
Text-Hypertext Mutual Conversion and Hypertext Interchange through SGML

A4in Zheng

Institute of Computer Science and Technolo~,

Beijing University, Beijing, 100871, China

Roy Rada

Department of Computer Science,

University of Liverpool, LiverpoolL693BX, England

Abstract

This paper presents an SGML-MUCH (S-M) system, the

I/O subsystem of a collaborative authoring and reuse sys-

tem called MUCH (Many Using and Creating Hyperme-

dia), for text and hypertext mutual conversion and hyper-

text interchange. The S-M system can dynamically gener-

ate text documents from the MUCH document database by

traversing a subgraph of the hypertext database. With

various options on traversal, different versions of docu-

ments ean be generated from the same set of nodes and

links in the document database. The documents generated

from the MUCH document database include not only

document content but also groupware and hypertext infor-

mation that can be used for hypertext interchange. With

this generated document, hypertext for different systems

such as Guide and Hyperties can be automatically gener-

ated and new features, like alternate outline and automati-

cally derived indices can also be incorporated. The S-M

system, which was developed using several public-domain

development tools, adheres to standards where possible,

and generally foeuses on’ openness’.

1. Introduction

Hypertext research involves many contemporary topics

including artificial intelligence, human-computer interac-

tion, information system and social psychology. Hypertext

is a new means for knowledge representation. As in a se-

mantic net, information in hypertext is represented as a set

of nodes connected to mch other by a set of links which

represent relationships between the nodes.

While hypertext is superior to text for information

representation at many aspects, for various reasons, the

paper form of documents still dominates the dissemination

of information and massive information is available in

Permission to copy without fee all or part of this meterid lo
grented provided that the copies me not mede or distributed for
direct oommercief sidvsntege, the ACM copyright notice and the

titfe of the publication and its date appeer. ●nd notice ie given
thet copying is by permission of the Association for Computing

Machinery. To copy otherwiee, or to republish, requires e fee
end/or specific permission.

CIKM ’93-1 l/93/D. C., USA

0 1993 ACM 0-89791-626-319310011$1.50

139

paper form. If one could create a universal transforming

environment under which any text or hypertext informa-

tion can be automatiedy transferred from one system or

form to another regardless of its original format, the proc-

ess of knowledge acquisition and dissemination would be

dramatically enhaneed.

Hypertext interchange and text-hypertext conversion

have been studied by many researchers. Some algorithms

and systems have been presented and developed for auto-

matically generating hypertext from linear text

[Chignel191, Furuta90a, Glushko89, Nunn88, Ritchie89,

Sarre90]. Standard Generalized Markup Language

(SGML). has been used in several systems and environ-

ments for hypertext generation, such as in Guide

[Ritchie92], DynaText [EBT90] and World Wide Web

(WWW) [Berners-Lee92]. Many hypertext systems such as

Intermedia [Yankelovic88] and Hyperties [Congnetics92]

support export features, namely converting hypertext into

linear documents.

One of the key issues associated with hypertext inter-

change is the standardization of hypertext models. Several

hypertext reference models have been presented

[Furuta90b, Halasz90, Lange90, Riley90], which can be

elaborated as data structures and used as an intermediate

format for hypertext interchange. Experiments using the

Dexter model as an intermediate format for hypertext in-

terchange has also been performed [Leggett9 1].

Usually, hi-directional conversion between text and

hypertext and hypertext interchange are considered as two

different applications. However, as hypertext interchange

generally involves a plain tile representation of a hyper-

text document and the bidirectional conversion between

text and hypertext also uses a plain file representation, one

might expect a relationship between the applications for
interchange and conversion. Can one find a solution which

uses one system to support both of these applications?

In our research, a software system — the SGML-

MUCH system — has been developed, which enables users

to import an SGML document into the MUCH (Many

Using and Creating Hypermedia) collaborative hypertext

system [Rada9 la] and export (a part of) the MUCH hyper-

text database into an SGML document. An SGML docu-

ment exported from the MUCH system keeps all the in-

formation of the hypertext, including links, nodes and all

their attributes. At the same time, the exported document

is also a structured linear document which can be proc-

essed by a normal document preparation system and

printed on paper. Once this document is imported into a

MUCH database, either the original or another MUCH

database, the hypertext will be reconstructed or updated

with the SGML document without losing any useful in-

formation. With this function, collaborative authoring,

especially remote collaboration can be facilitated.

2. Related standards and models

The Standard Generalized Markup Language (SGML)

[ISO/IEC88] is a language for logical document structure

and is an international standard for publishing. SGML is

based on the Generalized Markup Language developed at

IBM [Goldfarb90]. It uses the generic markup of the struc-

tural elements of a document without regard to their pres-

entation, which is seen as a separate issue. It is based on

the principles of the generic encoding of documents and

‘marks up’ a document’s logical structure and not its physi-

cal presentation. SGML contrasts to typographic markup,

since font and style are not considered during document

markup.

HyTime (Hypermedia/Time-based Document Structur-

ing Language) [ISO/IEC92] is a standard neutral markup

language for representing hypertext, multimedia, hyper-

media, and time- and space-based documents in terms of

their logical structure. Its purpose is to make hyperdocu-

ments interoperable and maintainable over the long term.

HyTime can be used to represent documents containing

any combination of digital notations [Newcomb91].

HyTime may be viewed as an application of SGML

and is parsable as SGML. It uses SGML syntax with its

own semantics. It has a set of “HyTime architectural

forms” as object classes, each of which has a fixed value of

a HyTime attribute. Limitless numbers of subclasses can be

created by including the HyTime attribute and conforming

to the model for a particular HyTime architectural form.

HyTime provides a standardized means of expressing in-
formation which is dillicult to represent in SGML, such

as:

(1)

(2)

(3)

Intra- and extradocument locations, and arbitrary

links between them;

The scheduling of multimedia objects in ‘finite coor-

dinate spaces’;

Rendering instructions for arbitrarily projecting such

objects onto other finite coordinate spaces and other

constructs.

The Dexter model is an attempt to capture, both

formally and informally, the important abstractions found

in a wide range of existing and fikure hypertext systems.

The goal of the model is to provide a principled basis for

comparing systems as well as for developing interchange

and interoperability standards ~asz90].

The Dexter model divides a hypertext system into

three layers, the runtime layer, the storage layer and the

within-component /ayer (see Figure 1). The main focus of

the model is on the storage layer, which models the basic

noddlink network structure that is the essence of hyper-

text.

m\_a-.A

:~~&~~~~tij~:$*#wti6i”:”:”.
..

Storage Layer

a “database” containing a

netwwork of nodes andlinks

...
:“:”:”:”:”:-:”:”:”:Atiw&rtig::::::::::::::::::.

Within Component Layer

the contentistructure

inside the nodes

Focus of the

Dexter model

Figure 1. Layers of the Dexter model.

Link #22

Within Comoonent Laver

Figure 2. Simple depiction of link mechanism of the

Dexter model.

The storage layer only provides the mechanisms to or-

ganize components (nodes) and links to form hypertext

networks without considering the contents of components

(figure 2), which is the task of the within-component layer.

The interface between the storage layer and within-com-

ponent layer is an anchoring mechanism which is used for

addressing (referring to) locations or items within the con-

tent of an individual component. The runtime layer focuses

l~how a componenthetwork is presented to users. Be-
tween the runtime layer and storage layer, there is an in-

terilux ealledpresentation spect~cations, which provides a

mechanism to eneode the information about presentation

into the hypertext network at the storage layer.

3. SGML-MUCH system

The SGML-MUCH (S-M) system was designed as an I/O

sub-system of the MUCH collaborative authoring system

but it ean also be used for general format and text-hyper-

text eonversion. The S-M system ean dynamically generate

text documents from the MUCH document database by

traversing a subgraph of the hypertext database. With

various options on traversal, different versions of docu-

ments ean be generated from the same set of nodes and

links in the document database. The generated documents

include not only document eontent but also management

and hypertext @formation which ean be used for hypertext

interchange. With this generated document, hypertext for

different systems such as Guide and Hypcrties can be

automatically generated and new features, like alternate

outline and automatically derived indices can also be in-

corporated.

3.1. MUCH document database

Conceptually, the document database is a hypermedia da-

tabase and the information is organized as a database of

richly-linked nodes. A node is a unit of information re-

trievable from the database, as well as a semantic unit of

the subject matter.

The document database is organized following a sim-

plified Dexter model with the link mechanism shown in

Figure 2. Following the principles of the Dexter model

which separate hypertext structure from its content, the

MUCH database consists of two parts: the hypertext data-

base (structure) and the document components (contents)

which correspond to the storage layer and the within-com-

ponent layer of the Dexter model.

The MUCH hypertext database includes two kinds of

component: link and node-info. The link component con-

neets exactly two nodes and also contains attributes of the

link such as link type, author and date of creation. Node-

info is the information about individual nodes and includes

anchors to the associated document component. The node

attributes include name, type, class, author, date, updaters,

index terms and others.

A document component is the content of a node. The

Dexter model leaves the structure (or format) of the com-

ponents in the within-eompcment layer open to system

developers. The MUCH system was implemented in the
Andrew multimedia environment, and the Andrew ToolKit

(ATK) format ~orenstein90] was used for the document

components. ATK provides a unified data structure called

data stream which consists of a set of insets for represent-

ing multimedia information, such as tew graphics, image,

animation and sound. In the MUCH database, each blob is

an ATK data stream which includes inset data, i.e. multi-

media information.

The MUCH hyprtext model focuses on link compo-

nents. Each link has a link type, such as “document”,

“annotation”, “reference” or “thesaurus”. A link type ean

be either hierarchical or non-hierarchical, For instance, the

document type is a hierarchical type whilst the reference

type is not. The link type determines the character of

linked nodes and may atlect their future processing. For

example, traversing following different types of links may

generate different kinds of document.

m m--m
I

1
1

I Standard markup -- SG.ML I1

Individual mnrkup languages

7Interchange layer Open
layer

P&l a--da
(a)

Individual hyperfexi System

.,. : Open & Interchange

Luyer*

A

y y y Itulividuul Hypertext

I S1 II S2 -- Srr
Syslems

(b]

Figure 3. The SHyD model: (a) the original model; (b)

the simplified model.

3.2. S-M System Structure

The S-M system is based on a simplified SHyD (SGML-

HyTime-Dexter) model [Zheng93]. The SHyD model

adopts some international standards (SGML, HyTime) and

a widely accepted hypertext reference model (the Dexter

model) to facilitate information interchange between text

and hypertext. Figure 3 shows the logical structure of the

SHyD model and its simplified version. In the simplified

model, the HyTime is not used due to some practical rea-

sons. Because of the restriction of SGML on representing
multimedia information, this simplified

for text and hypertext applications rather

model is suitable

than hypermedia.

141

The development of the S-M system generally focuses

on ‘openness’ and uses standards where possible. The

structure of the S-M system is shown in Figure 4. In this

system, SGML representation plays a key role in informa-

tion interchange and conversion. The SGML DTD defined

following the Dexter model is used as an intermediate

format to connect different text and/or hypertext systems.

kup

Figure 4. The structure of the SM system.

With the support of the S-M system, the MUCH sys-

tem can accept information from existing text documents

in various formats and reorganize the information in order

to generate linear documents for printing, and hypertext

for browsing. In addition to importing text into the MUCH

system and exporting MUCH hypertext to linear docu-

ments, the S-M system also supports automatic hypertext

generation for different browsing systems such as Guide

and Hyperties with several features, such as alternate out-

line and automatically derived indices.

The S-M system actually can be used as a general text

and hypertext conversion tool. It can convert a text or hy-

pertext document to an SGML document and then convert

to either a text or hypertext document in another format.

With the MUCH import function, the data transformation

processing may take advantage of the capabilities of the

MUCH system, such as data reorganization and alternate

outline generation. When a document is converted into

SGML, it can be imported into the MUCH and processed

there, and then exported to an SGML document and trans-

lated into other text or hypertext systems.

To establish the connection between SGML and indi-

vidual text and hypertext systems, the following issues

need to be considered:

* How to define an SGhlL DTD which can represent

hypertext structure and at the same time, keep the

structure of linear documents.

* How to export a hypertext without losing any informa-

tion and make it processable by a normal text proces-

sor.

* How to import an SGML document into the MUCH

system. For those documents exported from MUCH,

how to guarantee that the hypertext is not corrupted.

* When partial hypertext import/export is considered,

how to export a part of the hypertext and how to up-

date the information when an exported part with

modification is imported back.

4. Defining SGML-MUCH DTD

In text documents, especially those with large volumes

such as textbooks, some link information is implied. Usu-

ally, there are two kinds of links: one is a hierarchical link

which is implied in the document structure like chapter,

section, subsection...; and the other is a non-hierarchical

link, like bibliographic citations, indices and footnotes.

This kind of link is often given explicitly. Similarly, in a

hypertext, the nodes are usually explicitly linked by two

kinds of links — referential links and organizational links.

Referential links are non-hierarchical links which may

connect any two points in the hypertext, whereas the or-

ganizational links, which connect a parent node with its

children, implement hierarchical information

[Conklin87].

The similarities discussed above are the foundation of

bridging text and hypertext. However, hypertext usually

has much richer links than text, and the nodes in a hyper-

text may have more attributes than a text section has. This

is especially true in a collaboratively created hypertext. To

export a hypertext to a linear document with all the hyper-

text information, we need a markup language which has

extra structures not included in conventional markup lan-

guages.

To define a DTD to represent hypertext, one needs an

underlying reference model, such as the Dexter model. On

the basis of this model, the SGML-MUCH (S-M) DTD can

be defined in such a way that a document is composed of

many blocks and links. A block is a subject matter corre-

sponding to a section of paragraphs in a text document. A

link is an element with an attribute list which includes link

type, source and destination points, and other information.

A link element is embedded in the source node and points

to the destination node with anchor IDs for both source

and destination. The location of the two end points can be
resolved by the anchors in the node information.

One requirement for the S-M DTD is that the docu-

ment marked-up by this DTD should be able to be proc-

essed as a normal text document. In order not to interfere

with the normal structure of the text documents, a new

‘info’ element is defined to represent the node attributes

instead of using the AITLIST of the node. Besides, both

‘info’ and ‘link’ elements are defined as optional sub-ele-

ments in the heading element in every block, By simply

ignoring these two elements, a document can be processed

~s4~ normal SGML document. Figure 5 is a part of the

DTD showing the structure of the SGML documents.

<!element document - -
(titlepag, header?, abstract?,

toe?, lof?, lot?, block, chapt’,
(appendix, chapt+)?, biblio?)
+(footnote)>

.
<!entity % inline “ (#pcdata I f I

x I %emph; I sq I %xref)* “ >
x!entity % sect “heading, header?,

block “>
<!element heading o 0 (%inline)>
<!elernent chapt - 0 (%sect, sect*)

+(footnote) >
<!element ~e~t - 0 (%sectr sectl*)

+(footnotk) >

.
<Ielement Sectlo - 0 ($j~e~t)>

<!element block o 0 (info?, link*,

block’)>
<!element info - 0 anchor*>
<!attlist info id CDATA #IMPLIED

type CDATA “text”
class CDATA “document”
author NAME #IMPLIED

date CDATA #IMPLIED

update NAME #IMPLIED

terms cDATA #IMpLIED

others CDATA #IMPLIED >
<!element anchor - 0 empty>

<!attlist anchor id NUMBER #IMPLIED

10C cDATA #IMPLIED>

<!element link - 0 empty>

<!attlist link type CDATA “document”

sanchor NUMBER #REQUIRED

-- Source anchor number --

dnode cDATA #REQUIRED

-- Destination node --

danchor NUMBER #REQUIRED

-- Destination anchor number -–

. >

Figure S.Apart ofthe S-MDTD which shows the struc-

tureofadoeument.

5. Converting Hypertext to Linear Document

In the MUCH system, there are four classes of links:

document, thesaurus, annotation and reference .Thedocu-

ment link is the organizational link and the others are ref-

erentiallinks. when aMUCHhypertext isconverted into a

text document, the nodes connected by document links are

Linearized and the links among them are implied in the

hierarchical structure ofthedocument.

In the MUCH system, anode has notype information.

Its type is determined dynamically by the type of link

pointing to it while traversing. In principle, the MUCH

system allows a node to be the target of more than one
pointer with different types. In this case, the node type

becomes variable depending on the traversal. l%is may

cause some problems under certain circumstances. For

instanee,anode rnaybepointed tobyboth ’document’ and

‘annotation’ links. When one wants to export that nodeas

part ofadoeument but the annotation link is visited prior

to the document link in the traversal, the node will be

treated as a comment node instead of a document node.

When the exported document is printed, the content of this

nodemaybelost.

The MUCH system is largely an authoring system, the

doeumentlinkisthe central partofthe hypertextandthe

other links are used to help authors to write better dcxx-

ments. To guarantee that documents can lx exported prop-

erly, the document link is given highest priority and must

be traversed prior to the other links. To realize this, a two

pass traversal strategy is adopted. In thetirst pass, links

other than doeument links are suppressed and a linearized

document following document links is generated. The

other link information and nodes are added to the doeu-

mentby the second pass.

Exporting hypertext does notmean that one hasto

export the whole hypertext. Sometimes, exporting partial

hypertext is useful, especially for remote collaboration.

When many authors write the same book at different loca-

tions, a part of the document with comments, reference

and other information may need to be sent back and forth

among these authors. The S-M system is designed to

support partial hypertext importing and exporting. For

exporting, it allows users to speci~ from which node,

following what criteria andhow deepit will go. With all

this information, the system can determine and export a

subgraph of the hypertext network.

6. Converting SGML Document to MUCH

The import fimction of the SGML-MLJCH system is to

import an SGML document, which is either a document

exported from the MUCH database or one prepared as a

normal text document. Converting text to hypertext in-

volves decomposition of the document and establishing

hyperlinks among outline headings based on its structure.

In addition to the links among decomposed nodes, some

other links also need to be established, such as biblio-

graphic citations, indices. cross-references and footnotes.

The import program of the S-M system accepts two

kinds of linear document: one is a normal text document

marked up in various formats such as LaTeX, Troff, ATK

(Andrew ToolKit format), GNU texinfo, Practitioner Ques-

tionnaire format and plain text with numbered headings;

and the other is documents exported from the MUCH

system complying to the structure of the SM DTD shown
in Figure 5. Based on the simplified SHyD model, text

documents in various formats need to be formalized by

143

going through the SGML representation before being put
into the hypertext database. This means that the text to

MUCH conversion can be simplified to a conversion from

an SGML document with SM DTD.

To generate hypertext from an SM DTD compliant

document, the import program operates on the markup

document to generate an abstract hypertext as follows:

* The document is parsed and a tree structure of the

outline is reproduced in accordance with the structured

document.

* For each pointer to a bibliographic citation or a

footnote, the complete citation or footnote is located and

associated with the pointer.

* Each authordefined index term is copied into an

index node. Next the index terms of that node are sorted

alphabetically, and a link is created between each index

term in a text block and its corresponding entry in the

index node.

* For sections with “info” and/or “links” elements,

usually in a MUCH exported document, the information in

the “info” element is resolved and extra links not implied

in the linear representation are created. In case of normal

text documents which have no “info” or “links” elements,

default information will be used to fill the attributes of

node-info components.

When importing a document which was exported from

MUCH, the import program must guarantee that all the

information that was exported can be restored without

corrupting the document database. While importing the

exported document, conflicts between the imported docu-

ment and the existing document database may occur. For

example. some nodes of a particular document may have

been changed since the last export. In these cases, when

the exported document needs to be imported again, the

import program will check and try to solve these conflicts,

The import program also allows users to decide how to

update a document database with an imported document.

7. Converting SGML Documents to Other
Hypertext Systems

The MUCH document database is a macro literary hyper-

text which is not suitable for hypertext distribution. How-

ever, the S-M system can automatically generate hypertext

for several browsing systems, including Guide and Hyper-

ties, from a linear document by going through the S-M

representation. With this function, hypertext interchange

between MUCH and other hypertext systems can also be
realized.

Several hypertext systems define a specialized, or

hypertext, markup language so that they can read an ap-

propriately marked file and generate their hypertext data-

base. To convert a text file into a hypertext is actually to

convert it to the hypertext markup language. To inter-

change information between MUCH and other hypertext

systems, our approach is to export (a part of) the database

into an SGML document and convert the exported docu-

ment into the individual hypertext markup languages.

This approach to hypertext interchange has the following

features:

* It is based on standard representations and models.

The hypertext interchange mechanism of the MUCH

system employs SGML and the Dexter model. Planned

extensions are to HyTime and/or MHEG for hyperme-

dia interchange.

* It combines text-hypertext bidirectional conversion

and interchange into one application. The structure of

text and hypertext documents can be represented in a

unified, standard representation (S-M DTD) without

interference between them in individual applications.

Utilities for conversion between SGML and MUCH,

SGML and individual hypertext systems, and between

SGML and individual text systems enable the infor-

mation in one system to become interchangeable with

several other text and hypertext systems.

The hypertext generation may involve first-order and sec-

ond-order hypertext. First-order hypertext directly reflects

the original structure of a hypertext. For a hypertext gen-

erated from an SGML document, the first-order hypertext

is such a hypertext, in which every link is explicitly pre-

sent in the document. For many documents, the most

significant first-order links are those connecting outline

headings, but many other first-order links occur, such as

those involving bibliographic citations, indices, footnotes

and cross-references. Second-order hypertext, on the other

hand, is usually derived from first-order hypertext. It adds

links to the hypertext which are not explicit in the original

form. For instance, the second-order hypertext may present

new outlines or links computed from word patterns.

In some books, one can see a recurring pattern. For

instance, in our textbook “Hypertext: from Text to

Expertext” [Rada9 lb], each chapter (Microtext, Macrotext
and Grouptext) has a section on ‘ Histo~’, ‘Principles’,

‘Systems’ and ‘Exercises’, Thus one can envision another

outline; rather than Text, Microtext, Macrotext, Grouptext

and Expertext, the main topics of the book can be History,

Principles, Systems and Exercises (Figure 6).

The alternate outline described above includes links

which do not exist in the original outline. The different

outlines or views of the document may not be equally

cohesive when read sequentially from beginning to end,

but may help some users in some tasks.
144

L,

I OUTLINE 1

1*X

1.0 Toxl ->
2.0 Miwotext ->
9.0 Macrotexl ->
4.0 Grouptmd ->
6.0 Experteat ->
6.0 COndusim -D
7.0 Answers ->

Figure 6. The normal (a) and alternate (b) outlines of the

textbook on Guide.

In the second-order hypertext, new indices can be

automatically computed based on the content of the text

blocks. The derived index which connects link objects that

have similar distributions is especially helpt%l when creat-

ing a large hypertext. With the derived indices, on select-

ing a derived index link, a user can get a list of the related

terms and the numbers of the text blocks in which they

occur. By selecting one of these text block numbers the

user will be taken to the selected text block.

The automatic indexing can be done with a knowledge

of natural language or based on word frequency, we chose

word frequency one[Mhashi90]. Word patterns have been

used by several research groups to create links between

terms in different text blocks [Kaplan90]. These links may

be used in searching for a particular factor in browsing for

associations that were not made explicit by the author

[Bernstein90]. A simple semantic net can be generated

with the word pattern approach and further supports

searching or browsing [Mili85].

8. Implementation

The S-M system, including a set of conversion utilities,

has been implemented in the Andrew multimedia environ-

ment running under Unix. To develop these data

transformation tools, a public domain toolset for

generating data translators called ICA (Integrated

Chameleon Architecture) [Mamrak92] was used. The ICA

development toolset automatically generates translation

code based on high-level specification for data translation.
ICA assumes the intermediate-form model (Figure 11), the

structure-oriented approach and the embedded markup

data model, which is coincident to our SHyD model which

uses a structured, embedded markup language (SGML) as

the intermediate format. It is therefore helpful in the

development of our conversion and interchange facilities.

wSpecific Markup]

(scribe)

I
Specific Markup4 Geneml Markup Specific Markup2

(RTF) (SGML) (Latex)

SpecificMarkup3
(Troff)

Figure 7. The intermediate-form model of data translation

of ICA [Mamrak92].

With the ICA toolset, the development of converters

in the S-M system becomes a systematic procedure and the

only thing one needs to do is to define a context-free

grammar (SM DTD) and mapping tables for the various

markup languages, including the hypertext markup lan-

guages. However, because the ICA toolkit was designed

largely for translating data between text markup languages

which are static and context-free, extra work will be re-

quired to develop converters involving hypertext markup

languages which are dynamic and have context-related

features. For example, in the Guide markup language

GML (Generalized Markup Language), there are several

markups for establishing different links including refer-

ence link, command link, note-definition link and pictures.

All of these markups are in the form ofi

:source_comman(t_n ame Identtjier, parameters, and

:dcstination_command_name Zdent/jier,

The identifier of each markup is the only way to con-

nect the source and destination of a link, therefore it must

be unique throughout the whole document. ICA can auto-

matically map static strings from one format to another but

it cannot handle a string like Identifier whose value de-

pends on the values of other identifiers. In addition to the

context related components, ICA cannot handle materials

which are dynamically generated whilst converting, such

as “Table of Contents (TOC)” and “Index list” which in-

clude links to different locations. To generate browsing

145

hypertext, by using the ICA toolset to increase productiv-

ity, we adopted a hybrid approach, namely using the ICA

for format conversion and adding several perl scripts to

deal with the dynamic and context-related materials.

The S-M system, along with the MUCH system, has

been used in our daily work for document processing. Each

member of the group can put his documents in various

formats into the MUCH database and share these docu-

ments with others. Several textbooks have been written

using the MUCH system and then translated into hypertext

versions for Guide and Hyperties using the S-M system.

The programs which automatically generate derived

indices and semi-automatically generate alternate outline

have been implemented and applied to the Guide. Hyper-

ties and Emacs-Info version of the textbook H.vpertext:

j-em Text to Expertext.

9. Conclusion

This paper presented an SGML-MUCH (S-M) system for

establishing a connection between text and hypertext. In

general, bidirectional conversion and hypertext inter-

change are considered as two different applications. A text

document converted from hypertext may have different

structures for different purposes. For processing and print-

ing hypertext with a general document preparation system,

the text document can be obtained from linearization of the

hypertext in a hierarchical structure with components like

chapter, section and subsection. This structure may lose

some information included in the hypertext. To convert a

hypertext into text as a hypertext interchange format, the

text tile needs to carry special information which is not

normally conveyed in a traditional document. such as the

author and date for a particular section and the referential
links missed in the hierarchical structure.

The S-M system uses an SGML DTD which can rep-

resent hypertext structure and, at the same time, maintain

the structure of linear text documents. Using this DTD as a

standard representation, hypertext can be exported to an

SGML document without losing any information. The
generated document can be processed by a normal docu-

ment processing system. Once this document is imported

back into the hypertext system, all information can be

recovered. Because the generated document bears hyper-

text information, hypertext for other hypertext systems

such as Guide and Hyperties can be automatically

generated. In a newly generated hypertext, in addition to
those links explicitly provided in the generated document,

more links can be generated through computing. We have

experimented with the (semi-) automatic generation of

alternate outlines and derived index, and got some
promising results. By making use of the hypertext features,

one could explore more finctions for dynamic document

generation.

The current version of the S-M DTD is more or less

linked to the MUCH model. When Mme other systems

with different underlying models are considered, this DTD

may have to be modified. To support system independent

hypertext interchange, there are several unsolved problems

which deserve firther study.

Acknowledgement: This work would not have been

possible without the support of the Commission of the

European Communities under DELTA Project D-2006

OSCAR (an Open System for Collaborative Authoring

and Reuse) nor without the help of our colleagues on the

OSCAR team in Liverpool.

References

[Berners-Lee92] T. J. Berners-Lee, R. Cailliau and J.-F.

Groff, “The World-Wide Web”, Computer Networks and

ISDN Systems, 25, 454-459, Noth-Holland, 1992.

[Bernstein90] Mark Bernstein, “An Apprentice that Dis-

covers Hypertext Links”, Hypertext: Concepts, Systems,
and Applications, ed. A. Rizk, N. Streitz and J. Andre,

PP. 213-223, Cambridge University Press, Cambridge,
England, 1990.

[Borenstein90] N.S. Borenstein, “Multimedia Applications

Development with lhe Andrew Toolkit”, Prentice-Hall Inc.,

1990.

[Chignel191] Mark H. Chignell, Bernd Nordhausen, J.

Felix Valdez and John A. WaterWorth, “The HEFTI Model

of Text to Hypertext Conversion”, Hypermedia, 3(3), 187-

205, 1991.

[Congnetics92] Congnetics Corp., “Hvperties 3.1, Userh

Guide”. Congnetics Corporation, Princeton Junction. New

Jersey, 1992.

[Conklin87] J. Conklin, “Hypertext: An Introduction and

Survey”, Computer, 20(9). 17-41, Sept, 1987.

[EBT90] EBT, “DynaText: Electronic Book Engine from

EBT (Electronic Book Technologies): First to Handle any

SGML Application”, Seybold Report on Publishing

Systems, 20(2), 18-22, September, 1990.

[Furuta90a] Richard Furuta, Catherine Plaisant, and Ben

Shneiderman, “Automatically Transforming Regularly-

Structured Linear Documents into Hypertext”, Electronic

Pub//shing, 2(4), 211-229, December 1990.

[Furuta90b] R. Furuta and D. Stotts, “The Trellis hypertext

14@erence model”, proceedings of the Hypertext Standardi-
zation Workshop, pp. 83-93, Washington DC., 1990.

[GhIshko89] Robert K. Glushko, “Transforming Text into

Hypertext for a Compact Disk Encyclopedia”, Proceedings

of CHI’89, pp. 293-298, ACM press, New York, May,

1989.

[Goldfard90] C.F. Goldfarb, “The SGA4L handbook”,

Oxford University Press, Oxford, 1990.

~asz90] Frank Halasz, and Mayer Schwartz, “The

Dexter Hypertext Reference Model”, Proceedings of the

Hypertext Standardization Workshop, pp. 95-134,

Washington DC., 1990.

[ISO/IEC88] ISO/IEC, ISO/IEC 8879:1986 -Al: 1988 (E).

“Information Processing -- Text and Oflce Systems --

Standard Generalized Markup Language (SGML)”,

Amendment 1. Published 01-07-1988, International

Organization for Standardization, Geneva, 1988.

[ISO/IEC92] ISO/IEC, ISO/IEC 10744:1992. ‘Information

Technology -- Hypermedia/Time-based Structuring Lan-

guage (HyTime)”, International Organization for

Standardization, 1992.

~aplan90] Simon Kaplan, and Yoelle Maarek,

“Incremental Maintenance of Semantic Links in Dynami-

cally Changing Hypertext”, Interacting with Computers,

2(3), 337-366, 1990.

[Lange90] D. Lange, “A formal model for hypertext”,

Proceedings of the Hypertext Standardization Workshop,

pp. 145-166, Washington DC., 1990.

lLeggett91] John J. Leggett, and Ronnie L. Killough,
“Issues in Hypertext Interchange”, Hypermedia, 3(3), 159-

186, 1991.

[Mamrak92] S.A. Mamrak, C.S. OConnell and J. Barnes,

“Technical Documentation for The Integrated Chameleon

Architecture”, Department of Computer and Itiormation

Science, The Ohio State University, 1992.

[Mhashi90] Mahmoud Mhashi, Roy Rada, Geeng-Neng

You, Akmal Zeb, Antonios Michailidis, and Hafedh Mili,

“Word Frequency Based Indexing and Authoring”, Tech-

nical Report, Department of Computer Science, University

of Liverpool, 1990.

[Mili85] Hafedh Mili, and Roy Rada, “A Statistically Built

Knowledge Base”, Proceedings of Expert Systems in Gov-

ernment Conference, pp. 457-463, IEEE Computer Society

Press, October 1985.

~ewcomb91] Steven R. Newcomb, Neill A. Kipp, and

Victoria T. Newcomb, “The ‘HyTime’ -- Hypermedia/

Time-based Document Structuring Language”, Communi-

cation of the ACM, 34(11), 67-83, November 1991.

[Nunn88] D. Nunn, J. Leggett, C. Boyle, and D. Hicks.

“The REXX project: A case study of automatic hypertext

construction”, Technical report TAMU 88-021, Hypertext

Research Lab., Texas A&M University, College Station,

Texas, 1988.

~da91a]R. Rada, A. Zeb, G. N. You, A. Michailidis, and

M. Mhashi, “Collaborative Hypertext and the MUCH

System”, Journal of Information Science, 17, 191-196,

1991.

~da9 lb] Roy Rada, Hypertext: From Text to Expertext,

McGraw-Hill, London, 1991.

[Riley90] V. Riley, “An interchange format for hypertext

systems: the Intermedia model”, Proceedings of the

Hypertext Standardization Workshop, pp. 213-222,

Washington DC., 1990.

[Ritchie89] Ian Ritchie, “HYPERTEXT -- Moving

Towards Large Volume”, The Computer Journal, 23(6),

516-532, December 1989.

[Ritchie92] Ian Ritchie, “New Horizons for Hyperm~ia”,

invited lecture at Hypermedia ’92, ed. Theo Bothma,

Pretoria, South Africa, March 18-20, 1992.

[Salton83] G. Sahon, and M. McGill, “Introduction to

Modern Information Retrieval”, McGraw-Hill, New York,

1983.

[Sarre90] F. Sarre, M. Seidt, and U. Guntzer, “HyperTex -
- A System for the Automatic Generation of Hypertext

Textbooks from Linear Texts”, Proceedings of Database

and Expert Systems Applications Database and Expert

Systems Applications, pp. 62-68, ed. K. Wagner, Springer-

Verlag, 1990.

[Yankelovich88] N. Yankelovich, B. J. Haan, N. K.

Meyrowitz, and S. M. Drucker, “Intermedia: The Concept

and the Construction of a Seamless Information Environ-

ment”, Computer, 21(1), 81-96, Jan. 1988.

[Zheng93] M. Zheng and R. Rada, “SHyD -- A Model for

Bridging Text and Hypermedia”, Proceedings of 1993

ACM Computer Science Conference. pp. 418-42.4,

Indianapolis, Indiana, February, 1993.

147

