and can be eliminated. As no more
clauses can be generated, k-refinement stops with the an-
swer that the given set is satisfiable:

{P(f(z)), P(z)}
{=P(f(z)), 1P(Z)}

3.3 Using decision refinements for the ALC-
Ianguage

As the ALC-language allows arbitrary nesting of quantifiers,
it does not immediately belong to any well-known decidable
class. However, due to the fact that any subformula start-
ing with the quantifier contains no more than one free vari-
able, the following translation converts any ALC-formula (in

predicate form) to a new formula, belonging to a decidable
class close to Giidel’s Class:

For any subformula F[z] starting with the quantifier
which is in the scope of two quantifiers and contains a sin-

gle free variable z, introduce a new predicate symbol P,
introduce the definition (VZ)(P(Z) + F[z]) and replace the
subformula F[z] with the atom P(z).

As an example, we will present a translation of the hat
formula from our first sample T-box (the other formulas
preserve unchanged):

(Vz)(pareni.withAons.ordy(z) *

[ )

parent(z) & (Vy)(chiki z, y) +- Pl(y ))

(VV)(P1(V) +$ (3z)($ez v, Z) & nude z)))

The following set KL-ONE-ezample is a clause form of
the translated T-box above:

comment: definition of female:
{-female(z), qmale(z)}
{ma/e(z), jernaie(z)}
comment: definition of person:
{-person(z), sez(z,f(z))}

1[1

-person(z), ma~e(f(z)), fema~e(f(z))}
msez z,y , ~male(y), person(z)}
-wex x,y , -+female(y), person(z))

comment: definition of parent:

[:;:::::[:l:x:~!:i:),)

[ 1

~parent(z), persora(g(z )}
-person(z), -child(z, y , -person(y), parent(z))

comment: definition of mother:

1 11

-mother z , parent(z)}

=rnother z , sez(z, h(z))}
~mother z , femaie(h(z))}

{-parent(z), -wez(z, y), mfemaie(y), mother(z)}
comment: definition of father:
{-father(z), parent(z))

{

mfather(z), -mother(z))
-parent(z), mother(z), father(z)}

comment: definition of grandparent:

1
U

mgrandparent z , parent(z)}

1

-grandparent z , child(z, k(z )}
mgranparent(z), pment(k(z))

{-parent(z), -chi/d(z, y), =parent(y), grandparent(z))

comment: definition of pare nt-w:t h-sons-only (abbreviated

as pwso):
{Ypwso(z), parent(z)}
{=pwso(r), ~child(z, y), PI(Y)}
{-parent(z), child(z,l(z)), pwso(z))

[

-parent(z), =P1(l(z)), proso(z)}
-IP1(u), sez(y, r(y))}

{=pl(y), male(r(y))}
{-wez(y, z), ~male(z),pl(y)}

Notice that the descriptive power of the T-box above
is more fimited than we’d expect, For example, given a
following A-box

{person(John), chihi(.7ohn, Peter),

9ez(Peter, Male), male(Ma/e)}

it is not possible to deduce pr.uso( John). In order to deduce

pwso( .lohn), we’d need a fact (Vz)(child(.lohn, z) - z =
Peter). Unfortunately we do not have an equality predicate
in the language!

4 Extending the ALC-class

We will consider the following natural extension “One-free”

of the ALC-CISSS:

Definition Any formula F of the predicate logic without the
equalitg predicate and function symbols belongs to the Class
One-free ifl any subformula of F starting with the quantifier
contains no more than one free van”able.

We do not consider the constant symbols to be functional:
thus we allow formul~ in One-free to contain constant sym-
bofs.

Notice that the ALC-restriction of circularities does not

hold for One-free Class.
The translation above is obviously sound for the One-

free Class and guarantees that the translated formula will
have a quantifier nesting maximally equal to two. Thus
the translated formula can be seen as being “almost” in the
G6del’s Class. It is not exactly in Giidel’s Class, as the
prenex form of the whole translated formula may have an
arbitrarily deep quantifier nesting.

However, it is easy to see that each clause in the clausal
form of the translated formula from the One-free Class has
one of the two forms:

(i) A clause contains at most two variables and no func-
tion symbols.

(ii) A clause contains a single variable and at most one-
place function symbols.

Termination of the k-refinement of resolution on this clausal
class is easy to show. One has to modify the termination
proof for G6del’s Class or the termination proof for the
whole Maslov’s Class K.

As for subsumption and tautology elimination, the same
restrictions hold as for Maslov’s Class K (see the section
2.2).

The following theorem shows that the completed form of
an A-box contains explicitly all the clauses representing the
mutual subsumption of concepts.

Theorem 2 The clause set %?;k(F’) for a translation F’ of
any One-jree jor-mula F contains all the clauae$ representing
the mutual subsumption of concepts.
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Proof The proof is obtained by rewriting a k-refinement
derivation. Certain inferences aremoved downwards so that
the rewritten derivation is still a k-refinement derivation.

As no new clauses can be derived from the set 7Z;~(F’)
with the k-refinement, ‘R>k(F’ ) can be used as a completed

form of F, making answering future questions about the A-
box much easier than by using the original F alone.

Indeed, once we have computed the completed set
7?;k (F’) for some T-box (or the union of T-box and A-
box) F’, there is no need to attempt any derivations just
from the clauses in F’ or ‘R;~ (F’). Given some query Q,
alf the derivations will have some clause of Q as one of its
ancestors.

5 Functional relations

Some extended versions of the ALC language (the one pre-
sented in [Hollunder, Nutt 90], for example) also alfow to de-
clare certain relations to be functional (eg, the relation “sex”
in the example above would naturally be defined ss a func-
tional relation). The predicate logic equivalent of declaring
a relation (say, R) to be functional on the first argument
would be a following axiom:

(vzyz)((R(z, y) & R(z, z)) * (y = z))

The axiom uses an equality predicate and thus we should
also have to introduce an axiomatization for equality, that
is, axioms for reflexivity, commutativity, transitivity and ax-
ioms for substitution into atoms. Including the full axioma-

tization for equality would mean that the resulting formulas
do not fall into known decidable classes of predicate logic,

thus making the translation useless for our purposes.
In principle functionality of a binary relation can be nat-

urally expressed using one-place function symbols instead of
tw-place predicate symbols combined with the functional-
ity axiom. This means that instead of using a quantifier to
introduce a new functionally bound variable, we can use a
term j(z), where $ is a function symbol of the functional
relation and z depends on the context.

So, we would like to extend the One-free Clsss by al-
lowing one-place function symbols. Unfortunately, this ex-
tension turns out to be undecidable, as it contains the V3’-
Class.

We will consider ways of imposing additional restrictions
to the extended One-free Class. One rather strong restric-

tion, which we will shortly investigate in the following, is
obtained by disallowing any non-functional relations. That
is, we require that all binary relations were functional - then
they can be represented by one-place function symbols and
we can restrict the class to contain only monadic predicate
symbols. It is naturaf to extend the resulting class to the
full Class E.

Definition Any formula F of the predicate logic without the
equahty predicate, but possibly containing funct:on symbols

belongs to the Class One-free-E (OFE, for short) if7 any sub-
formuia of F start:ng w:th the quantifier contains no more
than one free variable and all atoms contain no more than
one variable.

Obviously the translated form (translation above for the
One-free Class) of any formula in the OFE Class belongs
to the Class E:

Definition Any formula F of the predicate log:c w:thout the
equality pred:cate, but possibly containing funct:on symbols
belongs to the Class E ifi no literal L :n the Skolem:zed ver-
sion of F conta:na more than one var~able (which M allowed
to have an arbitrary number of occurrences :n L).

There are several proofs of the decidability of Class E. The
earliest proof seems to be given in [Gurevich 73].

We introduce an efficient resolution refinement deciding
Class E:

Definition Let A and B be literals. We say that A +. B

ifi the following is true:

● A contains some variable z and B contains the same
variable z.

● the depth of the deepest occurrence of z in A is greater
than the depth of the deepest occurrence of x in B.

Definition The v-refinement of resolution is binary resolu-
tion with the jollowing restrictions:

For any clause C = {Ll,..., L“} some literal L, (1 <
i s n) in C :s allowed to be resolved upon ifl there is
no such literal L, (1 ~ j ~ n) in C that L] >V L,
holds,

For anu clause C = {L, . . . . . L~l some literals L, and
L] (1 < i, j < n) m b ;re allo;ed to be factored’upon
iff the following holds: u is the most geneml unifier of
L,, L] and there is no literal Lk (1 < k ~ n) in C such
that Lka >“ L,u.

Theorem 3 The v-refinement of resolution is a decision al-

gorithm for Class E. That is, v-refinement is complete for
this class and terminates on any formula in this class.

Proof The proof can be found in [Tammet 90] (termination
only), [Tammet 92] and [FLTZ 93].

Again, v-refinement is compatible with full back subsump-
tion, but tautology elimination cannot be used and forward
subsumption has to be restricted by taking the ordering into
consideration.

Example Consider the following refutable set of four

clauses from E:

I \1: P(f(a), f z)), R(z, f(f(a)))}

[ 1)

2: =R(a, f(z ),P z,z

b
3: R a, f(z)), =P Z,Z
4: - (f(a), f(z)), -R(z, f(f(a)))l

By >0-ordering only the first literals in these four clauses
are allowed to be resolved upon.- At the first level we can
derive two new clauses, both of them tautologies:

1,4 give 5: R z, j(f(a))), =R(z, f(f(a)))]

1[2,3 give 6: P z,z), =P(z, z)}

The clauses derived at the next level are subsumed by
clauses 1-4. However, when subsumption is restricted by
the ordering, these clauses are not subsumed and the refu-
tation follows easily.

The OFE Class can be used both for the T-box and the
A-box. As for the A-box, we also allow ground equality units
such that the set of all equality units can be oriented to a
complete (confluent and terminating) set of term rewriting
rules. Thus all the facts of the form R(a, b) for any functional
R can be translated to equality units f(a) = b.

In order to decide any formula F in the OFE Class con-
taining also ground equality units, do the following:

330



1.

2.

3.

4.

5.

convert F to F1 using the translation presented above
for the One-free Class.

convert F’ to a clause set C.

use Knuth-Bendix completion algorithm to complete
the set. Notice that on the ground set of equality units
the Knuth-Bendix completion algorithm will always
terminate.

use narrowing to remove the rewrite rules resulting
from the previous step: this gives a fully narrowed
clause set C’ in Class E. See the definition and com-
pleteness proofs of narrowing in [Slagle 74]. Alterna-
tively, consult [Tammet 92] or [FLTZ 93].

use v-refinement of resolution to decide the clause set
c’.

As an example we take the previous T-box, assume the
relation “sex” to be declared functions and translate the
selected part to OFE. Unfortunately, the OFE Class is too
restrictive to translate the whole of the previous T-box in a
“coherent” way. The reason here is that the relation chiht
cannot be considered to be functioned on the first argument.
We will use the notion of ‘first.child” instead: first-child

is assumed to be functional. Whenever some person z does
not have children, we can define first-child(z) = 1, for
some constant 1 for which we know that ~person(l-), say.
In the following T-box we have replaced some equivalences
by implications. The sole reason being that we felt the impli-
cations to correspond better to our intuitive understanding
of the presented terminology.

mperson(l)
jemale(Female)
male(itlale)

[ 1[

Vz jema~e(z) * -male(z)

(Vz person(z) * male(sez z)) V jernale(sez(z)))

[ 1

Vz parent(z) -# person(z)& person(first.chihf(z)))
Vz mother(z) # parent(x)& jemale(sez(z)))
Vz father(z) * parent(z)& -mother(z))

For the concepts grandparent and parent-with-sons~ nly
we assume that the number of children a person can have is
bounded by some N and use the following clumsy transla-

tion:

(Vz)(grandparerzt(z) * parent(z)&

[ 1[

parent(jirst-child( z)) V.. . V parent(NJh-chi/d(z) )))
Vz man(z) * (person(z)& male(sez(z))))
Vz parent-with=ons-ordy (z) + parent(z)&

man(jirst.child( z)) & . . . & man(N-th-chihf(z)))

Now we can, for example, add a sample A-box to the
given T-box (John, Peter and Male are constant symbols):

~irst-child(.lohn) = Peter
second~hiki(.lohn) = l-, . . . . IV-th_child(John) = J-
sez(jirst-chiM( John)) = Male
grandparent (John)

Completion will add a new equality unit sez(Peter) = Ikfa/e
to the ones above. Now it is easy to check out that from the
full narrowing of the clause form of the bat T-box above
it is possible to derive jather(Peter), for example, without
using the equality units any more. Following clauses from
the fully narrowed set are used for this derivation:

[

~person(~)}
ma/e(Ma/e)}

{~female(z), -male(z))

[
lmothe~(Peter), jerna/e(A4a/e)}
-parent(z), mother(z), father(z)}

{=grandparent(John), parent(Peter), . . . . parent(l)}
{parent, person(z)}
{grandparent(John)}

6 Experiments

We have implemented various decision strategies of reso-

lution in our new theorem prover written in a mixture of
Scheme and C.

Recall the example clause set KL.ONE.example from
the above section describing the KL-ONE type languages.
Running on SUN Sparcstation ELC, our implementation of
the k-refinement was able to show satisfiablity of the set and
complete it (ie compute 7?;k(F’)) in a fraction of the sec-

ond. The completed set contains explicitly all the clauses
representing the mutual KL-ON Esubsumption of the con-
cepts. The whole derivation was 8 levels deep, 320 clauses
were derived and 70 of those were retained.

An important point noticed during experimentation is
that the deckion refinement performs very well (when com-

pared to any other known resolution strategy) also for the
unsatisfiable formulas (eg queries with the positive answer).
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