
Transaction-oriented Work-flow Concepts in Inter-organizational Environments*

Jian Tangt and Jari Veijalainen

VTT Information Technology

Multimedia Systems P.B. 1203

FIN-02044 VTT, Finland

email: jian@cs.mun.ca, jari-.veijalainen@ vtt .fi

Abstract

Workflow techniques have gained a lot of attention as a
means to support business process r~engineering but also as
a means to integrate legacy systems. Most workflow mod-
els view the applications as a fixed set of tasks. In this pa-
per we analyse inter-organisational application domains and
analyse properties for transactional workflows and systems
supporting them. We study a workflow model for the appli-
cations where job step instances cannot be fixed in advance.
We analyse requirements arising horn this kind of environ-

ments through a particular application, and introduce spe-

cial modelling components to support these requirements.
We also develop the concept of C-unit to cope with concur-

rency anomalies and recovery.

1 Introduction

Modern business application systems are usually composed
of independently developed smaller components, and be ac-
cessed by concurrent users. Due to their enormously diver-

sified nature, these systems may have very ditferent require-
ments and exhibit a quite complicated internal structures.
Under such an environment, therefore, the productivity and
the effectiveness of business processing is of a particular con-
cern.

Workflow techniques were first developed for and used in

distributed project management systems. The background
were big government, funded software projects in USA in the

seventies [15]. Currently, they are seen as the key techniques
to facilitate business process re-engineerirtg by supporting

process-oriented work-groups.
A workflow specification consists of type descriptions of

the jobs steps, the relationship, commonly called dependen-
cies, among job steps, and, additionally, their execution re-

“This work was done in the ESPRIT LTR project TransCoop
(EP8012), which is partially funded by tbe European Commission.
The partners of TransCoop are GMD (Germany), University of
Twe~t. (The Nethe.latad~), and VTT (Finland).

t The work ~= performed while the author W= visiting VT’T, Es-
POO, Finland, and subsequently Industrial Technology Research In-
stitute, Hsinchu, Taiwan. On leave from Dept. of Computer Science,
Memorial University of New Foundland, Canada.

Permission to make digitalhad copies of d or part of this material for
personal or classroom use is granted without fee provided that the copies
am not mede or distributed for protit or comtnemia] advantage, the copy-
right notice, the title of the publication and ita date appear, and notice is
given that copyright ia by permission of the ACM, Inc. To copy otherwise,
to repubtiah, to post on eervem or to redkribute to fiats, mquinm specific
permission and/or fm.
CIIUkf ’95, Baltimom MD USA
@1995 ACM 0-89791-8124/95/11. .$3.50

quirements. A job step defines some work to be done. nom
the point of view of the global application semantics a job
step is indivisible. Within the local systems, however, it
may have a more complicated structure. A workjlow is a
finite collection of job steps organised to accomplish some
business process.

The workflow tools are used to specify workflows. They
are part of a new set of products and resources for solv-
ing business problems. Most of the current tools, however,

still lack many features like transactional properties at the
workflow level and the conceptual background of the prod-
ucts is rather ad-hoc in nature. One exception, however, is

the IBM FlowMark product [16], which is based on coloured
Petri-nets as the description formalism. In the development
of the business products also new results on the transaction
models will soon be taken into account [6, 5].

The emly workflow models did not address data sharing,
persistence and failure recovery. Recently, a number of ez-
tended transaction models [7, 9, 11,17, 18] have been defied
(for an overview, see [8, 10]). These models focus on selec-
tive relaxation of atomicity or isoiation in order to better
match the requirement of some database applications which
the traditional ACID transactions are too restrictive to sat-
isfy. As a result, the performance of the workflow system is
improved and some special features, such as cooperation and
long running activities, can be supported. In addition, to
a limited degree, these models address the problems arising
from heterogeneity and/or autonomy in component systems.
These models belong to a special class of workflow models,
called transactional workjlows.

The models developed in [4, 13, 12] have a difIerent
flavour from the above in that they provide a common framew-
ork within which one can specify and reason about the
nature of interactions between transactions in a particular
model. For th:s reason, they are sometimes called transac-
tion meta-models. In [14], the authors give a survey of the in-
fb.structure of the current workflow systems. In [1, 2,3, 20],
the authors discuss issues relating to workflow systems im-
plementation.

Most of the existing models view a workflow application
as a fixed set of tasks. The advantage of this view is that
it can simplify the specification of the requirements. As
a direct benefit, all the possible dependencies are known in
advance and can be directly specified. The limitation of such
a view is that it does not satisfy needs of more dynamic
applications, such as the one discussed in this paper. In
addition, the issue of consistency in concurrent workfiow
execution has not drawn adequate attention.

In this paper, we study a workflow model for the ap-

plications where job steps cannot be fixed in advance. We
analyse requirements arising from this kind of environment

250

through a particular application, and introduce special mod.
elling components to support these requirements. We also
studY an approach to handling interleaving problem in the

face of concurrent execution of multiple workflows.

The rest of this paper is organised as follows. In Section
2, we introduce a practical application environment which

motivates our work. In Section 3, we discuss the overall
model supporting various requirements arising from the in-
troduced application and the like, its special features and
also some well-known features from other inter-organisationti
environments. In Section 4, we discuss the C-units and in
Section 5 we outline the system arcldtecture. We conclude
the paper by summarizing the main results.

2 The PortNet system

In this section, we describe (partially) a real system which

will be used as an example throughout the remainder of this

paper to explain the main concepts in our model, PortNet
[21]. It has been in the making at Finnish ports, at some gov-
ernmental instances (such as National Board of Navigation
and National Board of Customs), and at some stevedoring
companies in ports, since 1992. It is to handle notices of
vessel arrival and departure. The goals of PortNet are to
simplify the current business procedures of the participants,
to create a uniform business process model for all Finnish
ports and to gain reduced cost as well as other benefits.
The current system is EDI-based, i.e. the interfaces be
tween d.iflerent participants are specified using the standard

EDI language.

Relating to the visit of a foreign ship are various kinds
of activities to be carried out by a number of departments

or other organisations. For example, the activities relating
to the ship arrival may include declaration to the customs,

recording information concerning the arrival date, the cargo,
and the ship itself into various databases, navigation of the
ship and other services, etc. The activities relating to the
ship departure may include recording information concern-
ing the departure date into the databases, navigation of the
ship and other services, calculating the duration of the stay
of the ship and the related cost, etc. In the following, we
will describe these activities in more detail. Due to the space
limitation and the similarities between the activities for ship

arrival and ship departure, we will only concentrate on the

activities for ship arrival, but omit those for ship departure.

The processing of a ship visit starts when an agent re-
ceives a manifest horn a foreign agent. When this happens,
or when the agent receives the further notification (See ex-
planations later in this section.) from the foreign agent, s/he
will crest e an EDI message called Advanced Arrival Notice
(AAN) and initiates the following process:

Preparing Adv. Arrival Notice by Agent (PRE-AAN-AGENT)

1.

2.

3.

4.

5.

If this process is initiated as a result of receiving a
further notification, then go to 5;

Forward the manifest to a stevedoring company;

Send the local customs office the “vessel declaration for
the port” form, a notice of ship arrival and a “vessel

declaration for the customs” form;

Record the information about the service order into
the database;

Record the information about the vessel (name, radio
call sign, length, width, machine power, etc.), the esti-

~51

6.

mated arrival date. and the dangerous goods the ship
may carry, into the local database;

Send an Advance Arrival Notice including all the infor-
mation described at step 5 to the port and the National

Board of Nawgation (NBN);

END PREAAN-AGENT

When the port receives the AAN horn the agent or NBN,
or when the appointed person at the port obtains an AAN
ikom other (supposedly more reliable) source, the following
process is initiated:

Processing Advance Arrwal Notice at port, (PRO-A AN-PORT)

1.

2.

3.

4.

Update the arrival list of vessels: if the input is con-
cerned with a vessel that has not been in the arrival
list, then insert it;

Enter all the information contained in the notice, in-

cluding those about vessels, the estimated arrival date
and the goods they carry into the database. If this
is not the first time these kinds of information are en-
tered for any particular ship, then the new information
must overwrite the old information and mark the sta-

tus code for those information as “changed”;

Call for local service companies to prepare the service
for the arriving ship;

If this process is initiated as a result of the appointed
person receiving an AAN from other sources th& send
this AAN to the NBN;

END PRO-AAN-PORT

When the NBN receives the AAN from the agent or the
port, or when the appointed person at the NBN obtains
an AAN from other (supposedly more reliable) source, the

following process is initiated:

Processing Advance Arrival Notice at NBN, PRO- AA N-NBN

1.

2.

3.

4.

same as step 1 in PRO-AAN-PORT;

same sa step 2 in PRO-AAN-PORT;

Send an Advance Arrival Notice to the pilot station to

prepare for ordering a pilot to navigate the ship to the
port;

If this process is initiated as a result of the aDDointed

person receiving an ANN from other sources, (h~n send
this AAN to the port;

END PRO-AAN-NBN

When the ship actually arrives at the port, the agent cre-
ates a Final Arrival Notice (FAN) and initiates the following
process:

Preparing Final Am”val Notice by Agent, PRE-FAN-AGENT

1. Enter the final amival date of the ship into the database;

2. Send the Final Arrival Notice to the port and the NBN;

END PRO-FAN-AGENT

When the port receives the FAN from the agent, the
following process is initiated:

Processing Final Arrival Notice at port (PRO-FAN-POR~

1. Enter the final arrival date of the ship into the local
database;

2. Finalise the service date to the local service company;

END PRO-FAN-PORT

When the NBN receives the FAN from the agent, the
following process is initiated:

Processing Final Arrival Notice at NBN, PRO-FAN-NBN

1.Enter the final arrival date of the ship into the local
database;

2. Finalise the navigation date to the pilot station;

END PRO-FAN-NBN

The agent may receive further notification from the for-
eign agent from time to time because the information con-
tained in each notification is only an estimation in nature
and may have to be refined repeatedly. For example, the ex-
act date of arrival of a ship is affected by many unpredictable
factors, such as the weather conditions on the ocean, the
possible delay in the intermediate ports, etc. As the exact
arriving date draws closer, the information will become more
accurate.

At the port and NBN there is an appointed person who
may receive AAN from more reliable sources than the agent,
for example, the captain of the ship. When this happens,

the information is considered to be more accurate than those
obtained from the agent.

When the ship actually arrives at the port, the agent
initiates “Preparing Final Arrival Notice by Agent”, and it
is required that this process tlnish no later than three days
after the arrival of the ship. In the process, a Final Ar-
rival Notice is sent to both the port and the NBN to initiate
PRO-FAN-PORT and PRO-FAN-NBN, respectively. Once
PRO-FAN-PORT (PRO-FAN-NBN) is initiated, any ongo-

ing execution of PRO- AA N-PORT (PRO- AA N-NBN) is no
longer necessary and, therefore, should stop.

3 The general structure of the transactional work-
flow model

In this section, we describe the essential components of our
model. We first outline the basic concepts that are com-
mon in several existing models. We then introduce the new
features contained in our model.

3.1 Job steps and dependencies

The model consists of two parts, the worlcflow specifications
and workflow inst aces, also called workflows. A workflow
specification consists of a iinite number of step plans and
dependencies between the job steps. A job step is a minimal

unit work (computation) that defines a semantically mean-
ingful portion of the overall work, and therefore is indivisible
from the point of view of the workfiow application. A work-
flow consists of a number of job steps, which are generated

by executing the corresponding step plans. Each execution
of of a step plan results in a new job step.

A novel feature in our model is that a step plan may

be invoked more than once in a single workflow. DiHerent
invokers may be associated with a step plan. The way an in-
voker is defined is flexible, depending upon the requirements

of the application.
For example, in PortNet, PRE-AAN-A GENT, PRO-AAN-

PORT, are all step plans, and their executions generate
job steps. We can associate three invokers with PRO-AAN-

PORT, the agent, the appointed person at NBN and the

appointed person at the port. Note that the former two in-
vokers revoke the step plan only indirectly. i.e., by sending
messages, and the latter is a direct invoker.

Each job step has a number of states. Typical states
include start, indicating the st=t of a job step; not-start,
indicating the job step has not been started yet; executing,
indicating the state of a job step after it has started but be-
fore it terminates; commit, signifying that all the operations
in a job step have been executed successfully and their ef-

fects have been irrevocably stored in the system; and abort,
signif@g the failure of the job step, which requires that all
the effects of the job step be eliminated as if it had never
been executed.

The states of different job steps may be related by state
dependencies. A state dependency specifies constraints on
job steps’ entering certain states. Let s 1 and sz be two job

steps. The following are some of the frequently encountered
state

BB

BC

BA

cc

AB

WAB

dependencies:

sz can start only after s 1 starts-s 1 BB sz (Begin-on-
Begin);

S2 can start only after S1 commits- S1 BC .W;(Begin-

on-Commit)

52 can start only after s I aborts–s 1 BA S2 ; (Begin-on-

Abort)

If S1 and S2 both commit, then 52 commits after S1
does-sl CC 52 ;(Commit-Commit)

If S1 starts, then sz aborts-sl AB sz ;(Abort-on-Begin)

If s, stats. then if sz has not committed yet, it must
abo-ti-sl WAB S2 ;(Weak-Abort-on-Begmj

Various state dependencies exist among the job steps in
PortNet. Shown in Figure 1 are those related to the job

steps which handle arrival notices. In the figure, larger and
smaller rectangles represent step plans and job steps, respec-

tively. A smaller rectangular inside a bigger one represents
the job step generated by the corresponding step plan. Thus
a rectangular with multiple smaller rectangles being inside
it indicates the corresponding step plan has been invoked
more than once and therefore multiple job steps have been
generated. The dependencies shown axe based on the re-
quirements described in section 2. For example, since any
ongoing process handling AAN at the port must abort once
the processing of FAN starts at the port, the former has a
dependency WAB on the latter. Note that the arrows for de-
pendencies BB and CC are coarse grained notations, which

are refined in Figure 2.
In Figure 2, the numbers inside small rectangles denote

the order in which the corresponding step plans are invoked

to generate the job steps. Since the later invocations of a
step Plau process more recent (i.e, more accurate) AANs
than the preceding ones, the later job steps must overwrite
the earlier ones to store AANs. This requirement could
be implemented by a Commit-Commit dependency between
the two in the PortNetFor the step plans PRO-AAN-PORT
and PRO-AAN-NBN, the job steps z and j, respectively,
are invoked by the appointed persons at the port and NBN.
Since the appointed persons presumably obtain AAN horn

the more reliable sources, these job steps should overwrite
the job steps invoked by the agent 1.

1A problem arises when both PRO-AAN-PORT and PRO-AAN-

NBN are invoked by the respective appointed persons. Since both of

252

r 1

PRE-AAh‘- PRO-AAN- kRO-AAN-

AGENT PORT NBN

.
+3

.+g ,~
a

.< . . .

< I <
..

““--i
---=-+ }----- .-->~

.
:“””-”- ‘“”-=43 :“----’ ‘“-”a

Legend: ~ BB

---> cc
-“--> WAB

PRE-FAN- : KRO-FAN- ; kRO-FAN-

AGENT PORT NBN

,..- . ..--.’ .

Figure 1. dependencies among job steps for handling arrival notices.

Another kind of dependency, called a value dependency,
defines data flow between job steps. A job step is value

dependent on another job step if the results generated by
the former depends on the value generated by the latter.

For example, a job step in PRE-AAN-AGENT will send an
AAN to the port to invoke PRO-AA N-PORT, resulting in a
job step which processes the received AAN. Therefore, the

later has a value dependency on the former.

Value dependency between job steps usually also induces
an ordering between them, because the dependent cannot

start before the value has been delivered by the other. Many
workflows also require the support of temporal dependencies.
A temporal -dependency imposes time constraints on a job
step. One such example in PortNet is that the job step
generated by PRE-FAN-A GENT must finish no later than
three days after the arriwd of the ship.

Like some extended transaction models, we allow com-
pensable job steps, which can commit before the workflow

terminates. If the worktlow eventually fails, a committed

compensable job step will be compensated for by a compen-
sating job step. If a job step fails, it may be retried, i.e., the
step plan is resubmitted with the identical inputs. Alter-
natively, another functional y equivalent job step, called its
alternative, may be activated to finish the desired task.

3.2 Acceptable states of workflows

The inclusion of compensating and/or alternative job steps
implies that the entire workflow may fail even if some con-
stituent job steps commit, or it may be successful even if
some of them fail. This property is elmacteriaed by the

notion of acceptable states (cf. semantic constraint in [22]).
An acceptable state of a workflow is a collection of commit

and abort states of the member job steps which signifies the
fulfillment of the goal of the workflow. Note that acceptable
states must be defined by workflow designers.

PortNet example above can use relatively simple accept-

able states, since we do not include alternative job steps.

them are supposedly to get their information from reliable sources,
which one is more accurate? An approach to coping with this problem

is to prioritise all possible sources, so that a higher priority signifies

a higher accuracy. Due to space limitations, we will not pursue this

issue further.

Thus each step plan must have a successful execution. (This
can be achieved e.g. by resubmission.)

3.3 Job step identification

Job step identification is necessary because, among other

things, they are related by dependencies which must be
specified by the application and enforced by the support-
ing system. If all job steps which have dependencies among
them are known at the specification time, like what most
of the existing models assume, then identifying job steps is
simple. For example, in the well known “make a trip” ex-
ample, reserving a seat in any particular airline, renting a
car from any particular car-rental compauy, and booking a
room in any particular hotel, all specify a single job step.
Thus job step identification is trivial: each job step is repre-

sented by the corresponding step plan. However, there are
applications where all job steps are not known in advance.
For example, in PortNet, step plan “PRE-AAN--AGENT”

is invoked each time the agent gets further notification. It
is not known in advance how many notifications the agent
will receive. In addition, dependencies exist among the job
steps resulting from different invocation of this step plan, as
well as between them and other job steps. This makes some
kind of referencing mechanism necessary for irdvidual job
steps generated by the same step plan. (See the examples
in Section 3.2.2.)

3.4 Mechanisms

Our goal is to provide an ability to reference any individual

job step even if all job steps are not known in advance. In
addition, we also want to be able to reference any group of
job steps, because there might be dependencies specifiable
for groups. For this purpose, we incorporate two data types
into the model, group and sequence. A group is a named
collection of job steps. The job steps in a group may be
generated by the same or different step plans,

Besides the normal ‘set operations’, we also allow a new
class of operations to be defined on a group. These opera-
tions return a subset of the group which consists of the job
steps with some common properties, such as the invoker,
the time of invocation, etc. Also operations must be used
to explicitly assign names to groups. For simplicity, we use

253

invoked by appointed invoked by appointed

person at port
person at NBN

\ \
\, \

RE-ANN-

!$

1

2

\,\ .
\\ \-. !

\ \

+

\
!

\
I

I
v

L511k -@l

\
\ PRO-AAN-
\
I NRN
)
i
t
\

\
i

Legend: ~ BB

~ cc

Figure 2. Dependencies among job steps for preparing/processing

advanced arrival notice.

the convention that the name of a step plan is a name of the

group consisting of all the job steps generated by that step
plan. A requirement of the group type here is that each time
a job step is generated, it is inserted automatically into the
group(s) it should belong. For example, if g is defined as the
group of all committed job steps generated by a step plan
C, then whenever the invocation of C leads to a successful
execution, g will automatically contain one more job step
corresponding to that execution.

A sequence is a named collection of job steps which are
ordered based on some well defined criteria observable ex-
ternally. For example, we can order the job steps generated
by the same step plan into a sequence according to the time
the step plan is invoked. As another example, if a collection

of job steps generate comparable values, then they can form
a sequence based on the values they generate.

Before a sequence can be referenced, it must be created.
A sequence is created by performing a special operation on a
gToup. The operation must specify the rules based on which
the elements are ordered. If a sequence s is created from a
group g, then any job step that later joins g, through further
invocations, for example, will be automatically inserted into
s at the proper position.

The operations defined on a sequence in most cases are
used to identify specific elements, such as the first, the last,
or in general the ith element. Operations can also return the
number of elements in a sequence. In addition, a sequence
must be named explicitly by performing some special oper-
ations.

Ikom the above discussion, the sequences and the groups
defined by our model differ from the traditional sequences
and ~oups in that in our model, the sizes of sequences or

groups may increase “by itself’ as time goes by, while a

normal sequence or group has a fixed size unless some op-
erations are performed explicitly on them (for instance, in-
serting elements into sequences, union of groups, etc.) which
result in the change of the size.

Based on these two types, we can specify dependencies
among arbitrary job steps by using a dependency specifier. A
dependency specifier can be viewed as a predicate, in which
the “variables” are the operators on the data types. A de-
pendency specifier specifies a condition that must be met by
the workflow. In the following, we use examples to explain
the concepts introduced earlier. Note that it is not our in-
tention to introduce any specific language structures. What

we want is to demonstrate how these data types make it
possible to specie dependencies in a broad domain.

Ezample 1: As mentioned before, in PortNet since the job
steps resulting from eaxlier invocations of PRE-AAN-AGENT
process less accurate information than those from later inv~
cations, we define a dependency CC from the former to the
latter, maMng the effects of the latter overwrite the effects
from the former. Thus, we first arrange all the job steps
generated from this step plan as a sequence based on the
time of invocations.

<Seq> := CRO <PRE-AAN-AGEN~;

We then use the dependency specifier to specify the depen-
dency:

Vi, j, GET(<Seq>, i) CC GET(<Seq>, z +j)

In the first statement, operator CRO creates a sequence
< Seq> from group < PRE - AAN – AGENT >. The order
imposed on the elements of <Seq> is their chronologicid
order of invocation. In the second statement, GET is an

254

operator that selects the ith and i + jth elements of <Seq>.
The statement means that any job step in sequence <Seq>

has a dependency CC on its predecessor.

Ezample 2 As explained before, the job step of PRO-AAN-
PORT invoked by the appointed person at the port has a
CC on those of the same step plan invoked by the agent.
This calls for the identification of the group of all job steps
generated through a particular invoker.

Groupl := GRO (INVOKER(<PRO-AAN-PORD,
appointed-person-at-pod));
Group2:= GRO (INVOKER(<PRO-AAN-POR~, agent));

Group2 CC Groupl;

Operator INVOKER creates a group consisting of all job
steps result ing horn the invocation by specified invokers.
Operator GRO allows a group to be named. In the third
statement, CC’ is specified between two groups, which means
that any two job steps of one group each must satisfy the
dependency.

Note that although the dependency specifier described
by the third statement looks identical to the dependency
specification in many existing models, the semantics here
has been extended from a single pair of job steps to multiple
pairs.

Ezample 3 As illustrated in Section 2, it is required that
once any job step in PREFAN-AGENT starts, no job step
in PREAAN-AGENT can commit.

Groupl := GR.O (< PRE-AAN-AGENfi);
Group2,= GRo (< PRE-FAN-AGENn);

Group2 WAB Groupl;

Recall that WAB is Weak-Abort-on-Begin dependency.
The dependency specifier of the last statement is interpreted
as: for any job step in Group2 and any job step in Groupl, if
the former starts, then if the latter has not committed yet,
it must abort.

A simple dependency specifier can be used conjunctively
with other dependency specifiers or traditional predicates to
form a composite dependency specifier. Composite depen-
dency specifiers can specify more complicated dependencies,

as the following example shows.

Ecample ,/: In many workflow application, compensating
transactions are repeatedly submitted until they commit.

The following is a specification in such a situation. Let C
be a program that defines a compensating transaction.

Gro := GRO C;
Commit-Seq := CRO STATE(Gro, commit);
Abort-Seq := CRO STATE(Gro, ah-t);
(Vi, GET(Abort-Seq, i) BA GET(Abort-Seq, i+ 1)) & LAST
(Abort-Seq) BA FIRST(Commit-Seq) & (NUM(Cornrnit-Seq)
= 1)

The functionality of operator STATE is similar to that

of INVOKER in Example 2. It groups all job steps in a
group by their states. Thus, Commit-Scq (Abort-Seq) is the
sequence by invocation order of all committed (aborted) job

steps in group Gro. Operation NUM returns the total num.
ber of the elements in the sequence. The 4th statement is
interpreted as: C is initiated onl y after its previous initiation
has aborted (represented by the two BA dependencies) and
must commit exactly once (represented by operator NUM).

4 C-unit

4.1 Concepts and Definitions

As mentioned before, our model is intended to be used for
those applications where some integrity constraints on data
exist across the boundary of sites. These cross-boundary
constraints may impose stringent consistency requirements
relating to a collection of job steps. For this kind of col-
lections of job steps, the correctness of the execution may
be compromised by the improper interleaving2 To cope with
this problem, we must impose certain kind of transactional
properties on the collections. We cafl a collection of this
kind a C-unit. (Stands for “consistency unit”.) Note that
the purpose of forming a C-unit is purely for accommodat-
ing the integrity constraints, not for achieving any other

semantically meaningful goal at the conceptual level. In the
following, for easy presentation, if for consistency reason
several job steps must be included into a transaction with
traditional ACID properties, we say that they are tied by
ACID.

A C-unit is formed inside a workfiow. Its execution must
be part of the workflow. In other words, except for being
executed as a single consistency unit, all the job steps in the
C-unit must be executed according to the internal structure
of the corresponding workflow. Formally, we have

Definition 1: Let W =< S, D > be a workflow where S =

{sl,. -,s~} is the set of job steps and D = {Dl,..,D~}
is the set of dependencies. A C-unit for W is a pair X =<
Y, Z>where Y~Sand Z={aRb:aRb ~D&aEY&

b E Y}, where aRb implies b has a dependency R on a.

In the definition, we call W the encompassing workflow
of X. Thus, dependencies in a C-unit must be compatible

with those in the encompassing workflow. In addition, if
two members of a C-unit are related by certain type of de-
pendency for the workflow, they must also be related by the
same type of dependency for the C-unit. Thus the depen-
dencies for the C-unit are completely determined by those
for the encompassing workflow.

To determine the membership of a C-unit, two criteria
should be taken into account: correctness and efficiency.
For correctness reasons, a C-unit must contain all job steps
which are tied by ACID. For efficiency reasons, a C-unit

should contain only the job steps which are tied by ACID.
The implication here is that any job step, with the excep-
tion of compensating job steps (explained below), that is not
tied with the other members of a C-unit by ACID should
not participate in that C-unit.

If a job step belongs to a C-unit, we require that its
compensating job step, if any, also belongs to the C-unit.
The reason is twofold. First, this treatment lets us avoid
using a concept like “compensating C-unit” to handle the
failure of a C-unit, and hence simplifies the model. (Refer

to Section 3.3.3.) Secondly, as will become clear in Section
3.3.4, compensating job steps will not cause any additional
delay for the containing C-units to release the resources,
and therefore their inclusion into a C-unit does not have a
negative impact on the performance.

By the definition, a compensable member of a C-unit is
allowed to commit as soon as it tinishes the execution, i.e.,
without waitimz for the commit of the C-unit itself. How-
ever, after the commitment it still must hold the resources

‘We are aware of the problems caused by the LT-autonomy of local

databases no global integrity constraint can be enforced on the global

level unless the inter-site correctness problem is properly addressed

[23].

255

until the C-unit terminates, since otherwise improper inter-
leaving may happen in case of concurrent execution of mul-
tiple workflows. Although this is not desirable in terms of
performance, it is necessary to ensure the correct execution
of workflows.

Unlike a compensating job step, an alternative of a mem-
ber of a C-unit may or may not belong to that C-unit.
Whether or not a job step and its alternative will both be
the members of a C-unit depends on if both of them are tied
by ACID to some other members of this C-unit3.

Since a C-unit is essentially a group of job steps, it can be
specified using the techniques in Section 3.2.2. For example,
if the first job step of sequence seql and the second job step
of sequence seq2 form a C-unit, we write it as {GET(seqI,
1), GET(seq2, 2)}. If for all i, the ith job step in seql and
the ith job step in seq2 form a C-unit, then we express this

by Vi, {GET(segl, i), GET(seg2, i)}, meaning for all legal
ordinal number i in the sequence, this pair is a C-unit.

Ezample 5 In PortNet system, whenever the agent ini-

tiates PRE-AAN-A GENT, message AAN will be sent to
the port and NBN to initiate PRO-AAN-PORT and PRE-
AAN-NBN, respectively. The initiations result in three job

steps storing the same information into the corresponding
databases. We require that the information in the three
databases be consistent. To ensure this, one approach is to

group the related job steps into a C-unit, as follows.

Seql := CRO (INVOKER(PRE-AAN-A GENT, Agent);
Seq2 := CRO (INVOKER(PRO-AAN-PORZ’, Agent);
Seq3 := CRO (INVOKER(PRO-AAN-NBN, Agent);
Vi, {GET(Seql, i), GET(Seq2, i), GET(Seq3, i)};

Note that in the first three statements, we create se-
quences of those job steps generated from the invocations
only by the agent, and leave out those generated by the

appointed person.
In general, there maybe more than one C-uriit in a single

workflow, and two different C-units in the same workflow

may or may not overlap. However, no C-unit should be a
proper subset of the other. The reason is clear: if a C-unit is
a proper subset of another C-unit, then for efficiency reason
the difference between the latter and the former should not
be included in the latter (Refer to the discussion earlier in
this subsection.)

4.2 Committing a C-unit

It may seem that we can define commit and fail of a C-unit in
a similar fashion to that for the workflow, i.e., in terms of ac-

ceptable states of a C-unit. Before we give a definite answer,
we first consider an example. Suppose a workflow is defined
as w = (S,D) where s = {S1, C1, S2, C2, S3, C3}, where c, is

the compensating job step ofs,, and ss is the alternative of
sz. We further assume that s I is tied by ACID properties to
sz but not to ss. According to the way a C-unit is formed,
We have C = (S1, Dl) where S1 = {s1, cl, SZ, CZ}. Consider
the following scenario: S1 commits, S2 aborts, and S3 com-
mits. Since ss is functionally equivalent to S2, the fact that
S3 commits implies that the goal of sz has been achieved.
Therefore both the goal of S1 and that of S2 have been suc-

cessfully achieved. The intuition here is that C should be
considered to commit, and therefore state (C,N,A,N) should

bean acceptable state for C. Now consider another scenario:
S1 commits, 52 and ss abort. Now the goal of sz has failed
to be realised, resulting in a failure of the workflow. This

3 Interleaving between a job step and any of its alternatives is not

a concern, since if one commits, the other will be idle.

suggests that state (C, N,A,N) be treated as an unacceptable
state. The contradiction implies that a commit or a failure
of a C-unit should not be defined based only on the states

of its members. This leads to the following
Definition 2 A C-unit commits if for each member s, if
s is a compensating job step then it has not been started,
otherwise either s commits, or it has exactly one alternative
that commits. Otherwise, we say that it fails.

Notice that in the latter condition, the alternative that
commits is not necessarily a member of the C-unit.

We observe that the only practical significance of the
commit of a C-unit is that it can release the resources it
holds for its compensable members. In other words, the
commitment of a C-unit does not invoke complicated 1/0
operations for effect-installation.

In practice, an application designer has the flexibility
to restrict or relax the correctness requirements of a C-

unit. For example, if the application requires that the cross-
boundary constraints be rigorously maintained, then a strong
atomicity or isolation may be required as the properties of a

C-unit. On the other hand, if the application makes use of
many abstract operations, then probably semantic serializ-
ability can be used to take advantage of the rich semantics
of these operations in generating the correct interleaving.

4.3 Dissolving a C-unit

When a C-unit fails, meaning that some of its members fail
to achieve their goal, we may retry the execution of the
failed members until it is successful. In the meantime, all
the resources held by the C-unit are unavailable to other
job steps of (the same or different) workflows. If we give
up the retry, then the C-unit must be compensated for. AS
mentioned before, compensating a C-unit does not require
a “compensating C-unit”, since any compensable member is

associated with a compensating member. In other words,
to compensate for a C-unit, each of its members must be
compensated/rolled back individually, without the concern
of the existence of the C-unit. This implies that at this
time the C-unit should cease to exist, as fm as recovery is
concerned. If a C-unit ce~es to exist, we say that it has
dissolved itself. When a C-unit dissolves itself, its previous
members now gain the same properties as those possessed
by other job steps which never belong to any C-unit. In

particular, if any of them is compensable and has committed
or aborted, then it can release the resources it holds.

A practical consideration is when a C-unit can dissolve
itself without causing inconsistent execution. In the follow-

ing, to simplify the presentation, we will say that a C-unit
can dissolve itself if such a dissolving does not cause incon-
sistency. In general, a C-unit can dissolve itself if it has
committed or failed (full isolation). In the next section, we

will see that in some cases, a C-unit can dissolve itself before
its final status is known.

4.4 Coping with C-units as a long running activity

Since it contains a group of job steps, a C-unit may itself be
a long running activity. If a long running C-unit prevents
other workflows from accessing the resources it is holding,
then the significance of our arranging the original activity
into a workfiow diminishes.

Several approaches can be used to alleviate the problem
caused by long running C-units. The first is to rely on the
application. If the job steps and local transactions are se-
mantically rich, then it is possible that at a particular site

256

job steps and local transactions or job steps of different C.
units (in diflerent workflows) are commutable. When this

happens, a job step in a C-unit may release the resources
after it commits.

The idea behind the second approach is that sometime a
C-unit can dissolve itself before its iinal status (commit/abort)
has been determined. When this happens, those C-units

should be explicitly identified in the model. We first look
at an example of when this would happen. Consider the C!-

unit in the example of Section 3.3.2. For easy reference, we
rewrite it here. W = (S, D) where S = {s1, cl, s2, c2, s3, c3},

and C = (S1, D1) where S1 = {sl, cl, sz, c2}. We assume

that S2 and S3 are functionally equivalent. We further as-
sume that S1 and sz are tied by ACID but S1 and S3 are not
4. Suppose S1 commits but sz aborts. Now whether or not C
can commit depends on whether or not S3 will commit. We
argue that if S3 is initiated as a result of the abort of sz, it is
possible for C to release its resource without waiting for the
termination of S3. The rationale is the following. Since S3
is not tied by ACID to any members of C, any interleaving

between C as a whole and ss is not a problem even if S3 later
commits. On the other hand, if S3 eventually aborts, then
C fails. If the retry of any of sz and S1 is not attempted,
then the earlier release of the resources by S1 also will not
lead to incorrect execution, since all the effects of S1 will be

compensated anyway. In general, we have

Assertion 1: Let C = (X, Y) be a C-unit where X = Xl u
X2, where Xl = {s : s is a compensating job step} and
X2 = {s : s is not a compensating job step}. We further
write Xj as X2 = ({s1} U 171)U, .-. ,U({sn} U U.) where
each member of U, is an ah ernat ive of s;. If the following
conditions are met, and no retry will be attempted for any
aborted members, if any, of C, then C can dissolve itself:
1. some member of XI has been started, or
2. for all 1 ~ i < n, either one of the members of {s, } U Ui

commits, or all members of {s, } U U, abort. -

Note that the no retry clause .in the assertion implies

that if C fails, then all its committed compensable members
will be compensated for.

Idea of the prooj Assume the first condition is true. Note
that starting a compensating job step implies the job step to
be compensated for has committed, but its effects have to be
(semantically) wiped out. This means that C currently has
failed and therefore all its committed compensable members
will be compensated for. Thus releasing the resources held
by those members is allowed since their (direct or indirect)
effects will be compensated by the corresponding compen-
sating job steps.

Now assume the first condition is false but the second

condition is true. Let L = {sk : 1 ~ k ~ n and all members
of {Sk} U uk abort}. If L = @, then for d 1 < i < n,
one of the members of {si } U Vi commits. This means C

commits. Thus C can dissolve itself, Now assume L # @
If there is a s~ ~ L such that all its alternatives belong to

C, then Vi is the set of these alternatives. This implies that
C has failed. Since no retry is attempted for any aborted
members of C, all the committed compensable members of C
will be compensated for. Thus the last statement in the last
paragraph applies. Now suppose for all s ~ L, s has some
alternative which does not belong to C. Let M = {V : s c L
and V is the set of alternatives ofs which do not belong to
C}. If for all V E M, there is a r E V such that r will
commit, then C will commit. Since r is not tied by ACID to

4We are not concerned with the ACID-coupling of sz and 83. See
the footnote of Section 3.3.1.

any member of C, interleaving between r and the members
of C is allowed. Thus the claim in the assertion is true. If, on
the other hand, for some V c M, all r c V will abort, then
C will fail. In this case, similar arguments to those earlier
in this paragraph can establish the ckum in the assertion.

Q.E.D.

Note that one fact implied by this assertion is that a C-
unit never has to wait for compensating job steps to commit

before it dissolves itself. Thus, the inclusion of compensat-
ing job steps into C-units does not delay the release of the
resources held by the C-unit.

‘Whether or not the C-unit satisfying the conditions in
the above assertion will actually be dissolved depends on the
choice of the application. In particular, if the designer de-
cides that should C eventually fail, any of its aborted mem-
bers would not be retried, meaning the current execution of
C will be given up, then C should be dissolved immediately
once the two conditions in the assertion become true.

4.5 Consistency of workflows

Due to the presence of C-units, which may span multiple
sites, the consistency of a workflow is not as obvious as other

models where individual job steps are independent units.
We discuss this issue in two cases.

When a workflow is executed alone, then its correct ex-
ecution caa be ensured through the correct enforcement of
the dependencies among its job steps. If the workflow con-
tains no C-unit, or if all C-units are disjoint, the concurrent
execution of the job steps or C-units in a single workfiow
posts no problem. If there are overlapped C-units, then the
concurrent execution of these C-units must in some sense be
equivalent to a serial execution of them. This is guaranteed
by the (relaxed) isolation property we require of C-units.

When multiple workflows are executed concurrently, in-
dividual job steps from different workflows maybe processed

at the same sites. However, since all job steps which are
related to each other by ACID have been grouped into r-
spective C-units, C-units and job steps which do not belong
to them cam be viewed a independent entities. Since it is
guarimteed that in a concurrent execution of multiple work-
flows, any C-unit will behave as if it is executed alone, the
conclusion that any workilow is consistent even in concur-
rent execution is reasonable. The tricky part is to specify
C-units in such a way that cycles in the global serialisation
graph do not occur.

4.6 Failure Recovery

Since many workflows are long running activities in nature,
we would like them to be forward recoverable. Forward
recovery is made possible by such facilities as retry, alter-
native, check-pointing, etc. For those workflows in which
all job steps are independent computational units, this ap-

proach is usually feasible. However, if a workflow contains
C-units, then the job steps in a C-unit are tied by ACID. In
thk case, due to the presence of local transactions, it may
not always be possible to define alternatives for them. Sim-
ilarly, it may not always be correct to rerun a job step in a
C-unit. In other words, a C-unit itself may not be forward
recoverable.

Whether or not a C-unit is forward recoverable dependa
on the characteristics of the value dependencies pertaining
to that C-unit, and the facilities provided by the local pro-

cessing unit, as well as the extent to which the local auton-

omy can be compromised by the local processing unit. In

general, if the value dependency between the job steps in a

C-unit does not form a cycle, or if it is possible to limit the
accessibility of local transactions during the recovery period,
then forward recovery of the C-unit is possible [19, 24, 23].

In case where a C-unit is not forward recoverable, back-
ward recovery must be used to eliminate the effects of all
its members. As mentioned in Section 3.3, this will be done
on the individual job step basis automatically by the facil-
ities provided by the workflow. For compensable job steps
of a C-unit, the corresponding compensating job steps will
be executed. For non-compensable job steps, abort opera-
tions will be performed at the local level. This requires local
autonomy to be restricted.

5 System support outline

The goals of the system support are, first, ensuring the de-

pendencies between job steps are correctly enforced, and
second, ensuring the improper interleaving does not occur
in the concurrent execution of workflows.

In [2], a system architecture model is proposed where
two basic components, workflow manager and transaction

manager each takes the responsibility of one of the goals
stat ed above. Specifically, workfiow manager must guaran-
tee the execution of job steps does not contradict the inter.
job step dependencies prescribed in the application spec-
ification while the transaction manager provides required
isolation.

While this general framework does apply to the system
support for our model, special features must be incorporated
to accommodate the extended generahty provided by the

model. Firstly, since the job step in our model is not explic-
itly named in the dependency specification, the system must
contain necessary component that can unambiguous identify
the job steps in each dependency specification. In addition,
our model allows dependencies to be specified on the group
basis. Thus whenever a job step is generated, the groups
it belongs that participate in specified dependency must be
correctly located. Secondly, mechanisms are needed to dif-
ferentiate C-units that contain different job steps generated
by the same step plan.

To support these special features, we include two more
modules, job step locator and C-unit identifier, into the sys-
tem support. Figure 3 is a sketch of the system architecture.

The job step locator accepts the definition of each se
quence and group. When a job step is submitted, the job
step locator arral yses its related information, such as invoker,
invocation time, etc. It then inserts the job step into the
groups and/or the sequences it belongs. It converts the de-
pendency specifiers into the dependency specifications on
individual job steps which involve the job step being sub-
mitted. This conversion is achieved by first searching for all
operations in any dependency specifier which are defined on
a sequence or group the job step belongs, and then executes

those operations. In cases where the values necessary for
locating a job step is not known at the time of submitting,
the job step locator must make the most conservative choice.
For example, when job steps 6 G is being submitted, the de-

pendency specifier STATE(G,commit) BC GET(Seq,l) will
be converted to s BC r where r =GET(Seq,l), even if it
is not known at the time of submission whether or not s
will commit. The converted dependency specification will
be accessed by workflow dependency manager.

The workflow dependency manager determines if the job
step can be accepted by consulting the dependency specifi-

cation produced by the job step locator. The determination
process usually involves complicated rules [1, 20]. In gen-

eral, it makes a positive decision only if it is certain that
accepting the job step does not lead to a future situation
where there is no choice but to violate some dependency.

The membership information about the submitted job
step will also be used by the C-unit identifier. Using this
information together with the C-unit definition contained in
the application specification, the C-unit identifier will exe-
cute the operations on the relevant sequences or the groups
to determine which C-unit the job step belongs. It then
passes this information to the transaction manager for en-
suring the required isolation.

As we mentioned before, in the presence of a C-unit, for-
ward recovery and backward recovery may both be needed.

A problem is who should be in charge of what. In our opin-
ion, the workflow manager can still take the charge of for-
ward recovery. This involves the correct check-pointing and

the arrangement for the initiation of compensating job steps,
re-submission of the aborted job steps, running alternative
job steps, etc. The workflow manager should also take care
of backward recovery, if any, for those parts of the workflow
which do not belong to any C-unit. On the other hand, it
is noted in [2] that the transaction manager should be r+
sponsible for the backward recovery for any C-unit, since
this can be readily incorporated into its concurrency control
policies, and therefore can achieve better efficiency.

6 Conclusion

In th~ paper, we study the modelling aspects for work-

flow applications whkh have more general requirements than
those modelled by many existing models. In such applica-
tions, the job steps cannot be determined in advance, and
there are dependencies between job steps generated by the
same program. We propose to incorporate more semantic
components into the model, namely, sequences and groups

of job steps. We illustrate how these types can be used
to cope with the dependency specification for this kind of
applications.

We also study C-unit, which may be a necessary compo-
nent for say workflow systems where integrity constraints
span multiple processing units. We discuss a number of re-
lated issues for C-units, such as its properties, and impact

on the work%ow in terms of efficiency, and approaches to al-
leviate the problem caused by long running C-units. We also
discuss several essential issues about the system support.

Several things are for further study, e.g. how dynamically
the Cunits can be specified and what is required from a a
distributed system support in terms of protocols etc.

Acknowledgements The authors wish to thank anonymous
referees for many helpful comments and suggestions. We
also thank the ThnaCoop teams in Darmstadt and Enschede
for many inspiring discussions on the topic, Special thanks
go to Juha Puustj&-vi and Henry Tirri for valuable com-
ments in the final preparation phase of the paper.

References

[1]

[2]

M. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz.

Specifying and enforcing intertask dependencies. In The
19th International Conference on VLDB, 1993.

Y. Breitbart, A. Detion, H.-J. Schek, A. Sheth, and
G. Weikum. Merging application-centric and data-

centric approaches to support transaction-oriented
multi-system workflows. Sigmod Record, 22(3), Septem-
ber 1993.

258

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

application program

and dep. specification

dep. specifiers

!!
C-unit specification

Figure 3. A sketch of system architecture.

O. Bukhres, .L. Elmagarmid, and E. Kuhn. Implemen-
tation of the fiex transaction model. IEEE Data Engi-
neering Bulletin, 16(2), June 1993.

P. Chrysanthis and K. Rarnamritham. A formalism for

extended transaction model. In The 17thInternat~onal

Conference on VLDB, 1991.

Workflow Management Coalition. Workflow manage-
ment coalition, june 1995 meeting. Oral communica-
tion, 199.5.

Workflow Management Coalition. Workflow manage-
ment coalition overview, 1995.

U. Dayal, .M. Hsu, and R. Ladin. A transaction model
for long-running activities. In The 17th International
Conference on VLDB, 1991.

M. Hsu (cd.). Special issue on workflow and extented

transaction systems. Bulletin of TC on Data Engineer-
ing, IEEE G’S, 16(2), June 1993.

A. Elmagarmid, Y. Leu, W. Litwin, and

M. Rusinkiewicz. .4 multibase transaction model

for interbase. In The 16th International Conference on
VLDB, 1990.

.%.K. Elmagarmid, editor. Database Transaction Models
for Advanced Apphcations. Morgan Kaufmann Publish-
ers, 1992.

H. Garcia- Molina, D. Gawlick, J. Klein, K. Kleissner,
and K. Salem. Modeling long-running activities as
nested Sagas. IEEE Data Engineering Bulletin, 14(1),
March 1991.

D. Georgakopoulos, M. Hornick, P. Krychniak, and
F. Manola. Specification and management of extended
transactions in a programmable transaction environ-
ment. In The 10th International Conference on Data
Engineering, pages 462-473. IEEE Computer Society,
February 1994.

D. Georgakopoulos, M. Hornick, F. M~ola,M. Brodie,
S. Heiler, F. Nayeri, and B. Hurwitz. An extended
transaction environment for workflows in distributed
object computing. IEEE Data Engineering Bulletin,
16(2):24-27, june 1993.

D. Georgakopoulos, M Hornick, and A. Sheth. .4n
overview of workflow management: from process mod-
eling to workflow automaton inthstructure. Distributed
and Parallel Databases, An International Journal, 2(3),
Sept. 1994.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Grudin. Computer supported cooperative work: His-
tory and focus. IEEE Computer, pages 19-27, May
1994.

F. Leymann and W. Altenhuber. Managing business
processes as an information resource. IBM Systems
Journal, 33(2), 1994.

D. McCarthy and S. Sarin. Workflow and Transactions
in InConcert. In [81.

M. No dine, S. Ramaswamy, and S. Zdonik. .4 cooper-
ative transaction model for design databases. In A.K.
Elmagarmid, editor, Database Transaction Models for
Advanced Applications, chapter 3. Morgan Kaufmann
Publishers, 1992.

J Tug and Y. Sun. Coping with value dependency for
failure recovery in multidatabsse systems. In Proc. of
the ~th Int ‘1. Conf. on Data and Knowledge Systems foT

Manufacturing and Engineering. IEEE CS, May 1994.

J. Tang and J. Veijalainen. Enforcing inter-task de-
pendencies in transactional workflows. In Proc. of the

3rd Intl. Conf on Cooperative Information Systems.
CoopIS, May 1995.

T. Tesch and P. Verkoulen (eds). Requirements for the
cooperative transaction model. TransCoop Deliverable
11.1; TC Technical Report, GMD,Universit y of Twente,
VTT, January 1995.

J. Veijalainen. Pansaction Concepts in Autonomous
Database Environments. R. Oldenbourg Verlag/GMD,
1990.

J. Veijalainen. Heterogeneous multilevel transaction

management with multiple subtransactions. In Fourth
Intl. Conference on Database and Expert Systems Ap-
plications, DEXA ’93, LNCS Nr. 720, pages 181-188.
Springer-Verlag, Sept. 1993.

A. Zhang and J. Jing. On structural features of global
transactions in multidatabase systems. In Proc. of the
3rd Workshop on RIDE. IEEE CS, Feb. 1993.

259

