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Abstract 

Metasearch engines can be used to facilitate ordinary users 
for retrieving information from multiple local sources (text 
databases). In a metssearch engine, the contents of each 
local database is represented by a representative. Each user 
query is evaluated against the set of representatives of all 
databases in order to determine the appropriate databases 
to search. When the number of databases is very large, 
say in the order of tens of thousands or more, then a tra- 
ditional metasearch engine may become inefficient as each 
query needs to be evaluated against too many database rep- 
resentatives. Furthermore, the storage requirement on the 
site containing the metasearch engine can be very large. In 
this paper, we propose to use a hierarchy of database rep- 
resentatives to improve the efficiency. We provide an algo- 
rithm to search the hierarchy. We show that the retrieval 
effectiveness of our algorithm is the same as that of eval- 
uating the user query against all database representatives. 
We also show that our algorithm is efficient. In addition, we 
propose an alternative way of allocating representatives to 
sites so that the storage burden on the site containing the 
metasearch engine is much reduced. 

1 Introduction 

The Internet has become a vast information resource in re- 
cent years. To help ordinary users find desired data in this 
environment, many search engines have been created. Each 
search engine has a text database that is defined by the set of 
documents that can be searched by the search engine. Usu- 
ally, an inverted file index for all documents in the database 
is created and stored in the search engine. For each term 
which can represent 
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a significant word or a combination of several (usually ad- 
jacent) significant words, this indkx can identify the docu- 
ments that contain the term quickly. 

Frequently, the information needed by a user is stored 
in the databases of multiple search engines. Consider the 
case when a user wants to find research papers in some sub- 
ject area. It is likely that the desired papers are scattered 
in a number of publishers’ and/or universities’ databases. 
Substantial effort would be needed for the user to search 
each database and identify useful papers from the retrieved 
papers. A solution to this problem is to implement a 
metasearch engine on top of many local search engines. A 
metasearch engine is just an interface. It does not main- 
tain its own index on documents. However, a sophisticated 
metasearch engine may maintain information about the con- 
tents of each of its underly- 1 search engines (will be called 
the representative of the search engine/database) in order to 
provide better service. When a metasearch engine receives a 
user query, it first passes the query to the appropriate local 
search engines, and then collects (sometimes, reorganizes) 
the results from its local search engines. With such a solu- 
tion, only one query is needed from the above user to invoke 
multiple search engines. 

A closer examination of the metasearch approach re- 
veals the following problems. If the number of local search 
engines in a metasearch engine is large, then it is likely that 
for a given query, only a small percentage of all search en- 
gines may contain sufficiently useful documents to the query. 
In order to avoid or reduce the possibility of invoking use- 
less search engines for a query, we should first identify those 
search engines that are most likely to provide useful results 
to the query and then pass the query to only the identified 
search engines. Examples of systems that employ this ap- 
proach include WAIS [7], ALIWEB [9], gGlOSS [5], Savvy- 
Search [6], ProFusion [4, 31 ’ D-WISE [22]. The problem 
of identifying potentially useful databases to search is known 
as the database selection problem. Database selection is done 
by comparing each query with all database representatives. 
If a user only wants the m most similar documents across 
all local databases, for some positive integer m, then the 
m documents to be retrieved from the identified databases 
need to be specified and retrieved. This is the collection 
fusion problem. 
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In this paper, we present an integrated solution to the 
database selection problem and the collection fusion prob- 
lem. When the number of databases is not too large, say no 
more than 100, we employ a two-level hierarchy of database 
representatives, where the root node represents the represen- 
tative for the virtual global database that logically contains 
the documents in all local databases and each leaf node is 
a representative for a local database. A necessary and suffi- 
cient condition to rank the databases optimaily is given. Ex- 
perimental results are provided to show the superior perfor- 
mance of our approach. The experimental results essentially 
demonstrate that retrieval using our method in distributed 
environment will yield the same result as if all data were 
stored in one site. When the number of local databases is 
large, the two-level hierarchy is not efficient. In this case, 
we organize the database representatives into a hierarchy of 
more than 2 levels. We provide an efficient best-first search 
algorithm to search the hierarchy. We show that the search 
yields exactly the same retrieval results as if all database 
representatives were placed in a two-level hierarchy. Since 
the retrieval performance for the two-level hierarchy is very 
good, this indicates that our best-first search algorithm is 
guaranteed to yield equally good retrieval effectiveness. We 
also show that our method is efficient. 

The rest of the paper is organized as follows. In Section 
2, we present our solution to the database selection problem 
and the collection fusion problem when the database repre- 
sentatives are organized into a two-level hierarchy. In Sec- 
tion 3, our solution is extended to a hierarchy of more than 
two levels. The effectiveness and efficiency issues of our al- 
gorithm are addressed. We conclude the paper in Section 4. 
Due to the space limitation, we will not be able to provide 
the proofs of some results here. The proofs and more details 
can be found in [Zl] which is accessible on the Web. 

1.1 Related Works 

In the last several years, a large number of papers on issues 
related to metasearch engine or distributed collections have 
been published. In this section, only the research results 
most closely related to ours and their differences are iden- 
tified. Please see [13] f or a more comprehensive review of 
other work in this area. 

1. The gGlOSS project [5] is similar in the sense that it 
ranks databases according to some measure. However, 
there is no necessary and sufficient condition for opti- 
mal ranking of databases; there is no precise algorithm 
for determining which documents from which databases 
are to be returned. Organizing representatives in a hi- 
erarchy and searching them were mentioned in [5], but 
a precise algorithm for searching was lacking and there 
was no evidence that searching a hierarchy of more than 
two levels would yield the same retrieval effectiveness 
of searching a two-level hierarchy. 

2. A necessary and sufficient condition for ranking 
databases optimally was given in [8]. However, [8] 

3. 

2 

considered only the databases and queries that are for 
structured data. In contrast, unstructured text data is 
considered in this paper. In [l], a theoretical frame- 
work was provided for af,hieving optimal results in a 
distributed environment. However, such an approach 
depended on parameters which may be difficult to esti- 
mate in practice and no experimental results were pro- 
vided. 

In [17], experimental results were given to demonstrate 
that it was possible to retrieve documents in distributed 
environments with essentially the same effectiveness as 
if all data were in one site. However, the results de- 
pended on the existence of a versatile collection where 
terms related to any given query needed to be ex- 
tracted and then added to the query before an actual 
retrieval of documents take place. In the Internet en- 
vironment where data are highly heterogeneous, it is 
unclear whether such a versatile collection can in fact 
be constructed. Even if such a collection can be con- 
structed, the storage penalty could be very high in or- 
der to accommodate the heterogeneity. Furthermore, 
no algorithm for searching a hierarchy of representa- 
tives for large number UI databases was given. 

Retrieval from a Two-Level Hierarchy 

In Section 2.1, the two-level metasearch architecture ap- 
proach is reviewed. This architecture is suitable for a mod- 
erate number of search engines. Using this architecture, a 
representative which indicates the contents of a database 
is constructed for each local database and a representative 
for the global database is also formed. Each user query 
is compared against these database representatives. The 
databases are ranked such that databases which are most 
likely to contain the most similar documents to the user 
query are placed ahead of other databases. In Section 2.2, 
we provide a necessary and sufficient condition for rank- 
ing the databases optimally. The condition is simple: The 
databases should be arranged in descending order of the sim- 
ilarity of the most similar document in each database. In 
Section 2.3, we describe ho ‘ye similarity of the most sim- 
ilar document in a database can be estimated from the user 
query, its database representative and the representative for 
the global database. Having the databases ranked, a strat- 
egy for retrieving documents from individual databases, for 
stopping searching additional databases and for merging the 
retrieved documents from the searched databases is sketched 
in Section 2.4. Experimental results are provided in Section 
2.5. For ease of presentation, we assume that the similarities 
of documents to a given query are distinct. 

A query in this paper is simply a set of words sub- 
mitted by a user. It is transformed into a vector of terms 
with weights [14], where a term is essentially a content word 
and the dimension of the vector is the number of all distinct 
terms. When a term appears in a query, the component of 
the query vector corresponding to the term, which is the 
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term weight, is positive; if it is absent, the corresponding 
term weight is zero. The weight of a term usually depends on 
the number of occurrences of the term in the query (relative 
to the total number of occurrences of all terms in the query) 
[14, 201. This is the term frequency weight. The weight 
of a term may also depend on the number of documents 
having the term relative to the total number of documents 
in the database, which is the inverse document frequency 
weight. A document is similarly transformed into a vector 
with weights. The similarity between a query and a docu- 
ment can be measured by the dot product of their respective 
vectors. Often, the dot product is divided by the product 
of the norms of the two vectors, where the norm of a vector 

(x1,22, .“, zn) is dm. This is to normalize the sim- 
ilarity between 0 and 1. The similarity function with such 
a normalization is known as the Cosine function [14, 201. 
For the sake of concreteness, we shall use in this paper the 
version of the Cosine function [16] where the query uses the 
inverse document frequency weight and the term frequency 
weight and the document uses the term frequency weight. 

2.1 Two-Level Architecture of Metasearch 

In this architecture, the highest level (the root node) con- 
tains the representative for the global database. There is 
only one additional level. This level contains a representa- 
tive for each local database. When a user query is submit- 
ted, it is processed first by the metasearch engine against 
all these database representatives. The databases are then 
ranked. Finally, the metasearch engine invokes a subset of 
the search engines and co-ordinates the retrieval and merg- 
ing of documents from individual search engines. 

2.2 Optimal Ranking of Databases 

We assume that a user is interested in retrieving the m 
most similar documents to his/her query for a given m. 
Databases [Or, Dz, . . . , Dp] are ranked optimally if there ex- 
ists a k such that the first k databases D1, Dz,. . . ,Dk 
contains the m most similar documents and each of these 
databases contains at least one such document. A necessary 
and sufficient condition to rank databases optimally [19] is 
as follows. 

l Databases [Dl, Dz,. . . , &] are ranked optimally if the 
similarity of the most similar document in Di is larger 
than that of the most similar document in Dj, if i < j. 

Example 2.1 Suppose there are 4 databases. For a query 
q, suppose the similarities of the most similar documents 
in databases DI, D2, D3 and Dd are 0.8, 0.5, 0.7 and 
0.2, respectively. Then the databases should be ranked 

[DI,&,D~,D~I. w 

This result applies to any similarity function as well 
as any function which assigns degrees of relevance to docu- 
ments. 

2.3 Estimation of the Similarity of the 
.Most Similar Document 

We now estimate the similarity of the most similar document 
in a database using its representative, the representative of 
the global database and the query. The representative of a 
database consists of all terms in the database. For each term, 
two quantities are kept. They are the maximum normal- 
ized weight and the average normalized weight of the term. 
For term ti, they are denoted by mnw; and awi, respec- 
tively. mnwi is ma{di/jdl}, where IdI is the norm (length) 
of the document d = (dl, . . . . di, . . . . dn) and the maximum is 
over all documents in the database. di/ldl is the normal- 
ized weight of the ith term. awi is simply the average of 
such values over all documents in the database, including 
documents not having the term. For the representative of 
all databases, it also consists of all terms appearing in any 
of the databases. For each term, only one quantity, namely 
the document frequency (the number of documents having 
the term in the global database) of the term, is kept. This 
generates a weight which is known as the inverse document 
frequency weight of the term and is denoted by idfi for term 
ti. 

The similarity of the most similar document of a 
database D with respect to a query q = (q1 * idfi, . . . , qk * 
idfk), where q; is the term frequency of the i-th query term, 
is estimated by 

k 

est(D) = ,7,yk { Ce * idfj * awj -I- q; * idfi * mnwi 
> 

/IqI 
-- 

j=l 
j#i 

The intuition for having this estimate is that the most 
similar document in a database is likely to have the maxi- 
mum normalized weight of She.ith query term, for some i. 
This yields the second half of the above expression within 
the braces. For each of the other query terms, the document 
takes the average normalized value. This yields the fust half. 
Then, the maximum is taken over all i, since the most simiiar 
document may have the maximum normalized weight of any 
one of the k query terms. Normalization by the query norm, 
lql, yields a value less than or equal to 1. We shall drop Iql 
for ease of presentation. This will not have any impact as 
the relative similarity values of the most similar documents 
of the different databases are not changed. The estimate 
given here is slightly different from our earlier estimate in 
[19]. It is easy to see that est(D) can be computed in time 
linear to the number of terms in the query. The estimate can 
be further improved by combining two terms which appear 
in adjacent positions in some previously processed queries. 
This is used in our experiments described in Section 2.5. 

2.4 Coordinate the Retrieval from Differ- 
ent Search Engines 

Suppose the databases have been ranked in the order 

PI,..., Dp], we now briefly review an algorithm {IS] which 
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determines (1) the value of k such that the first k databases 
are searched, and (2) which documents from these k 
databases should be used to form the list of m documents 
to be returned to the user. Suppose the first s databases 
have been invoked from the metasearch engine. Each of 
these search engines returns the similarity of the most simi- 
lar document to the metasearch engine which computes the 
minimum of these s values. Each of the s search engines 
returns documents to the metasearch engine whose similar- 
ities are greater than or equal to the minimum value. If m 
or more documents have been returned, then they are sorted 
in descending order of similarity and the first m documents 
are returned to the user. Otherwise, the next database will 
be invoked and the process is repeated until m documents 
are returned to the user. It has been shown that if the 
databases have been ranked optimally (with the databases 
containing the desired documents ahead of other databases) 
for a given query, then this algorithm will retrieve all the m 
most similar documents with respect to the query. 

2.5 Experimental Results 

15 databases are used in our experiments. These databases 
are formed from articles posed to 52 different newsgroups 
in the Internet. These articles were collected at Stanford 
University 151. Each newsgroup that contains more than 
500 articles forms a separate database. Smaller newsgroups 
are merged to produce larger databases. 

There are altogether 6,597 queries submitted by real 
users. Both the data and the queries were used in the 
gGlOSS project [5]. From these 6,597 queries, we obtain 
two subsets of queries. The first subset consists of the first 
1,000 queries, each having no more than 6 terms. They will 
be referred later as short queries. The second subset con- 
sists all queries having 7 or more terms. There are 363 long 
queries. 

The following tables provide a comparison of our 
method with the high-correlation method in gGlOSS [5], 
where each number in the table represents the percentage 
of the m most similar documents retrieved by a method. 

m 1 our method ] HC method 

5 1 98.41% 1 69.73% 

(a) Short Queries 
m 1 our method ( HC method 1 

p$%JpJ 
(b) Long Queries 

For short queries, the improvements of our method over 
the high-correlation method range from 41.1% to 13.7%. 

For long queries, the improvements range from 46.8% to 
20.4%. Furthermore, for short queries, our method retrieves 
on the average 98.4% to 99.7% of the most similar docu- 
ments. Since Internet queries are typically very short (the 
average number of terms per Internet query is about 2.2), 
our result indicates that it is possible to retrieve the most 
similar documents from multiple databases with essentially 
the same effectiveness as if all documents were stored in 
one database. The number of databases searched by our 
algorithm is only 7.5% to 14.0% more than the number of 
databases that contain the m most similar documents and 
the number of documents transmitted is about 11.2% to 
24.2% beyond m. 

3 Searching a General Hierarchy of 
Database Representatives 

3.1 Definition of Representatives of Super- 
databases 

In the last section, we had a two-level architecture for 
database representatives. This architecture is suitable for 
a moderate number of search engines (or databases - we 
shall use search engine or database interchangeably since log- 
ically each search engine retrieves documents from a logical 
database), say 100 databasr- ‘Iowever, when the number of 
databases is very large, say thousands or tens of thousands, 
then there will be storage and efficiency problems. First, 
the amount of storage to contain all database representa- 
tives could be enormous. Second, estimating the similarity 
of the most similar document for each database could be 
time consuming for large number of databases. For these 
reasons, we introduce a general hierarchy of database rep- 
resentatives and a search algorithm for such a hierarchy so 
that the number of estimations can be significantly reduced. 
We will also address the storage issue. 

We first define this hierarchy of database representa- 
tives. As in the two-level architecture, the lowest level con- 
tains all representatives of individual local databases. Local 
databases can be logically grouped into superdatabases. For 
example, if superdatabase Sr contains databases DI, DZ 
and Rs, then all documents in these databases are logi- 
cally contained in 5’1. Physically, superdatabases do not ex- 
ist. The next level of the hierarchy contains representatives 
of superdatabases formed f- 11 local database representa- 
tives directly. The representative of a superdatabase will be 
called a super-representative. Each super-representative is 
constructed from the representatives that are one level be- 
low them and is kept physically. The super-representative, 
RS, which is constructed from a set, R, of representatives, 
consists of two quantities for each term that appears in any 
of the representatives in R. The two quantities are the mozi- 
mum normalized weight and the maximum averaged normal- 
ired weight of the term. Let the maximum normalized weight 
of term ti in the j-th representative in R be mnwij. Then, 
the maximum normalized weight of term ti in the super- 
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/ 
A [0.85, 0.31 

B 10.8, 0.31 

D IO.8, 0.21 E [0.7,0.3] F [OXi, 0.11 G [0.85, 0.21 

Figure 1: Illustrating the computation of super- 
representative for one term. 

representative RS is max 
all j in R 

mnwij. Similarly, the max- 

imum average normalized weight of term ti in the super- 
representative RS is obtained by taking the maximum of 
the corresponding quantities in the component representa- 
tives. If the number of super-representatives at a given level 
is still too large, then they can be grouped into higher level 
super-representatives by repeating the above process. The 
root node representative contains the same information as 
that in the root node of the two-level hierarchy case dis- 
cussed in Section 2, i.e., the global document frequency of 
each term which appears in any local database is kept. 

Figure 1 illustrates the process of deriving the quanti- 
ties for a single term in a hierarchy. The first quantity as- 
sociated with each node is the maximum normalized weight 
and the second quantity is the maximum average normalized 
weight. 

3.2 An Algorithm for Searching the Hier- 
archy 

Let RS be the super-representative for superdatabase S 
that logically contains local databases DI, . . . , D, at the 
next lower level of the hierarchy (i.e., S is the parent of 

Dl,..., 0,). The similarity of the most similar document 
with the query q = (q1 t idf~, . . . , qk * idfk) in S can be esti- 
mated using RS and the root representative as follows. Let 
the estimate be 

4s) = ,y,y, 
-- 

(mnw: * idfi * qi + 5 maw; * idfj * qj} 
i=1 
;pi 

where mnw: = max{mnwi(l), . . . , mnwi(r)}, mnwi(e) is 
the maximum normalized weight of term ti in database D, , 
1 5 e 5 r; maw; = IIX3X{UWj(l), . . . ,CZWj(T)}, UWj(e) is 
the average normalized weight of term tj in the database 
D,, 1 5 e 5 T. This estimation formula can also be used to 
estimate the similarity of the most similar document in a su- 
perdatabase whose children are lower level superdatabases. 
The only change is to replace each awj (e) by mawj (e) , where 
mowj(e) is the maximum average normalized weight of term 
tj in the eth child super-representative. 

We now provide a best-first search algorithm to search 

this hierarchy of representatives. The main idea of this al- 
gorithm is as follows. For a given query, from the children 
of the root, it selects the representative which yields the 
largest estimated similarity. If it is the representative of a 
local database, then the corresponding search engine is in- 
voked and documents are retrieved in the way as described 
in Section 2.4. If it is a super-representative of an interme- 
diate node in the hierarchy, then the similarity of the most 
similar document in each of its child representatives is es- 
timated. These child representative nodes are arranged in 
descending order of similarity and merged with the current 
list of nodes in descending order of similarity to form a list 
of representative nodes in the same order. In this list, the 
estimated similarities can be due to the representatives of 
local databases or from the non-leaf super-representatives. 
But, we always take the largest value. If the largest value 
is from the representative of a local database, then the cor- 
responding search engine is invoked and documents are re- 
trieved according to Section 2.4; otherwise, the best-first 
search process is executed on the node with the largest esti- 
mated similarity value. The details are as follows. 

Search( m, q, Root) /* m is the number of documents to 
be retrieved; q is the query; 

Root is the root node of the 
hierarchy */ 

Initialization: min-sim := 1; /* the minimum of the 
similarities of the retrieved documents from previously 
searched databases is initially set to be 1 (the highest 
possible similarity) */ 

The similarity of the most similar document in each 
child of the root node, Root, is estimated. These child 
nodes are arranged in a list L in descending order of 
the estimated similarities. 

The first node, say N, is removed from L. 
If it is the representative of a local database D, then 
Step (3.1): { 

(a) local database D is searched; 

(b) the most similar document and its similarity with 
q, csim, are returned to the result-merger; 

(c) If csim > min-sim then { 

i. send from database D all documents with 
similarity >_ min-sim to the result-merger; 

ii. if m or more documents have been received 
by the result-merger, then take the m most 
similar documents and stop; 

else {for each local database D’ which has been 
searched, do 

i. send all documents from D’ which have sim- 
ilarities 1 csim (but have not been transmit- 
ted) to the result-merger; 

ii. min-sim := 5%m; 
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iii. if m or more documents have been received 
by the result-merger, then take the m most 
similar documents and stop; 

} } /* end of step (3.1) */ 

else { Step (3.2): 

(a) the similarity of the most similar document in 
each child of N is estimated; 

(b) these child nodes are arranged in a list Lr in de- 
scending order of estimated similarity; 

(c) L and L1 are merged to form L in descending 
order of estimated similarity; 

) 

4. repeat Step (3); 

The result merger mentioned in the algorithm is a soft- 
ware component of the metasearch engine which collects the 
transmitted documents from the searched databases to form 
the list of m documents to present to the user. 

3.3 Effectiveness of Algorithm Search(m, 
% Root) 

In Algorithm Search(m, q, Root), the result-merger gathers 
the documents retrieved from various local databases un- 
til m or more documents have been received. Step (3.1) 
is exactly the same process for deciding which documents 
from the selected databases will form the m documents to 
present to the user as that described in Section 2.4. In the 
two-level hierarchy, the databases (the leaf-nodes) are ar- 
ranged in a list in descending order of estimated similar- 
ity and then Step (3.1) is executed to those databases in 
the ordered list. In Algorithm Search(m, q, Root), the leaf- 
nodes and the intermediate nodes are interleaved in the list 
of nodes in descending order of estimated similarity. When- 
ever a leaf-node, i.e., a local database is reached, Step (3.1) 
is executed to determine the documents to retrieve from the 
local database. Whenever a non-leaf node is encountered, 
it is replaced by its children. If the leaf-nodes executed by 
Step (3.1) are exactly in the same order as if databases were 
arranged in descending order of estimated similarity, then 
this algorithm will give the same retrieval performance of a 
two-level hierarchy as described in Section 2. The following 
proposition establishes this fact. 

Proposition 3.1 Consider any two local databases Di and 
Dj. Suppose the estimated similarity of the most similar 
document in Di is higher than that of the most similar doc- 
ument in D;, i.e., est(Di) > est(Dj). Then Step (3.1) of 
Algorithm Search(m, q, Root) will execute on database Di 
before it executes on database Dj. 

Observation: This proposition guarantees that the 
databases will be searched in descending order of estimated 
similarity using our method of estimating similarity of the 
most similar document in a database or superdatabase. The 

same result holds for any other estimation method as long as 
the estimation method is a non-decreasing function of the 
two parameters, namely the maximum normalized weight 
and the maximum average normalized weight (the average 
normalized weight in the case of a local database). 

3.4 Efficiency of Algorithm Search(m, q, 
Root) 

We first give a simple example to illustrate the efficiency of 
searching a hierarchy in comparison to having a two-level 
architecture. 

Suppose there are 900 disjoint databases. Every 30 
databases are grouped into a superdatabase. Then, there 
will be three levels. The root is at the highest level; the 
second level has 30 superdatabases (actually their super- 
representatives); the third level consists of the representa- 
tives of the 900 local databases. If the two-level architecture 
were used, all 900 estimation computations would have been 
carried out for each query. In the three-level architecture, 
30 estimation computations are carried out for the 30 su- 
perdatabases. For the superdatabase having the largest es- 
timated similarity, another 30 estimation computations are 
done for the local databases. Suppose the estimated simi- 
larity of a rather highly ranked local database is less than 
the estimated similarity of the most similar document in an- 
other superdatabase, then an additional 30 estimation com- 
putations will be carried out. Suppose the m most similar 
documents are found from these 60 local databases that are 
searched, then altogether there are 90 estimation computa- 
tions. In comparison to the 900 estimation comparisons, one 
order of magnitude of savings is achieved. 

We now establish a result to show that our best-first 
search algorithm is reasonably efficient. Let s be the number 
of databases containing the m most similar documents. Note 
that s is bounded by m. Let h be the height of the hierarchy 
and r be the number of children of each non-leaf node in the 
hierarchy. The result is: 

Proposition 3.2 For any single term query q, the number 
of estimation computations is no more than (s+l)*r*(h-1). 
(There is no assumption required for this result.) 

In the situation that a query has multiple terms, the 
above result is true if the databases are properly clustered to- 
gether in the sense that similar databases belong to the same 
logical superdatabases. For a database or a superdatabase 
S, let mnw(t in S) denote the maximum normalized weight 
of term t in S. azo(f in 5’) and maur(t in S) can be defined 
similarly. 

Definition 1 A set of databases and superdatabases are 
suitably clustered in the hierarchy H with respect to a query 
q if for each term t of the query, the following condition 
holds. For any given m, where m is the number of most 
similar documents to the query to be retrieved, let Di be a 
database containing at least one of the m most similar docu- 
ments and C be a superdatabase that does not contain any of 
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B (0.8.0.25) c (0.5,0.15) 

Dl (0.8.0.2) D2 (0.7,0.25) D3 (0.5,O.l) D4 (0.4,O. 15) 

Figure 2: Illustrating Suitably Clustered Databases 

B (0.8, 0.2) c (0.7, 0.25) 

A A 
DI (0.8, 0.2) D3 (0.5.0.1) D’2 (0.7.0.25) D4 (0.4,0.15) 

Figure 3: Illustrating Not Suitably Clustered Databases 

the m documents, then mnw(t in Di) > mnw(t in D) and 
aw(t in Di) 1 aw(t in D) for any database D contained in 
c. 

We motivate this definition by the following example. 
There are two superdatabases in Figure 2. The statis- 
tics (a, b) of a term in two different databases and super- 
databases are shown. For example, D1(0.8,0.2) means the 
maximum normalized term weight and the average normal- 
ized term weight of the term in DI are respectively 0.8 
and 0.2. Suppose in Figure 2, database D1 contains all 
of the m most similar documents, but databases Ds and 
Dq do not contain any of them. The above definition 
says that if the databases are suitably clustered with re- 
spect to query q, then mnw(t in D1) > mnw(t in Ds), 
aw(t in 01) 2 aw(t in OS), mnw(t in 01) > mnw(t in 04) 
and aw(t in 01) 2 aw(t in Dd). The reason why these in- 
equalities are reasonable is that databases with high values 
of the statistics of certain terms should be within a clus- 
ter and similarly databases with low values of the terms 
should also be within a cluster. In practice, this condition 
may not be true for all queries but are likely to hold for 
most queries if the databases are clustered properly. Figure 
3 shows a violation of this definition as it is not true that 
aw(D1) 2 aw(Dz). Here, the high values of the statistics of 
the term in DZ are mixed with the low values of the statis- 
tics of the term in Dd, which implies that the databases are 
not suitably clustered. 

Proposition 3.3 If the databases are suitably clustered 
with respect to the query q, then the number of similarity 
computations is bounded by (s + 1) * (h - 1) * r, where s is 
the number of databases containing the m most similar doc- 
uments to q, h is the height of the hierarchy and r is the 
number of children per non-leaf node. 

3.5 Placement of Non-Leaf Nodes of the 
Hierarchy 

It was assumed in the above discussion that the hierarchy of 
representatives are placed completely in the site containing 
the metasearch engine. This is clearly a reasonable choice. 
However, there is a potential problem with this approach. 

The amount of storage required to store the representatives 
can be.rather large. The problem and its potential remedy 
can be illustrated by the following example. 

Suppose the size of a i;atabase representative is 2% of 
the size of the local database. In the case of a non-root 
superdatabase S, let S be composed from a set of local 
databases or superdatabases which are one level below S 
in the hierarchy. Assume that the size of the representative 
of S is on the average twice the size of one of its com- 
ponent representatives. Recall that there are two quanti- 
ties for each term in a database representative. Thus, the 
above assumption is based on the premise that the compo- 
nent databases or superdatabases of S have a lot of terms 
in common and therefore the number of distinct terms in S 
is only twice of the number of distinct terms in a compo- 
nent database or superdatabase. We now use the previous 
example involving 900 databases to illustrate the storage re- 
quirement. Let each database have the same size s. Then 
the total size needed to store the 900 database representa- 
tives is 900 * 2% * s = 18 * s. The representatives of the 30 
superdatabases take 30 * 4% * s = 1.2 * s. Thus, the stor- 
age requirement is 19.2 * s. In general, if there are n Iocal 
databases and each superda;,tizse is made up of r databases 
or superdatabases which are one level below it, with r rea- 
sonably large, say r 2 10, then the amount of storage for all 
representatives and super-representatives are approximately 
n * 2% * s and n * 4% * s/r, respectively, as the number of 
non-leaf nodes which are two or more levels above the leaf 
nodes are much less than the number of nodes at the bottom 
two levels. When n is large, say in the order of thousands, it 
will impose a rather heavy burden on the site Si containing 
the metasearch engine, in terms of storage and processing 
power, if all these database representatives are placed in 
that site. If Si is powerful enough, then searching the hier- 
archy of database representatives can be carried out as de- 
scribed; otherwise, we propose that all super-representatives 
be placed at the site Si and each database representative be 
placed at the site where the database resides. Thus, the 
storage requirement at Si is approximately 1.2 * s for our 
example. 

We now describe the process to execute a query q when 
Local representatives are sto;.>I: at their local database site. 
The query is submitted to the site of the metasearch en- 
gine. The global document frequency of each term in q is 
kept in the root representative, as before. These document 
frequencies together with the query q are used to estimate 
the similarity of the most similar document in each super- 
database and executes the best-first algorithm until the par- 
ent P of some local database representatives is reached. At 
that point, query q as well as the global document frequen- 
cies of the terms in q will be sent to each child (site) of P. 
Each of the these child sites then estimates the similarity of 
the most similar document in its own database and forwards 
the estimate to the global site Si, which will continue to ex- 
ecute the best-first search algorithm Search(m, q, Root). In 
other words, for a given query, the algorithm is executed 
distributively in multiple sites consisting of the sites Si and 
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some of the sites containing the local databases. The trade- 
off between this way of storing the database representatives 
versus the traditional way in which all database represen- 
tatives are stored in one site is that the former way will 
incur higher communication cost but less processing cost, 
since the estimations in local sites can be executed in par- 
allel. Clearly, the former method imposes much less storage 
burden on the site Sr, since the representatives of the local 
databases (which take much more storage than the repre- 
sentatives of the superdatabases) are kept in their own sites. 

4 Conclusion 

We have shown that for a distributed environment involv- 
ing reasonable number of databases a two-level hierarchy of 
database representatives together with an appropriate es- 
timation aIgorithm can yield nearly the same effectiveness 
as if all documents were in one site. When the number 
of databases is very large, we propose a hierarchy of rep- 
resentatives with the number of levels > 2. We provide 
an algorithm to search the hierarchy. It is shown that the 
search will produce the same effectiveness as the correspond- 
ing two-level hierarchy. We also show that the search of the 
hierarchy is efficient for single term queries which are sub- 
mitted frequently in the Internet environment. Under the 
assumption that databases are clustered properly, we show 
that the search for multi-term queries is also efficient. 

We plan to implement the hierarchy search process for 
number of levels > 2 in the future and perform experi- 
ments with it. We will also incorporate information (such 
as co-occurrence of terms and linkages between web pages) 
that affects relevance of documents into the solutions to the 
database selection problem and the collection fusion prob- 
lem. 

Acknowledgement: This research is supported by the fol- 
lowing organizations: NSF (IIS-9902872, IIS-9902792, CCR- 
9816633, CCR-9803974, CDA-9711582, HRD-9707076), 
NASA (NAGW-4080, NAG5-5095) and AR0 (NAAH04-96- 
l-0049, DAAH04-96-1-0278). We are grateful to L. Gravano 
and H. Garcia-Molina for providing us with the collection of 
documents and queries used in our experiments. 

References 

PI 

PI 

[31 

PI 

C. Baumgarten. A Probabilistic Model for Distributed 
Information Retrieval. ACM SIGIR Conference, 1997. 

J. Callan, 2. Lu, and W. Bruce Croft. Searching Dis- 
tributed Collections with Inference Networks. ACM SI- 
GIR Conference, 1995. 

Y. Fan, and S. Gauch. Adaptive Agents for Znforma- 
tion Gathering from Multiple, Distributed Information 
Sources. 1999 AAAI Symposium on Intelligent Agents 
in Cyberspace, March 1999. 

S. Gauch, G. Wang, and M. Gomez. ProFusion: Zntelli- 
gent Fusion from Multiple, Distributed Search Engines. 
Journal of Universal Computer Science, 2(9), 1996. 

151 

ISI 

PI 

[ill 

WI 

PI 

P41 

[I51 

1161 

P71 

WI 

PI 

WI 

WI 

WI 

L. Gravano, and H. Garcia-Molina. Generalizing GZOSS 
to Vector-Space databases and Broker Hiemrchies. 
VLDB Conference, 1995. 

A. Howe, and D. Dreilinger. SavvySearch: A Meta- 
Search Engine that Learns Which Search Engines to 
Query. AI Magazine, 18(2), 1997. 

B. Kahle, and A. Medlar. An Information System 
for Corporate Users: Wide Area information Servers. 
Technical Report TMC199, Thinking Machine Corpo- 
ration, April 1991. 

T. Kirk, A. Levy, Y. Sagiv, and D. Srivastava. The 
Information Manifold. AAAI Spring Symposium on In- 
formation Gathering in Distributed Heterogeneous En- 
vironments. 1995. 

M. Koster. ALIWEB: Archie-Like Indexing in the Web. 
Computer Networks and ISDN Systems, 27:2, 1994. 

U. Manber, and P. Bigot. ‘The Search Broker. USENIX 
Symposium on Internet Technologies and Systems 
(NSITS’97), 1997. 

W. Meng, K-L. Liu, C. Yu, X. Wang, Y. Chang, and 
N. Rishe. Determining Text Databases to Search in the 
Internet. VLDB Conference, 1998. 
W. Meng, K. Liu, C. Yu, W. Wu, and N. Rishe. Es- 
timating the Usefulness of Search Engines. IEEE Data 
Engineering Conference, 1999. 

W. Meng, C. Yu, and K. Liu. Challenges and Solutions 
for Building an Eficient and Efective Metasearch En- 
gine. Technical Report, Dept. of CS, SUNY at Bing- 
hamton, 1999. 
G. Salton and M. McGill. Introduction to Modern Zn- 
formation Retrieval. New York: McGraw-Hill, 1983. 

E. Selberg, and 0. Etzioni. The MetaCrawler Architec- 
ture for Resource Aggregation on the Web. IEEE Ex- 
pert, 1997. 

E. Voorhees, N. Gupta, and B. Johnson-Laird. Learning 
Collection Fusion Stra.qes. ACM SIGIR Conference, 
1995. 
J. Xu, and J. Callan. Effective Retrieval with Dis- 
tributed Collections. ACM SIGIR Conference, 1998. 
C. Yu, K. Liu, W. Wu, W. Meng and N. Rishe. Find- 
ing the Most Similar Documents across Multiple Text 
Databases. IEEE Conference on Advances in Digital Li- 
braries, May 1999. 

C. Yu, K. Liu, W. Wu, W. Meng and N. Rishe. A 
Methodology to Retrieve Text Documents from Multi- 
ple Databases. Tech. report, U. of Illinois at Chicago, 
1999. 

C. Yu, and W. Meng. Principles of Database Query 
Processing for Advanced Applications. Morgan Kauf- 
mann, San Francisco, 1998. 
C. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe. 
Eficient and Effective Metasearch for a Large Num- 
ber of Text Databases. Tech. report, U. of Illinois 
at Chicago, 1999. (http://panda.cs.binghamton.edu/ 
mmeng/cikm99.ps) 

B. Yuwono, and D. Lee. Server Ranking for Distributed 
Text Resource Systems on the Internet. Int’l Conf. On 
Database Systems For Advanced Applications, 1997. 

224 


