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ABSTRACT
The PC Desktop is a very rich repository of personal information,
efficiently capturing user’s interests. In this paper we propose a
new approach towards an automatic personalization of web search
in which the user specific information is extracted from such local
desktops, thus allowing for an increased quality of user profiling,
while sharing less private information with the search engine. More
specifically, we investigate the opportunities to select personalized
query expansion terms for web search using three different desktop
oriented approaches: summarizing the entire desktop data, sum-
marizing only the desktop documents relevant to each user query,
and applying natural language processing techniques to extract dis-
persive lexical compounds from relevant desktop resources. Our
experiments with the Google API showed at least the latter two
techniques to produce a very strong improvement over current web
search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Linguisting processing; H.3.5
[Information Storage and Retrieval]: Online Information Ser-
vices—Web-based services

General Terms
Algorithms, Experimentation

Keywords
Personalized Web Search, Desktop Summarization, Relevance
Feedback, User Profile

1. INTRODUCTION
Keyword queries are inherently ambiguous. Take for example

the query “canon book”, which covers several different areas of
interest: religion, digital photography, and music. Clearly, since
the URLs most likely to be visited are those returned at the very
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top of the result list [16], search engine output should be filtered
to better align the results with user’s interests. Thus, the photog-
rapher should receive pages about digital cameras, the clergyman
should get religious books, and the performing artist should obtain
documents on music theory. In fact, a recent study presented by
SearchEngineWatch [35] indicates that more than 80% of the users
would prefer to receive such personalized search results.

One of the early Information Retrieval techniques used to en-
hance search quality is Relevance Feedback [31]. Even though it
does not deal with user specific personalization per se, it has been
shown to be quite effective in improving retrieval performance. It
is based on collecting relevance information from a set of carefully
selected documents, which is then used to modify the search query
and perform an additional retrieval step. However, when select-
ing these relevant documents automatically (e.g., by considering all
Top-K search engine output documents as relevant), several terms
unrelated to the user query might still be added as expansion key-
words if they are present in these automatically selected documents
and have the suitable distribution in the document collection [25].
In this paper we address this problem by choosing query expansion
terms from a different data source, the personal desktop, in which
all documents are at least to a certain extent related to user’s in-
terests. By “personal desktop” or “PC desktop” we denote the set
of personal documents residing on each user’s personal computer.
Thus, the personalization dimension is also automatically included
in the search algorithm.

Several advantages arise when moving web search personaliza-
tion down to the desktop level. First comes of course the quality
of personalization: The local desktop is a very rich repository of
information, accurately describing most, if not all interests of the
user. More, as all the “profile” information is stored and exploited
locally, on the personal desktop, another very important benefit can
be drawn: Privacy. Search engines should not be able to know
about a person’s interests, i.e., they should not be able to con-
nect some person with the queries she issued, or worse, with the
output URLs she clicked within the search interface1 (see Volokh
[38] for a discussion on the privacy issues related to personalized
web search). Almost all previous algorithms for personalizing web
search need such input information though.

In this paper we propose a novel approach to selecting query ex-

1Generally, search engines can map queries at least to IP addresses,
for example by using cookies and mining the query logs. However,
moving the user profile entirely down to the desktop level would
at least ensure such information is not explicitly associated to a
user ID and stored on the search engine side. More, if desired, the
desktop level personalized search application could be developed in
such a way as to conceal the user identity and search history from
the search engine.



pansion terms for web search by adapting summarization and natu-
ral language processing techniques to extract these supplementary
keywords from locally stored desktop documents. After having dis-
cussed related work in Section 2, we investigate three broad meth-
ods towards achieving this goal. First, in Section 3.1 we propose to
summarize the entire desktop using term clustering techniques and
then to choose suitable expansion terms from these clusters, explor-
ing both context independent and query biased approaches. After-
wards, we move our focus towards single document summarization
techniques. In Section 3.2 we propose to issue the original web user
query on the desktop and to extract expansion keywords from the
most significant sentences within the Top-K (desktop) hits. Simi-
larly, in Section 3.3 we investigate the possibilities to select query
expansion keywords from the most dispersive lexical compounds
within the Top-K (desktop) hits returned to user’s initial web query.
Our experiments performed with the Google API2 (Section 4) show
an improvement in Mean Average Precision (MAP) [2] of up to
81.57% for single word queries and up to 21.11% for multi-word
queries when comparing to regular Google web search.

2. PREVIOUS WORK
Within this work we find ourselves at the confluence of personal-

ized search and summarization algorithms. There are only very few
previous publications combining these areas and even fewer ad-
dress both the PC Desktop and the World Wide Web environments.
From the existing articles, a very important one is the work of Lam
and Jones [19]. They improve pseudo relevance feedback by select-
ing query expansion terms only from the most significant sentences
(as computed using query based summarization techniques) of the
Top-K search engine output. We used their technique as a starting
point for one of our algorithms, but we moved the set of relevant
documents from the web down to the desktop, and we adapted the
methods for selecting meaningful sentences appropriately.

The following two sections will now discuss some of the most
important works in either one of our two main research areas, per-
sonalizing search and summarization.

2.1 Personalized Search
We distinguish two broad approaches to personalizing web

search, based on the way user profiles are exploited to achieve per-
sonalization: (1) integrating the personalization aspect directly into
PageRank [27], and (2) using the personalized search algorithm as
an additional search engine measure of importance (together with
PageRank, TFxIDF, etc.). Let us now inspect each of them in detail.

PageRank-based Methods. The most efficient personalized
search algorithm will probably be the one having the personaliza-
tion aspect already included in the initial rankings. Unfortunately,
this seems very difficult to accomplish. Initial steps in this direction
have been already described by Page and Brin [27], who proposed
a slight modification of the PageRank algorithm to redirect the ran-
dom surfer3 towards some preferred pages. However, it is clearly
impossible to compute one PageRank vector for each user profile,
i.e., for each set of pages “privileged” by the random surfer.

Haveliwala [14] proposed to alleviate this problem by building a
topic-oriented PageRank, in which a set of 16 PageRank vectors bi-
ased on each of the 16 main topics of the Open Directory is initially
computed off-line, and then these vectors are combined at run-time

2http://api.google.com
3PageRank can be viewed as the stationary distribution of an infi-
nite random walk over the web graph, following an outgoing link
from the current page with probability (1 − c) (usually c = 0.15)
and getting bored and selecting a random page with probability c.

based on the similarity between the user query and each of the 16
topics. This approach is clearly feasible, but also limited to the 16
pre-defined topics.

Finally, Jeh and Widom [15] identified the possibility to express
each Personalized PageRank Vector (PPV) as a linear combination
of a set of “special” vectors, called basis vectors. At query time,
an approximation of the PPV is constructed from the precomputed
basis vectors using dynamic programming. Nevertheless, the input
data (a set of preferred URLs) can only be selected from within a
small pre-defined group of pages4 (common to all users) and the
computation time is relatively high for large scale graphs.

Hybrid Ranking Methods. As search engines rely on various
indicators when ordering query output (i.e., textual content, link
structure, etc.), current research has focused more on a different
approach: Building an independent and simpler personalized rank-
ing algorithm, whose output is combined with that of PageRank,
TFxIDF, and other metrics.

Sugiyama et al. [34] analyze user’s surfing behavior and gener-
ate user profiles as features (terms) of the pages they visited. Then,
upon issuing a new query, the results are ranked based on the sim-
ilarity between each URL and the user profile. In a similar work,
Gauch et al. [12] build profiles by exploiting the same surfing in-
formation (i.e., page content and length, time spent on each URL,
etc.), as well as by spidering the URLs saved in the personal web
cache and classifying them into topics of interest. Both solutions
are orthogonal to ours, as they only inspect previous web browsing
behavior, whereas we explore a much richer information repository,
the entire PC Desktop.

Liu et al. [22] restrict searches to a set of categories defined in
the Open Directory. Their main contribution consists in investi-
gating various techniques to exploit users’ browsing behavior for
learning profiles as bags of words associated to each topical cate-
gory. Similarly, Chirita et al. [6] proposed to use already existing
large scale taxonomies to personalize search by reordering search
results based on several graph distances between the topic associ-
ated to each output URL and the topics defined in the user profile.
Even though both approaches showed good results when compared
to non-personalized web search, their performance is very much
dependent on the URLs classified within such taxonomies.

More recent, the work of Teevan et al. [36] is the only one also
exploiting desktop data for web search. They modified the query
term weights from the BM25 weighting scheme [17] to incorpo-
rate user interests as captured by her desktop index. However, they
selected the query expansion terms from the Top-K documents re-
turned by the web search engine, whereas we seek for these terms
within the more relevant, personal PC desktop data, thus avoiding
choosing unrelated expansion keywords which could be present in
the Top-K web search output [25].

2.2 Summarization
Automated summarization usually deals with concatenating text-

span excerpts (i.e., sentences, paragraphs, etc.) into a human under-
standable document summary and it dates back to the 1950’s [23].
More, with the advent of the world wide web and large scale search
engines, an increased attention has been focused towards this re-
search area and quite several new approaches have been proposed.
For example, the diversity of concepts covered by a document has
been first explored by Carbonell and Goldstein [4] in 1998. They
proposed to use Maximal Marginal Relevance (MMR), which se-
lects summary sentences that are both relevant to the user query

4Some work has been done in the direction of improving the quality
of this set of pages [7], but users are still restricted to select their
preference set from a rather restricted corpus.



and least similar to the previously chosen ones. Later, Nomoto
and Matsumoto [26] developed this into a generic single-document
summarizer that first identifies the topics within the input text, and
then outputs the most important sentence of each topic area.

Another quite different new approach was to generate the sum-
mary as the set of top ranked sentences from the original document
according to their salience or likelihood of being part of a sum-
mary [13, 11]. Consequently, more search specific applications of
summarization have been proposed. Zeng et al. [41] for exam-
ple used extraction and ranking of salient phrases when clustering
web search results. Others have used hierarchies to improve user
access to search output by summarizing and categorizing the re-
trieved documents [20], or to organize the topic words extracted
from textual documents [21, 33]. Finally, this work is in fact an
application of summarization techniques into a new research area,
that of personalizing web search.

Along with the fast growth of information amounts, a recent need
for multi-document summarization has also been exerted and thus a
few algorithms have been proposed. A very popular one is MEAD
[28], which first uses an implementation of the “pile metaphor”
[32] to create groups of similar documents, and then selects the
most representative sentences from these clusters according to sev-
eral salience measures. We used it as basis for one of our desktop
summarization approaches.

There exists also a large amount of document clustering research
and we believe this could be exploited to develop better means of
summarizing personal information repositories (see Willett [39] for
a relatively old, but very comprehensive review of the fundamen-
tal aspects related to clustering). However, it is outside the scope
of this paper to review these techniques here, and thus we only
mention some of the relevant ones for our scenario, namely Scat-
ter/Gather [9, 8] for clustering based on the term vectors describing
each document, Grouper [40] for clustering based on phrases rather
than terms, and the work of Zeng et al. [41] for combining multiple
evidences in document clustering.

Finally, this work is to some extent connected to the Just-In-
Time Information Retrieval paradigm, in which each user’s cur-
rently active desktop document is automatically analyzed to ex-
tract its keywords (i.e., using algorithms similar to the ones we
present in this paper), and then to recommend other related doc-
uments which could be useful in performing the on-going activity.
Several approaches exist, either aimed at finding such relevant doc-
uments among the personal (desktop) repository [29, 10], or within
the World Wide Web [3, 5].

3. SUMMARIZING THE DESKTOP DATA
Summarizing desktop data is itself a challenge, since most of

the current summarization research has not tackled such complex
data sets. For example, it is quite common nowadays to have about
100,000 indexable desktop items (i.e., containing some amount of
textual information), these documents being either HTML pages,
Word documents, small textual notes and chat conversations, or
even smaller metadata for mp3 files, etc. We therefore investigated
several summarization paths towards choosing the right web query
expansion keywords: (1) a multi-document summarizer which out-
puts centroids as bags of words with weights associated to them, (2)
a single-document summarizer which ranks sentences according to
their representativeness for the user query and for the document
itself, and (3) a lexical compounds generator for the top ranked
documents returned when issuing the user query on the desktop.
We think these three paths cover most of the important approaches
to selecting both query specific and query independent expansion
terms from the desktop document collection.

Following the work of Lam et al. [19], we chose to index only
documents with at least 7 indexable terms (i.e., not stopwords).
Moreover, we defined several heuristics to exclude from the index
some very common automatically generated file categories such as
Java documentation, as their large granularity tended to negatively
influence the desktop summaries. Finally, when choosing the terms
to expand user’s original query (e.g., after the centroids have been
output by the multi-document summarizer), we decided to only use
TF, rather than TFxIDF, as one very frequent local term (e.g., Page-
Rank) might in fact be rather rare in the web5. A large stopword list
was used to initially remove any possible misleading terms. Also,
summarization was achieved employing a logged version of TF in
order to avoid having some too frequent terms mislead the results.
The variants of TF and IDF we used were as follows:

TFtk,Dj =

(
0 , if TF

′
tk,Dj

= 0

1 + log(TF
′
tk,Dj

) , otherwise
IDFtk = log(1 + N

DFtk
)

where TF
′
tk,Dj

is the actual frequency of term tk in document Dj ,
N is the total number of documents in the collection and DFtk is
the document frequency for term tk.

Let us now present the details of each of our above mentioned
three approaches to extract suitable web search query expansion
terms from personal information repositories.

3.1 Centroid Based Summarization
The centroid based summarization was first proposed by Radev

et al. in [28], who applied the “pile metaphor” document clustering
approach of Rose et al. [32] for summarization purposes. Its main
underlying principle is to represent all documents in a collection as
in traditional IR, using term vectors, and then to group these vectors
into representative clusters. Thus, a scan is performed over all doc-
uments within the collection; for every document, if its similarity
with at least one cluster centroid is above a certain threshold, it will
be associated to its most similar cluster. Otherwise, a new cluster
is created having the current document term vector as centroid.

As the algorithm of Radev et al. was intended for much smaller
data sets such as news articles, we had to incorporate in it sev-
eral desktop specific aspects. First, we ordered terms within cluster
centroids only by their TF values, rather than TFxIDF. The doc-
ument similarity formula was the sole place where both TF and
IDF had been considered. This is reasonable, since two documents
both containing many infrequent words are most probably related
within the desktop environment as well. Second, due to the large
amount of data residing in personal information repositories, we
had to limit the centroid cluster size to its top δ = 500 terms, as oth-
erwise the computation time would have grown too much. Third,
we attempted to cluster either all desktop indexable documents, or
only the documents manually accessed within the last three months
a system call hook was employed here to log every user resource
open / create access for this period.. As the former approach cov-
ered much more documents, the optimal similarity threshold was
τ = 0.01, whereas for the latter one we found τ = 0.1 to per-
form best. Other 14 possible values were investigated, ranging
from 0.001 to 0.1. Finally, we defined “PC Desktop” as the col-
lection of all emails, web cache documents, and indexable files of
a user. For the latter ones, we did not index the entire hard disks,
but only the list of paths containing personal documents, as spec-

5Note that frequent local terms have a low TFxIDF score on the
desktop. However, they might have a high TFxIDF score on the
Web, thus being very discriminative when expanding user’s query.



ified by each person6. The complete form of the algorithm is also
depicted in Algorithm 3.1.

Algorithm 3.1. Centroid Based Desktop Summarization.

Similarity (Document Di, Centroid Cj):
1: Return

P
T erm tk∈Di

TFtk,Di
·CFtk,Cj

·IDFtkqP
T erm tk∈Di

TF2
tk,Di

·
rP

T erm tk∈Cj
CF2

tk,Cj

where CFtk,Cj is the weight of term tk within centroid Cj .

1: For each new document Di

2: MaxSim = Max∀j Similarity(Di, Cj)
3: MaxCen = {j | Similarity(Di, Cj) == MaxSim}
4: If (MaxSim ≤ τ or @ Centroids) then
5: Create new centroid with the top δ Di terms

with respect to TFtk,Di .
6: Else
7: Let d be the number of documents covered by CMaxCen.
8: For each tk ∈ Di ∪ CMaxCen

9: CFtk,CMaxCen = CFtk,CMaxCen ∗ d/(d + 1)+
TFtk,Di/(d + 1)

10: Reduce CMaxCen to its top δ terms
with respect to CFtk,CMaxCen .

Manual inspection showed these clusters to be quite representa-
tive for the data they represented. Yet how can they be used for
query expansion? We have investigated several options:

1. Select the Top-C biggest clusters (with respect to the num-
ber of documents contained therein) and from each cluster
choose the term with the highest BM25 value [17]. The
BM25 probabilistic weighting scheme practically incorpo-
rates relevance feedback into ranking by modifying query
term weights to bias search output on the documents the user
selected as relevant. As we took the automatically generated
desktop cluster centroids as implicit relevance judgments, we
used the modified version of BM25 proposed by Teevan et al.
[36] which also covers relevant documents from outside the
document space (i.e., the web), as follows:

Wi = log
(ri + 0.5)(N − ni + 0.5)

(ni + 0.5)(R− ri + 0.5)

where N represents the amount of documents in the search
corpus (web), ni is the number of documents in the corpus
that contain term i, R is the amount of documents for which
relevance feedback has been provided (desktop), and ri is
the number of these latter documents which also contain the
query term. We approximated N with the number of web
documents containing the term “the”.

2. Use Wi to choose C expansion terms proportionally to the
dimension of the desktop clusters. For example, if there are
say three clusters of 15, 5, and 5 documents respectively, and
C = 5, then choose three terms from the first cluster and one
term from each of the subsequent two ones.

3. Select the clusters that contain all keywords from the original
query. Then, use Wi to choose C expansion terms propor-
tionally to the dimension of these chosen clusters.

In all cases we experimented with C = 5 and C = 7, but due
to the space limitations we will only report the former minimally
6Although this definition was targeted at single-user PCs, one could
easily extend it to multiple-user ones.

better parameter setting. Also, as in all three cases the selected
query expansion terms may not always be related to the actual user
query (since they represent a part of the entire desktop), signifi-
cantly more importance (i.e., weight) should be given to user’s ini-
tial query keywords. As Google API does not allow specification
of term weights, we experimented with this feature by using the
above mentioned BM25 model to re-rank the Top-50 URLs output
to the user query. This way, the entire document candidate set was
surely related to the original query.

3.2 Sentence Selection
There exist quite several approaches to sentence based summa-

rization. However, we chose to start from [19], as it had a similar
end goal with us, i.e., to select terms for query expansion. Thus, for
each user query, we first issue it on the PC desktop and retrieve the
Top-30 documents using the Lucene7 scoring function. Then, from
each of these documents we extracted the most salient sentences
with respect to the user query by evaluating the following formula:

SentenceScore =
SW 2

TW
+

TQ2

NQ

The first term is based on Luhn’s cluster measure [23] and is the
ratio between the square amount of significant words within the
sentence and the total number of words therein. A word is signifi-
cant in a document if its real frequency (i.e., not logged) is above a
threshold as follows:

TF > ms =

8<
:

7− 0.1 ∗ [25−NS] , if NS < 25
7 , if NS ∈ [25, 40]
7 + 0.1 ∗ [NS − 40] , if NS > 40

with NS being the total number of sentences in the document.
The second term comes from the work of Tombros and Sander-

son [37] and is computed using the ratio between the square number
of query terms present in the sentence and the total number of terms
from the query. It is based on the belief that the more query terms
contained in a sentence, the more likely will that sentence convey
information highly related to the query.

Lam et al. [19] also investigated the use of several other sen-
tence salience metrics, such as the document title and the location
of each rated sentence within a document. We argue that such met-
rics are not suitable for PC desktop resources, first because many
of them have no title, and second because unlike for news arti-
cles, where the first sentences are usually quite representative for
the entire document, here there is no clear correlation between the
location of sentences and their importance for a document.

Once these sentence scores were computed, we sought for (five)
query expansion terms using two approaches: (1) using Wi (see
BM25 in the previous section) over the top 9 sentences, as reported
in [19], and (2) using Wi over the top 2% sentences. The new latter
approach is motivated by previous findings that longer documents
tend to contain more content words [18] and does indeed slightly
improve over the former one (see Section 4 for more details).

As these query expansion terms had been selected from docu-
ments relevant to the user query, we experimented here with two
different techniques: (1) simply expanding the query with the se-
lected keywords having the same weight as the original ones (since
the Google API did not allow us to specify different weights), and
(2) re-ranking Google’s Top-50 output URLs according to the mod-
ified BM25 scheme, as with the previous algorithm. The amount
of five query expansion keywords has been selected based on two

7http://lucene.apache.org



premises: First, previous Okapi TREC submissions [30] also em-
ployed only a small number of expansion terms; second, at exper-
imentation time, the Google API allowed at most ten terms per
query, and thus using more than five expansion keywords would
have incorrectly limited too much the maximum query length avail-
able to our testers. Even so, both query expansion approaches
showed a highly significant improvement over the original Google
results.

3.3 Lexical Compounds
The final algorithm is based on the natural language processing

solutions proposed by Anick and Tipirneni [1]. They defined the
lexical dispersion hypothesis, according to which an expression’s
lexical dispersion (the number of different compounds it appears in
within a document set) can be used to automatically identify key
concepts of that document set. As the local desktop resources are
implicitly relevant for user’s interests, we thus sought for such con-
cepts within desktop files that are also relevant for the user query.

As with our previous algorithm, we start by issuing the user
query down on the desktop search engine and selecting the Top-
30 results. Then, we inspect these output documents for all their
lexical compounds of the following form, as defined in [1]:

{ ?adjective noun+ }

Although we performed this step at run-time (using WordNet [24]),
it could be easily run off-line, at indexing time, as the compound
generation process is not influenced by the user query (i.e., all
compounds from the selected documents are generated). The only
query dependent aspect is the selection of the documents whose
compounds are included in the dispersion calculation. Thus, once
these lexical constructions have been identified, they are sorted de-
pending on their dispersion within these Top-30 desktop documents
and the terms of the most frequent three compounds are used as
query expansion keywords.

The output of the lexical algorithm so far showed itself to be
indeed very significant for the original query, and thus we chose to
experiment both the regular query expansion approach and that of
re-ranking Google’s Top-50 original output URLs (see the end of
the previous section for more details on each of these solutions).

4. EXPERIMENTS

4.1 Experimental Setup
We started our analysis by manually inspecting the output of

each desktop summarization algorithm. In all cases, we found it
to be quite representative for the original document or set of doc-
uments. However, as in other similar works (e.g., [19]), our main
objective measure of summary quality was its overall effect on web
search performance, and thus we will focus our presentation only
towards this aspect.

To evaluate the precision of our personalization algorithms we
interviewed 15 subjects (either architects or researchers in differ-
ent computer science areas and education). In the first phase of the
evaluation they installed our activity logging tool and used it con-
tinuously for about three months. Then, they installed our desktop
indexer and chose six queries related to their everyday activities in
a similar manner to the work of Chirita et al. [6], as follows:

• One single-word specific query, which they knew to have one
or maximum two meanings8.

8Of course, that did not necessarily mean that the query had no
other meaning.

• One single-word relatively ambiguous query, which they
knew to have two or three meanings.

• One single-word ambiguous query, which they knew to have
at least three meanings, preferably more.

• Three queries of the same types as above, but with multiple
keywords (i.e., at least two, preferably more).

For each query, the Top-10 results generated by 15 versions of
the algorithms we presented in Section 3 were shuffled into one
set containing usually between 50 and 80 URLs. Thus, each sub-
ject had to assess about 400 URLs for all six queries, being neither
aware of the algorithm, nor of the ranking of each assessed URL.
Overall, 90 queries were issued and about 6,000 URLs were eval-
uated during the experiment. For each of these URLs, the testers
had to give a rating ranging from 0 to 2, thus dividing the rele-
vant results in two categories, (1) relevant and (2) highly relevant.
Also, the output quality was evaluated in terms of Mean Average
Precision (MAP) over the first 10 results, precision at the first 5 po-
sitions of the resulted ranking (P@5), as well as precision at the top
10 output rankings (P@10). Finally, all our results were tested for
statistical significance using T-tests (i.e., we tested whether the im-
provement over the Google API output9 is statistically significant).

In all the forthcoming tables, we will label the algorithms we
evaluated as follows:

• Google: The actual Google query output, as returned by the
Google API.

• CATF: Re-ranking Google’s Top-50 URL’s by selecting
query expansion terms from the Top-5 biggest desktop clus-
ters, as computed over the entire desktop.

• CAP: Same as above, but selecting the additional keywords
proportional to the dimension of the clusters (see Section 3.1
for more details).

• CAQ: Same as previous, but considering only the clusters
that contain all original query keywords. If no cluster satis-
fies this condition, then the clusters containing maximal sub-
sets of the query are regarded.

• CRTF, CRP, CRQ: Same as the previous three approaches
respectively, but building clusters only over the documents
accessed by the user at least once during the past 3 months.

• SentQEP: Expanding the user query using the Sentence Se-
lection method over the most significant 2% sentences of
each relevant desktop document.

• SentQEF: Same as above, but applied over the most signifi-
cant 9 sentences of each relevant desktop document.

• SentRRP: Re-ranking the Top-50 URLs returned by the
Google API using a query expanded with the Sentence Selec-
tion method applied over the most significant 2% sentences
of each relevant desktop document.

• SentRRF: Same as above, but applied over the most signifi-
cant 9 sentences of each relevant desktop document.

• LexQE: Expanding the user query using the Lexical Com-
pounds method over the 30 most relevant desktop documents
with respect to the original search terms.

• LexRR: Re-ranking Google’s Top-50 URLs using the query
expansion terms extracted analyzing Lexical Compounds.

4.2 Results
Ambiguous queries. Our results for the various scenarios using

ambiguous queries are presented in Tables 1, 2, 3, and 4. All our ap-
proaches performed very well on single-word ambiguous queries,

9Whenever necessary, we also tested for significance the difference
between pairs of the algorithms we proposed.



Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.280 0.226 0.279 -
CATF 0.360 0.313 0.356 Minimal, p = 0.0959
CAQ 0.346 0.320 0.346 Minimal, p = 0.0791
CAP 0.360 0.333 0.345 Minimal, p = 0.0877
CRTF 0.444 0.366 0.411 Yes, p = 0.0234
CRQ 0.422 0.388 0.426 Highly, p = 0.0077
CRP 0.422 0.366 0.409 Highly, p = 0.0093

LexQE 0.600 0.526 0.605 Highly, p = 0.0007
LexRR 0.400 0.353 0.381 Yes, p = 0.0248

SentQEP 0.573 0.573 0.591 Highly, p = 0.0032
SentRRP 0.413 0.353 0.378 Yes, p = 0.0136
SentQEF 0.733 0.709 0.735 Highly, p = 0.0014
SentRRF 0.333 0.320 0.334 Minimal, p = 0.0885

Table 1: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for single word ambiguous queries.

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.360 0.386 0.451 -
CATF 0.400 0.400 0.401 -
CAQ 0.440 0.380 0.445 -
CAP 0.386 0.393 0.409 -
CRTF 0.244 0.300 0.321 -
CRQ 0.333 0.333 0.354 -
CRP 0.355 0.344 0.368 -

LexQE 0.600 0.526 0.596 Yes, p = 0.0213
LexRR 0.413 0.393 0.443 -

SentQEP 0.514 0.443 0.511 Minimal, p = 0.2474
SentRRP 0.440 0.420 0.467 No, p = 0.3732
SentQEF 0.546 0.477 0.544 Minimal, p = 0.1635
SentRRF 0.413 0.386 0.425 -

Table 2: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for multi-word ambiguous queries.

the improvement for this particular case reaching even 163.44% for
SentQEF (Table 1). On the other hand, with multi-word queries the
re-ranking methods performed all relatively poor. More, this phe-
nomenon occurred relatively often within all multi-word scenarios,
especially for the clustering methods. This is most probably be-
cause the query expansion terms were too specific for user’s in-
terests to help accurately re-order only the Google Top-50 results.
However, inspecting more than the first 50 URLs is very time con-
suming without having a real search engine available. Finally, the
fact that the high quality results were usually residing below the
50th place is also probed by the very good results obtained with
LexQE, SentQEF and SentQEP (always a significant improvement
over Google), which simply expand the query and issue it again to
the search engine.

Semi-ambiguous queries. The outcome was very similar for
the semi-ambiguous queries (Tables 5, 6, 7, and 8) with the only
difference that our improvements were slightly smaller, i.e., up to
44.73% for single-word queries with SentQEP (Table 7) and up to
35.67% for multi-word queries with LexQE (Table 6). This is cor-
rect, since Google has been shown to perform better as the query
specificity increases [6]. We should also note that in all query
type scenarios, restricting the analysis to only highly relevant re-
sults had a very small impact on the findings, minimally modifying
them in both directions. For example, the improvement generated
by LexQE for single-word semi-ambiguous queries was somewhat
significant considering all relevance judgments and not significant
considering only the highly relevant ones, but on the other hand the
improvement of SentQEF was significant only when exclusively
considering the highly relevant results.

Clear queries. As expected, it was more difficult to overcome

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.093 0.086 0.130 -
CATF 0.120 0.106 0.144 No, p = 0.3690
CAQ 0.133 0.106 0.138 No, p = 0.4132
CAP 0.146 0.126 0.121 No, p = 0.3696
CRTF 0.155 0.122 0.221 Yes, p = 0.0354
CRQ 0.133 0.111 0.164 Minimal, p = 0.2254
CRP 0.155 0.111 0.190 Minimal, p = 0.0928

LexQE 0.320 0.273 0.289 Highly, p = 0.0026
LexRR 0.133 0.120 0.127 -

SentQEP 0.280 0.266 0.269 Yes, p = 0.0219
SentRRP 0.106 0.100 0.100 -
SentQEF 0.346 0.333 0.307 Highly, p = 0.0040
SentRRF 0.106 0.106 0.099 -

Table 3: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering only the highly rele-
vant answers selected by our testers for single word ambiguous
queries.

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.186 0.180 0.235 -
CATF 0.146 0.160 0.162 -
CAQ 0.213 0.173 0.181 -
CAP 0.186 0.166 0.171 -
CRTF 0.066 0.111 0.151 -
CRQ 0.155 0.122 0.165 -
CRP 0.111 0.111 0.127 -

LexQE 0.306 0.266 0.332 Highly, p = 0.0031
LexRR 0.173 0.146 0.170 -

SentQEP 0.257 0.207 0.315 Minimal, p = 0.1029
SentRRP 0.200 0.180 0.201 -
SentQEF 0.373 0.277 0.295 Minimal, p = 0.1553
SentRRF 0.173 0.173 0.190 -

Table 4: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering only the highly rele-
vant answers selected by our testers for multi-word ambiguous
queries.

Google output for such queries, the best performances obtained be-
ing a 64.50% enhancement for single-word queries (LexQE, Table
9) and 9.30% for multi-word ones (SentQEP, Table 12), while the
re-ranking approaches had only an average performance with small
improvements for single-word queries and even worse results in the
multi-word setting. The complete results are depicted in Tables 9,
10, 11, and 12.

Conclusions. Three broad conclusions could be drawn from our
results. First, query expansion terms inferred from desktop data are
quite specific, and thus useful only when re-ranking a large number
of the top search engine results, in order to reach pages that are
relevant, while also containing the expansion terms with a large
frequency.

Second, when looking at smaller experiment sets (e.g., Tables 1-
12), sometimes another phenomenon occurred: Small significance
levels for quite high MAP differences, pointing out that although
for most users our query expansion algorithms are very efficient, for
another small number of subjects it performed relatively similar to
Google. This was because their desktops contained almost no tex-
tual content (e.g., for junior students). Further research is needed
to cope with such special cases, for example by indexing automat-
ically generated metadata about local multimedia files, games, etc.

Finally, when these expansion terms were used for regular query
expansion over the entire web, they did provide overall strong im-
provements compared to the initial search. For 13 of our sub-
jects, including the junior students, the best algorithm overall was
LexQE. The other two persons (both computer science researchers)
ranked LexQE second, after SentQEP and Google respectively.



Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.520 0.426 0.500 -
CATF 0.520 0.500 0.540 Minimal, p = 0.1480
CAQ 0.506 0.480 0.515 No, p = 0.3537
CAP 0.533 0.480 0.520 No, p = 0.3348
CRTF 0.577 0.533 0.567 Minimal, p = 0.1065
CRQ 0.533 0.533 0.530 No, p = 0.2877
CRP 0.511 0.522 0.570 Minimal, p = 0.0821

LexQE 0.560 0.540 0.566 Minimal, p = 0.2413
LexRR 0.480 0.460 0.484 -

SentQEP 0.600 0.551 0.614 Yes, p = 0.0242
SentRRP 0.493 0.500 0.515 No, p = 0.3531
SentQEF 0.533 0.471 0.545 No, p = 0.3714
SentRRF 0.520 0.460 0.472 -

Table 5: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for single word semi-ambiguous queries.

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.506 0.426 0.485 -
CATF 0.440 0.400 0.440 -
CAQ 0.426 0.413 0.434 -
CAP 0.426 0.420 0.441 -
CRTF 0.466 0.400 0.505 No, p = 0.2573
CRQ 0.488 0.377 0.454 -
CRP 0.466 0.366 0.440 -

LexQE 0.626 0.613 0.658 Yes, p = 0.0227
LexRR 0.480 0.420 0.454 -

SentQEP 0.471 0.446 0.494 No, p = 0.4576
SentRRP 0.440 0.400 0.427 -
SentQEF 0.560 0.533 0.526 No, p = 0.3481
SentRRF 0.466 0.440 0.437 -

Table 6: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for multi-word semi-ambiguous queries.

Figure 1: Relative MAP gain (in %) for each algorithm overall,
as well as separated per query length category.

Also, over the entire experiment, LexQE improved over Google
with 37.90% (significant with p < 10−9), SentQEP improved with
29.00% (p < 10−6), and SentQEF with 26.67% (p ≈ 10−4).
Moreover, LexQE was also significantly better than SentQEP and
SentQEF (p = 0.04), thus being our best approach by far. All
results are depicted graphically in Figure 1.

Practical Issues. The response time is quite important for cur-
rent search engines, and thus only those algorithms which can yield
a quick valuable output are suitable for large scale topic indepen-
dent applications. Therefore, even though the Sentence Selection

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.240 0.173 0.228 -
CATF 0.213 0.213 0.220 -
CAQ 0.200 0.186 0.201 -
CAP 0.226 0.213 0.221 -
CRTF 0.266 0.266 0.279 Minimal, p = 0.1626
CRQ 0.222 0.255 0.234 No, p = 0.4606
CRP 0.222 0.255 0.264 Minimal, p = 0.2374

LexQE 0.266 0.240 0.263 No, p = 0.3320
LexRR 0.213 0.206 0.219 -

SentQEP 0.280 0.281 0.330 Minimal, p = 0.0936
SentRRP 0.200 0.206 0.214 -
SentQEF 0.266 0.235 0.256 No, p = 0.3847
SentRRF 0.213 0.206 0.210 -

Table 7: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering only the highly rel-
evant answers selected by our testers for single word semi-
ambiguous queries.

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.213 0.193 0.217 -
CATF 0.160 0.160 0.167 -
CAQ 0.173 0.180 0.200 -
CAP 0.146 0.180 0.182 -
CRTF 0.155 0.155 0.208 -
CRQ 0.155 0.122 0.171 -
CRP 0.177 0.144 0.167 -

LexQE 0.386 0.313 0.327 Yes, p = 0.0232
LexRR 0.186 0.180 0.177 -

SentQEP 0.240 0.206 0.225 No, p = 0.4575
SentRRP 0.186 0.153 0.171 -
SentQEF 0.306 0.300 0.299 Minimal, p = 0.1146
SentRRF 0.186 0.180 0.186 -

Table 8: Precision at the first 5 results, at the first 10 re-
sults, and Mean Average Precision considering only the highly
relevant answers selected by our testers for multi-word semi-
ambiguous queries.

approach did yield very good results when used with query expan-
sion techniques, as it is delayed by the computation of query spe-
cific sentence scores, it only makes a good candidate for domain
specific search engines (e.g., medical), where some additional time
can be traded for a better output.

At the other end, both the Clustering methods and the Lexical
Compounds ones provide very quick results, as their computation
demanding step can be implemented off-line at indexing time, thus
making them (especially the latter one) very suitable candidates for
real world search applications.

5. CONCLUSIONS AND FURTHER WORK
In this paper we proposed to select query expansion terms for

web search by adapting summarization and natural language pro-
cessing techniques to extract these supplementary keywords from
locally stored desktop documents. We investigated three possible
approaches, based on (1) summarizing the entire desktop data, (2)
summarizing only the desktop documents relevant to the current
user query, and (3) extracting dispersive lexical compounds from
relevant desktop resources. Our experiments showed an improve-
ment in Mean Average Precision of up to 81.57% for single word
queries and up to 21.11% for multi-word queries when compared
to regular Google web search.

While some of our approaches did perform very well already,
in future work we intend to investigate their performance using a
study targeted towards persons with very limited textual data, as
well as to analyze the possibilities to automatically generate and ex-
ploit additional metadata which would further increase web search



Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.453 0.413 0.431 -
CATF 0.426 0.400 0.403 -
CAQ 0.453 0.413 0.433 No, p = 0.4914
CAP 0.413 0.420 0.399 -
CRTF 0.466 0.466 0.478 No, p = 0.2920
CRQ 0.511 0.477 0.492 Minimal, p = 0.1627
CRP 0.466 0.488 0.456 No, p = 0.3892

LexQE 0.723 0.663 0.709 Highly, p = 0.0012
LexRR 0.413 0.433 0.439 No, p = 0.4602

SentQEP 0.560 0.506 0.603 Yes, p = 0.0188
SentRRP 0.426 0.393 0.389 -
SentQEF 0.440 0.460 0.496 Minimal, p = 0.2321
SentRRF 0.440 0.413 0.440 No, p = 0.4575

Table 9: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for single word clear queries.

Algorithm P@5 P@10 MAP Signif. for MAP
Google 0.640 0.620 0.601 -
CATF 0.613 0.626 0.605 No, p = 0.4563
CAQ 0.613 0.620 0.574 -
CAP 0.600 0.613 0.592 -
CRTF 0.577 0.566 0.528 -
CRQ 0.488 0.544 0.486 -
CRP 0.511 0.555 0.511 -

LexQE 0.626 0.613 0.609 No, p = 0.4133
LexRR 0.626 0.626 0.608 No, p = 0.4070

SentQEP 0.600 0.588 0.613 No, p = 0.4050
SentRRP 0.613 0.620 0.604 No, p = 0.4664
SentQEF 0.500 0.493 0.592 -
SentRRF 0.613 0.613 0.585 -

Table 10: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for multi-word clear queries.

performance not only for such users, but also for those already pos-
sessing vast textual resources.
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