

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data processing
professionals committed to the measurement and management of computer systems. CMG members are primarily concerned
with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity
management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary
resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2004 International Conference.

For more information on CMG please visit www.cmg.org

Copyright 2004 by The Computer Measurement Group, Inc. All Rights Reserved
Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole
or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters,
151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this
publication in whole or in part solely for internal distribution with the member’s organization provided the copyright notice above is
set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those
of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts
in any application or usage. Printed in the United States of America.

©2004 MCI, Inc. All Rights Reserved.

A PERFORMANCE PROCESS MATURITY MODEL

Michael Maddox
MCI

Colorado Springs, Colorado

Computer performance science is very well developed, yet the state of the practice somewhat
lags the state of the art. This paper presents a model of computer performance process
maturity including signposts of each maturity level, suggests types of benefits accruing from
advancing in maturity, and offers basic guidelines for advancing from level to level.

1 Scope and Purpose

This paper attempts to connect two quantitative
disciplines: computer performance discipline and
performance of the enterprise. It assumes that the two
disciplines are working in the same direction. Yet while
managers and performance workers will agree that
better computer performance generally supports
enterprise goals, few disciplines exist to align the two.

This paper enumerates performance techniques, but
does not dwell on how they are done or present new
ones. Rather, it describes how they fit into an overall
enterprise strategy with increasing effectiveness. This
paper describes a logical progression from chaos,
uncertainty, and risk, to harmony and efficiency. For
each level of maturity, it presents the characteristic
behaviors of that level, the improved orderliness and
efficiency of that level over preceding levels, and a few
suggestions on how to advance to the next level.

Finally, this paper presents ideas for taking the
performance process maturity model itself to the next
stage of evolution.

2 Background: How Does Performance Fit

Into Larger System Contexts?

This paper assumes there are three key functions in
the system life cycle; they may differ among
enterprises:

• The business management function
identifies the need for a new computer-based
system, justifies it, provides requirements, and
arranges funding.

• The development function develops the
system to the requirements supplied and
maintains it once deployed.

• The operations function deploys the system

and uses it for business benefit.

Let’s put system life cycle costs and time into
perspective for just a moment. Figure 1 (below)
admittedly reflects projects and systems in the author’s
experience, not a rigorous literature search.
(Specifically, the terms Operational Cost and
Development Cost in this chart denote the intuitive
ideas of the terms, not to elements of formal,
rigorously defined cost models.)

Figure 1 System Life Cycle Costs

Relative System Life Cycle Costs

Time--------->

R
e

la
ti

v
e

 C
o

s
t

Development Cost

Operational Cost

The idea here is simply that a computer system is built
(costing money to develop), then it is used to generate
business benefit (costing more money to deploy and
use). The amount spent to use a computer system and
get a business benefit from it often far exceeds the
amount spent to develop it.

Considerable thought and study have been devoted to
the first phase of the life cycle, development (including
requirements definition, analysis, and so on). For
example, the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) comprises a key
Department of Defense yardstick for measuring
process optimization. Yet, CMM and other software
process improvement (maturity) models concern
themselves with only a fraction of the total amount
spent to develop, deploy, and use a computer system.

Common sense suggests that we look at operational
processes and costs—including performance-related
activities—every bit as carefully as we do development
processes. This paper assumes a holistic view of the
application environment—spanning requirements
definition, development, and operations—and presents
a means for measuring performance process maturity
through the life cycle.

3 What Are the Levels of Performance

Process Maturity?

The author proposes five levels of performance
maturity, numbered from 1 to 5. All levels have these
common characteristics:

• The levels are cumulative. Performance
activities and processes practiced at level 2
are retained and enhanced at level 3, and so
on through higher levels.

• Different applications may exhibit different

maturity levels—although the single corporate
or division culture that gives rise to them may
result in similar maturity levels for most
systems.

• Some level of learning and feedback is applied

as work progresses. Organizations at higher
levels of maturity apply more effective, more
strategic feedback.

3.1 Maturity Level 1: Fire Fighting

At Level 1, developers create systems with little
awareness of operational considerations, including
performance. The requirements they are given specify
only the most basic performance needs, if any at all. If
performance issues are exposed in pilot or early
deployment, they are addressed by “tuning”—minor
adjustments to program logic yielding only incremental
improvements. Systems delivered for production are
effectively “thrown over the wall.”

Servers may be specified, purchased, and installed
with little understanding or quantitative science applied

to their sizing, leading to unexpected outages followed
by emergency (expensive) upgrades or replacements
or even application rework. Rework due to an
application which is too slow to use can be expensive
(involving cost overruns) and entail significant delays.

Changes in user population or user application sets
come as surprises to operations staff, with downtime
or dramatically poor performance as a result.

There is a strong emphasis on troubleshooting and a
reactive mode of behavior, both primarily in the
operations domain. A support team member with little
performance expertise may be assigned to “run a
quick PerfMon” on a Microsoft Windows server or run
other spot checks with ad hoc-type tools. Each new
crisis generates another special study, and some
guidance may be derived for preventive actions, but
there is little attempt to generate strategic value or to
plan for long-term, stable processes.

At the management level, there is little understanding
of how system performance contributes to the success
of the enterprise—only the awareness that downtime
(an extreme case of poor performance) costs money.
There is little performance leadership. Performance is
a dark art at this level of maturity.

3.2 Maturity Level 2: Monitoring

At level 2, a performance worker sets up some level of
automation to collect performance data from systems
in production, ideally 24x7. There is some effort to deal
systematically with resource measurements such as
CPU utilization, I/O bandwidth, memory availability, or
disk space that exceed established thresholds. The
performance worker may publish reports regularly, but
the management audience may still consider the data
and what it means to be beyond their interest or
expertise.

The systems which receive monitoring attention have
been rationalized to at least some extent, bearing in
mind the number of users and the resulting cost of
downtime and poor responsiveness.

Application systems are still subjected to little
performance scrutiny prior to deployment. As a result,
unexpected levels of user populations or system loads
can still disrupt response times and stability. Efforts to
fix or prevent performance defects may be limited to
operating system (OS) or hardware configuration
adjustments, system software updates, and the like.

The performance worker may be able to use a
packaged monitoring system, such as BMC Patrol
Perform, Heroix eQ Management Suite, or others in
that vein. Or, alternatively, the performance worker

may assemble a system from free components, linked
by scripts and OS-level task scheduling. The
monitoring system might catch key out-of-threshold
measurements. There are two possible levels of
alerting:

• Near-real time, providing operational support
teams with information needed to tackle
anomalies within 15 minutes, for example.

• Batch, providing more tactical or somewhat

strategic support (with respect to operations
only). In the general case, it tells team
members that something happened yesterday
or last week that bears closer inspection.

Despite what might be a very large investment in
packaged software or a tailored development effort,
though, performance process definitions that span
organizational boundaries may be limited or
nonexistent. (That is, “a tool is not a process.”)

Capacity planning is limited to systems for which there
exist performance data already collected, or can be
collected in a special study. There may be little formal
capacity planning expertise, modeling, or other
rigorous performance methodology applied.

Response time data may be collected, giving rise to
three sublevels of maturity we could term 2A, 2B, and
2C:

• Level 2A – No response time measurements
available.

• Level 2B – Response time measurements are

available from commercial, off-the-shelf
(COTS) software and need only be enabled by
operations and analyzed.

• Level 2C – Response time collection is coded

into the application and development or
operations team members analyze the
resulting data. Application-generated response
time measurements may supplement that
available from COTS software.

In 2B and 2C, response time data are collected on a
full-time basis, perhaps on a random sampling basis to
keep data volumes manageable.

Response time measurement coded into an
application represents a greater investment in the
performance infrastructure and thus rates a higher
maturity level. (Note that response time data can be
used in two ways: first, as a direct measure of system
responsiveness and second, analyzed for arrival rates,
volumes, and trends over time.) The collection of

application response times allows somewhat more
detailed analyses, perhaps even detailed modeling of
CPU and I/O resource utilizations, but the effort has
more in common with an autopsy than with disease
prevention.

Workload measurements such as transaction counts
may be largely ignored, as the emphasis is more on
resource measurements.

Detailed system configuration data, consisting of CPU
counts and clock rates, memory complement, and
logical and physical disk volume sizes and RAID
configurations support performance analyses. (For
Microsoft Windows/Intel-based systems, a systems
management tool like Compaq Insight Manager makes
this job practical for large server inventories.)

Performance leadership may come from a manager or
a performance worker.

3.3 Maturity Level 3: Performance Optimizing

At level 3, performance evaluation and planning are
baked into the development process. As Dr. Connie U.
Smith [SMIT02] observes, developers “build
performance into systems rather than try to add it
later.” Developers and performance workers tackle
performance requirements with a full array of methods
and tools. Here is a brief sampling:

• Ideally, a Software Performance Engineering
(SPE) model predicts system responsiveness
and resource contention from the moment
even a “straw-man” design is advanced. The
SPE model enables developers to predict the
compliance of the system with performance
requirements from inception to pilot and
production. The SPE model is adjusted and
refined as more details of the design and
implementation emerge. Designers and
developers receive and incorporate feedback
from ongoing performance analyses. An SPE
model incorporates both a software behavior
model (resource times consumed, loops, etc.)
and a system execution model (e.g., queuing
network model). Dr. Smith offers a tool called
SPE·ED meeting these specifications.

• A response time budget breaks down the

timing of complex or multi-layered applications
to establish internal processing time limits. The
response time budget is established early in
the project and refined as components are
developed and their behavior becomes better
defined.

• Integrated development environment (IDE)-
type profilers evaluate execution paths and
path lengths. Developers use similar features
of computer aided software engineering
(CASE) tools or Structured Query Language
(SQL) servers which analyze path lengths, I/O
counts, and other performance behaviors.
Specialized mainframe-oriented tools such as
MXG and MICS inspect application
performance behavior. An I/O trace utility
captures input/output patterns and timings and
device utilizations. OS-specific tools capture a
wide variety of performance measurements
from test runs.

• The application is developed to use the

Application Response Measurement (ARM)
application programming interface (API) to
capture response times in execution. A
monitoring system such as HP’s Response
Time Workbench supplies an agent to support
the industry standard ARM API, collecting and
analyzing response times. (ARM itself is not
specifically essential for response time
analysis. Yet multi-layered system
architectures—servers behind servers—
present special challenges. ARM level 2 and
later are uniquely designed to address those
challenges.)

• With or without ARM, the identities of back-

end transactions (those sent to a legacy
mainframe system, for example) are well
known and their response times are logged. (It
is not enough to know that mainframe
application XYZ is responding slowly; one
must be able to supply XYZ’s maintainers with
the exact identities of errant transactions to
support resolution efforts.)

• Volume tests, driven by a tool such as Mercury

Interactive’s LoadRunner or Microsoft’s (free)
Web Application Stress tool, evaluate the
behavior of the application under higher
volume conditions and confirm resource
utilizations predicted by design-level models.

• A network “sniffer” confirms the application’s

network behavior, checking data volume,
round trip count, and network-level response
times.

Another key feature of level 3 is capacity planning. At
level 3, capacity planning is formalized and uses a
well-refined methodology, supported by a specialized
capacity planning tool such as BMC Patrol Predict
(formerly known as Best/1). The capacity planning tool
is fully supported by data collected on defined

workloads (a baseline). There is a well-established
process for business measurements (expected
changes in business volume, etc.) to feed the capacity
planning activity.

A performance worker regularly publishes performance
reports, using a high degree of automation. The
reports use graphics, hyperlinks, and text formatting
effectively to communicate with a wide audience.
Performance measures are documented with clarity,
affording both performance-knowledgeable and those
with an interest in performance the ability to read and
interpret the figures presented.

Level 3 performance workers encompass performance
specialists, architects, and developers. Why?
Performance must be ingrained in the development
process and is the responsibility of all involved, not just
the charter of a specialist.

Performance requirements given to developers may or
may not comprehensively support business goals. Still,
the performance requirements should include the
following elements at a minimum:

• The workload, expressed as a number of
users with an average think time, or a
transaction arrival rate, such as “100 users
and a 30-second think time.”

• The workload profile or mix, expressed as

percentages of specific work unit (transaction)
types, such as “80% Query A, 10% Query B,
and 10% others.”

• Response time goal stated as a percentile,

such as “95% of responses within 1.0 second.”
It is impossible to guarantee that fully 100% of
transactions will be processed within a given
span of time; stating a response time goal as a
percentile fits better with the reality of
performance analysis and system behavior.

• Anticipated changes in user counts or

transaction loads over time, such as “25%
growth is expected over the next three years.”

• Expectations of how the application will be

deployed, e.g., in a LAN (local access) or a
WAN (geographically distributed) scenario.
Addressing this as part of the requirements is
critical because some applications are “chatty,”
making many server round trips per user
interaction. Chatty applications may be
unusably slow in a WAN scenario.

• Specific monitoring requirements which will be
used to verify compliance with response time
requirements, e.g., response time logging.

Each project’s successful pilot and full deployment is
followed by a post-deployment analysis (PDA) session.
How closely does the system come to response time
targets, resource requirements, increased user
productivity, reduced training or support costs, and
other goals? Each outcome stated in the business
analysis case (justification for funding) needs to be
evaluated against its realization. Lessons learned from
the PDA are non-judgmentally applied as process
refinements for future systems.

Finally, there exists awareness of and a process for
dealing with business changes and how they impact
system performance and resource requirements. That
is, business management understands that a new
(added) application cannot be simply dropped onto a
server or desktop without some level of preparation.
For its part, operations understands the need to deploy
new functionality quickly and has an ongoing protocol
with other functions to support business changes such
as new applications appended to an existing suite.

Systems that are developed at maturity level 3 perform
predictably within the performance limits specified,
when used at the volume limits specified in the
requirements.

Performance leadership and/or support has moved up
to the director or vice presidential level.

3.4 Maturity Level 4: Business Optimizing

The primary improvement made in level 4 is that the
contribution of the system to effectiveness of the
business is understood much more fully, especially in
(but not limited to) these areas:

• User productivity with the application (call
duration, telemarketing sales per hour, and so
forth) is well understood. Application behaviors
and attributes (such as screen design) that
impact user productivity are well understood
and quantified.

• In general, the business value of the system—

not just the benefit to user productivity—is well
understood.

• Proposed changes to the system are

evaluated thoroughly for their impact on user
productivity and resource utilizations, building
on a baseline of data collected in production
(for example, screen flow modeling).

• Tradeoffs between system responsiveness,
user productivity, hardware investment, and
system lifetimes are well understood and
rationalized.

• The complete costs of a system are measured

and well documented from end to end,
including training, user learning curves, help
desk tickets, and so forth.

A wide range of coordinated skills (e.g., a multi-
disciplinary team) is needed to reach this level of
maturity, because it encompasses performance,
human factors, management, and systems analysis
domains, to name just a few.

It is difficult to provide exact formulas for this level of
maturity, because it borders more on management
science than computer science. Systems (at both the
business and computer levels) that justify the detailed
level of attention of level 4 will have both high scale
(many users) and high concentration (frequency of
use). For example, a call center application may
represent both high scale and high concentration,
where a travel expense reporting application may
represent high scale, but low concentration.

At level 4, a process-oriented culture is emerging.
Enterprise goals are visible to all and form a yardstick
for measuring design and performance decisions.
Likewise, an enterprise architecture is emerging.
Optimization strategies apply now not just to individual
application systems, but to groups of applications.
Costs are being minimized across wide segments of
the enterprise.

Points of interaction between business systems and
computer systems make a fertile field for
instrumentation and process optimization. Capitalizing
on those points of interaction will require a high degree
of cross-disciplinary cooperation and understanding
(indeed, patience), but especially in high-scale/high-
concentration situations, significant cost savings may
await those who take on the challenge.

Performance leadership at levels 4 and 5 comes from
the executive suite.

3.5 Maturity Level 5: Process Optimizing

At level 5, executive management understands the
benefits of performance and process optimization fully.
The focus in this level is to extend the benefits still
further by:

• Closely examining costs versus profit
possibilities where computer systems are
involved.

• Rationalizing the benefits to be gained from

each potential optimization against the costs of
achieving that optimization, e.g., looking at
return on investment (ROI).

This maturity level employs management science
almost exclusively, yet the potential contribution of
system performance is not ignored, where “systems”
are examined thoroughly at all levels, from disk drives
to balance sheet. The focus is on discovery and
prevention of more and more subtle performance
defects in systems of wider scope.

A process culture ensures visibility of enterprise goals
to all. Everyone measures his or her efforts against
process effectiveness, elevating process concerns to
management when necessary. Process concerns
raised in this way are evaluated at the appropriate level
and the results communicated back to the originator.

At level 5, an enterprise architecture has been
rationalized and performance of member applications
working together has been optimized. In other words,
performance optimization extends beyond individual
application systems and the business systems built on
them. Performance optimization is being achieved and
improved across broad sectors of the enterprise.

4 What Other Progress Is Made Through

Maturity Levels?

There is a wide variety of factors which show
improvement as an enterprise moves to higher levels
of maturity. This section surveys a few of them.

4.1 Risk Sources

At level 1, a system is at risk from ordinary use, since
the system’s performance behavior is not well
understood. Surprises are a regular feature of working
life at level 1.

At level 2, a body of understanding builds up over time,
generating a slight degree of confidence. Yet since the
performance characteristics of the system were not
planned, they are not predictable. Unusual
circumstances such as holiday transaction volumes
can still disrupt performance expectations and produce
instability and downtime.

At level 3, the performance characteristics of the
system, as well as workload, are better understood.
The main source of risk is workload outside the
envelope specified in the requirements statement.

At level 4, the impact of the computer system on the
larger, business-level system is much better

understood. System behaviors affecting user
productivity and other business measures—indeed
those very measures themselves—are captured,
reported, and analyzed for ways to produce still more
improvement. At levels 4 and 5, there are very few
sources of risk.

4.2 Excitement Level

At level 1, the system’s performance behavior is
uncertain, producing downtime, instability, and poor
user productivity. Management and their teams’ stress
levels remain high, even between crises. One never
knows which system will fail next, and in which
location. Crises bring out heroism in individual workers
searching for ways to stand out from the crowd.
Workers are rewarded for outstanding efforts, yet there
may be only a limited effort to prevent the
circumstances that led to heroic efforts.

At levels 2 through 4, the system’s performance
behavior becomes increasingly predictable.
Opportunities to respond to crises become fewer and
farther between, simply because there are fewer
crises.

At level 5, attention is on the performance of the larger
system. Risks are lower and so is the stress level.

4.3 Costs, ROI, and ROI Time Frame

At level 1, every performance incident is a one-off;
there is little value retained on a systematic basis. A
team member finds a problem and fixes it. While there
may be a policy that extends a found solution to other
machines running the same application or OS or
otherwise share common features, there is little
organizational learning. Each problem seems very
different and the underlying causes are not studied or
understood well. The cost expended to resolve a
problem is all but thrown away; it is difficult to leverage
or reuse it for future benefit. The scope of a
performance effort at level 1 is very narrow, limited to a
single machine with a single problem—at least, that’s
the way it seems.

At level 2, production monitoring starts to reveal
common issues. Problems exposed with one machine
or OS or one type of application can be generalized
somewhat. Learning from a problem recognized and
resolved is applied (invested) for the longer term. That
investment may take longer to produce benefits, but
those benefits tend to last longer, too. Organizational
learning has begun on a limited basis, but its scope
may be largely limited to the operational sphere. A few
lessons learned in operations may filter through to the
development process, but only on an informal basis.

At level 3, business management and development
management have started to invest in the longer-term
future. Both have a better understanding of costs and
how a small amount invested early in the development
process benefits the whole enterprise for the life of an
application. Lessons learned in the operational sphere
are applied consistently to—and invested in—all
phases of new-system development.

At level 4, enterprise management—those in the
executive suite—not only have a clear vision of the
power of performance management over the system
life cycle, but they invest in the long-term future of a
business-level system. Emphasis is on controlling
costs in the long term, but each investment is also
scrutinized for ROI. Costs of business benefits from
process instrumentation (measurements of user
productivity, for example) are compared to the benefit
that will be derived, guiding decision making.

At level 5, the process of business optimization itself is
monitored. The results of each process
instrumentation decision are monitored for
effectiveness and accuracy. Attention turns to
perfection of the process and the longer-term future.
Business optimization decisions are documented,
monitored, and analyzed in hindsight. Processes and
communication channels are adjusted as required to
produce more effective processes. Process and policy
changes are planned and their longer-term effects are
understood well.

4.4 Alignment of Goals and Consistency of

Measurements

Alignment of goals is about both cooperation and trust.
All three improve with increasing maturity.

At level 1, each division which handles a portion of the
system life cycle has its own agenda and its own goals.
Traceability of each division’s contribution to enterprise
success—other than actual budget numbers—is
limited. Because alignment of division goals is poor,
divisions may even work at cross purposes; one
division may succeed in advancing its agenda at the
expense of another’s. The enterprise as a whole loses,
but in a way that is hidden and produces hidden costs.
The measurements captured from various applications
and systems have no pattern, no unifying intent or
vision.

At level 2, a few participants try to seek some order in
the madness. Monitoring produces numbers which can
be studied and produce optimizations with limited
effect. There is still little uniformity in the monitoring
(capture of measurements) which is done, because the
monitoring leverages only what is easily available; the
choices of monitoring points to create were not

decided with the full life cycle (much less enterprise
goals) in view. In fact, some key applications may have
almost no measurements captured at all. Overall,
alignment of organizational agendas from a
performance perspective (system level or business
level) is still poor.

At level 3, business management, development, and
operational teams are better at aligning their goals with
the needs of the enterprise. Business management
has a more complete understanding of factors at the
system level that affect business-level performance, as
well as a clearer picture of the opportunities for
collecting measurements of business performance.
Development understands the performance needs of
the enterprise more fully and produces systems which
comply with the performance requirements specified
for them. Development’s performance agenda has
started to align with those of the enterprise. The
measurements captured for each system in production
are not only consistent with each other, but they are
starting to support consistent cost reductions.

At levels 4 and 5, an increasing percentage of
enterprise goals are visible to all. All divisions are
communicating effectively about ways to advance the
goals of the enterprise. The effects of a change made
early or late in the system life cycle, from business
management to development to operations, are
discussed, rationalized, and agreed to, all in the
context of enterprise goals. The measurements
collected, reported, and analyzed include the full life
cycle, from requirements analysis to production, and
encompass system scopes from disk drive to balance
sheet. The set of measurements collected and
reported in each case are rationalized for ROI, as well.
That is, measurements are effective and relevant from
a process management standpoint—in other words,
they don’t ask a question without knowing what will be
done with the answer.

4.5 Coupling to Business Goals

As an enterprise moves toward higher levels of
maturity, performance work is better and better
coupled to business goals.

At level 1, the business relevance of what little
performance work is done is minimal to none.

At level 2, coupling or relevance is still limited.

At level 3, the coupling of performance work to
business goals is good, but only as far as the
quantitative requirements given to developers go.

At level 4, the coupling is tight. Business goals are
integral to performance requirements.

At level 5, by definition, the coupling is constantly
improving; quantitative data collection and
performance goals are in synergy at all levels of
systems from top to bottom.

4.6 Training

Performance training of someone thrust into a level 1
situation is likely minimal. The performance worker
may be a system administrator or a developer forced
to deal with urgent performance issues.

The performance worker at level 2 represents greater
specialization, but that specialization may not be
backed up by specific performance training. Much of
the performance expertise applied here may have
been acquired through the “school of hard knocks.”

The level 3 performance specialist needs training in
one or more specialty areas, suiting the system’s
logical and physical architecture: software performance
engineering (SPE), discrete simulation models and/or
queuing network models, mainframe workload
management systems, operating systems internals,
benchmark driver software, and related areas.
Architects and lead developers in a level 3 process
need at least SPE training tailored to developer roles.
Both types of workers understand basic descriptive
statistics at a minimum (mean, standard deviation, and
so on) and can apply them to their work.

The level 4 performance specialist needs not only
specific performance training, but broad exposure to at
least some management theory and practical
experience in a variety of enterprise situations.

At level 5, management science dominates. Leaders at
level 5 need experience in performance disciplines,
management consulting, and a wide range of related
enterprise-level skills. The most important qualification
for workers in a level 5 situation, though, is the
willingness and ability to understand the big picture, to
understand how decisions made in one division affect
others, and to keep communications channels open.

4.7 Documentation

Level 1 sees little or no documentation produced.

At level 2, alerting thresholds and processes are
documented and shared between operational support
teams.

At level 3, a wide variety of supporting document types
are generated and evolved, including these:

• Overall performance plan

• Response time budget

• Derived requirements needed to fulfill and/or

verify compliance with performance
requirements

• Benchmark and/or volume test plans

• Monitoring plans and processes

• Performance/capacity baseline

At level 4, the emphasis is on process- and business-
level documents. Besides system performance
requirements, the requirements statement also must
address the business performance measurements to
be captured and reported, as well as how those
measurements will be fed back into business
improvement. For example, who will receive and
analyze business performance measurements and
what form (format) will they take? What determines
when sufficient evaluation and action have taken
place? Those business performance measurements
drive new requirements given to development.

At level 5, further documentation is exclusively at the
process level, specifying how divisions interact and
cooperate, how changes are introduced, evaluated,
and deployed, and where the points of control and
coordination are.

4.8 Scope And Volume Of Statistics

At level 1, the statistics captured and reported are of
limited scope and volume.

At level 2, the performance worker collects data on
dozens or hundreds of servers.

At level 3, the performance worker may collect smaller
volumes of data, but reflective of wider scope, earlier in
life cycle processes (such as volume tests on a system
under development).

At level 4, the enterprise captures larger volumes of
data, with the scope focused on business
measurements (user productivity, etc.) and harmony of
application systems across the enterprise.

At level 5, the scope of data collected and reported
includes process statistics for a wide range of
activities, groups, and levels of systems. The data
volume is thus much more variable.

5 How Do We Make Progress In Performance
Process Maturity?

The answer to this question is much tougher than
simply describing maturity levels and their benefits.
Nevertheless, here are some suggestions; their
usability obviously depends on the skill sets of those
wishing to effect change and improvement, as well as
on the resources available (people, software, time,
etc.).

It is important to note that the activities and remedies
proposed here are not in a strict, inflexible order. They
are only a starting point; readers will likely have to
adapt them to their own, unique situations.

5.1 From Level 1 to Level 2

This analysis assumes that the applications involved
are both high scale (lots of users) and high
concentration (high percentage of time that users
devote to using the applications). Or, perhaps, the cost
of poor responsiveness or downtime is very high for
reasons unique to the situation. To the extent that an
application or group of applications vary from those
ideals, the ROI of improvement efforts will also vary.

For each incident observed:

• Document the cost of the incident, including
the number of people impacted. Be sure to
tally users and support team members.

• Analyze the life cycle process failure which

produced the incident—not to assess blame,
but to understand how to make things better,
independent of personalities.

From the information you have collected, try to develop
a thorough picture of how things have gone astray and
how much it is costing for things to remain as they are.
Keep your management informed of these issues, but
using a matter-of-fact style.

At the same time, for each application in production:

• Document the types of monitoring available.
Monitoring options available may include
resource measurements, application-specific
response times, internal response time
measurements produced by systems software,
or a combination thereof. It is important to
separate the applications themselves (or at
least sets of them) from the machines they run
on, for a couple of reasons:

 First, it will almost always be simpler to tie

system incidents and lost user productivity

to applications because, especially in a
large organization, that is how the records
are most likely kept.

 Second, the machine complement is likely
to evolve over time. Server power
increases with each new clock cycle
bump, potentially also increasing the
financial incentive to consolidate stable
applications onto fewer servers. Fewer
servers may mean a different monitoring
strategy is needed.

• Document the approximate number of users

affected by each application, which also
implies the cost of downtime or poor
performance.

These facts will help one rationalize the monitoring
approach to take and which efforts will produce the
most improvement and cost savings. Automation
should be considered a top priority, because it will
allow the performance worker to take the highest-level
view possible. Summary statistics over a machine
population and trend identification, requiring lots of
automation, are critical to level 2 because applications
have not yet been tuned for optimal performance.

Response time measurements are key to achieving
order. Why? They give the clearest view of the user
experience. If the user experience is positive, there is
rarely a need to dig deeply into resource
measurements. If users are suffering, response time
measurements not only tell how badly they are
suffering, but also reveal when corrective actions have
produced benefits. They also confirm or deny
anecdotal reports of poor system responsiveness,
allowing efforts to be focused on the most critical
problems.

5.2 From Level 2 to Level 3

The guidelines for getting from level 2 to level 3 are
much like those for getting from level 1 to level 2. They
include documenting costs and analyzing failures, as
before. But because improvement from level 2 to level
3 involves multiple teams, direct action by a single
performance worker is limited. The worker has to
communicate findings of lost productivity and
ineffective process through the management chain.
For this reason, a firm grasp of facts, figures, and the
way existing processes work is essential. Quality of
documentation and presentation is the key to
effectiveness; see “Presenting to Non-Technical
Managers” [SWIS01]. Once those facts and figures are
presented, the performance worker is pretty much
dependent on the management chain to change
broken processes.

By the same token, the way that one fixes what’s
broken depends on what is broken:

• Development receives poorly defined or no
performance requirements at all.
Operational management needs to
communicate the costs to the business
management function and to development.
The business management function needs to
be educated on the costs incurred by poorly
stated or nonexistent performance
requirements. Business management needs to
create well-defined performance requirements
that reflect the needs of the enterprise through
the whole life cycle and across all divisions
involved. Most importantly, business
management needs to supply development
funding consistent with performance and
operational needs, rationalized for ROI. And of
course, development needs to be made aware
of how to produce systems that meet well-
defined performance requirements.

• Development receives performance

requirements, but is ineffective in applying
them, producing systems with poor or
unreliable responsiveness or throughput. The
cost of poor performance in production needs
to be documented and communicated to two
entities: the business management function
that funded the development and to the
development management that produced the
system. The operational management that
suffered the cost is the most likely party to take
the lead in the communication and resolution
process.

• Operations mismanages hardware

acquisition, configuration, deployment or
support. The software given to operations
may be capable of meeting performance
goals, but is deployed or supported in such a
way that performance or user productivity
suffers. Insufficient or incorrect hardware is
bought, or the hardware or software is
configured incorrectly. Again, all three major
participants must work together to resolve this
failing, as well.

One can doubtless imagine other ways performance
failures can occur, but most will fall into one of the
three categories described above.

5.3 From Level 3 to Level 4

Maturity level 3 assumes that business management,
development, and operations are in alignment with
respect to performance goals. Communications
channels are open in all directions. The next steps are:

• Business management identifies which user
productivity and other business-level
measurements should be captured in
application logic. A performance worker with a
clear understanding of the application and how
it affects business measures may need to
communicate the opportunity. High-scale,
high-concentration applications may offer the
biggest payoff. The steps of analysis should
approximate these, with examples in
parentheses:

 Identify relevant business goals

(maximize sales).

 Identify business performance

factors which support those business
goals (increase user productivity).

 Identify specific performance

metrics which comprise or support
those business performance factors
(calls per hour or call duration). In the
ideal case, these performance metrics
can be measured from within the
application.

 Identify components of those

performance metrics which are
amenable to measurement within the
application (time spent per application
screen, sequence of screens
accessed).

• Business management, development, and

operations participants together develop an
ROI for an initiative (or additional requirements
for a new system). That initiative should
address the selected metrics. Costs which
must be accounted for include these:
requirements development, development of
the code which collects and saves
measurements, additional hardware resources
for data collection, additional network loading
for monitoring traffic, development of the
collection and analysis mechanism (or
deployment of COTS software addressing that
function), and a worker to analyze the data and
produce reports and recommendations.

• Executives who provide funding evaluate the

ROI and overall business case. If the ROI

(ratio of projected benefits to estimated costs
incurred) is high enough, the effort can move
forward.

Of course, the process described is not fundamentally
different from the way any proposed applications
functionality requirement is developed and rationalized.
The difference is that business performance
requirements (such as those which monitor user
productivity) look inward at the business. Rather than
chasing new business, business performance
requirements help to optimize the business in place or
ensure that a new initiative will generate the maximum
possible ROI.

Evolution of an enterprise architecture is an even
tougher problem—perhaps even tough enough to
justify a separate maturity level. Locating the touch-
points to optimize individual applications or related
application groups and their business environments
may not be difficult. By contrast, though, changing the
behavior of a large variety of user and support groups,
as well as the corresponding development groups,
requires access to a huge array of cost and benefit
data. Without access to that data, even a committed
group with their executive’s support may experience
difficulty. Still, for groups with access to the right data
and an understanding of overlapping functions and
conflicting agendas, the way may be clear.

5.4 From Level 4 to Level 5

Initiative to take an enterprise from level 4 to level 5 is
mostly owned by the executive suite. Process
improvements which cross major divisions require a
vision of perfection of the enterprise available only to
those in a position to implement that vision. That vision
must encompass a process culture which gives
visibility to enterprise goals and consistently and
fearlessly adjusts processes to address those goals.
Workers and managers across all divisions report,
support, and capitalize on opportunities to optimize
business processes.

6 Comparison With Software Process

Improvement Models

Software process improvement (CMM-style) has little
or nothing to say about the achievement of
management goals outside the development arena.
Yet, a comprehensive and mature overall management
process must balance the qualitative and functional
orientation of mature development processes with an
appreciation and leveraging of the quantitative aspect
of system performance—how fast, how many, and at
what cost, and do so at all levels.

This maturity model was inspired by the SEI’s CMM,
but there are important differences:

• Skipping levels. CMM specifically disallows
skipping levels. The maturity model specified
here allows skipping levels. To be sure,
characteristics of level progressions in both
models are derived from priorities—which
things need to be done first.

• New organizations starting above level 1. In

theory at least, a new organization can start
above performance maturity level 1. In fact,
the time to build foundations for level 3 and
above is from the first, while expectations are
still being formed.

There is much in common with CMM, though:

• Process emphasis. Performance work
necessarily involves many people and the way
they cooperate. A single performance worker,
acting alone, cannot effect sweeping change.

• Change takes time. Because groups in a

mature enterprise with a variety of charters
and agendas each own a piece of the puzzle, it
can take years to align their agendas and
refine processes to achieve comprehensively
better performance.

7 Suggested Next Steps and Conclusions

7.1 Where Do We Go From Here?

The proposed performance process maturity model
could itself be taken to the next stage by incorporating
an exhaustive specification of performance activities
and process steps that must be performed according
to system attributes and classifications in various
dimensions. (For a rough example, an online
transaction processing system requires somewhat
different performance activities from a batch-oriented
application.) CMM could serve as an example of such
an exhaustive specification. The depth and refinement
of activities specified for each maturity level would still
conform to the present model. Such a thoroughgoing
model could help turn the art of performance analysis
into a science, at least in its application.

In a similar vein, more work is needed to perfect a
performance science of layers of systems. That is, as
soon as one advances a draft architecture of a
computer or business system, we need to be able to
comprehensively and unerringly identify:

• The metrics associated with it at all levels of
scope

• What arrival rates, response times, and costs

unfold from outermost system to innermost

• The costs and risks associated with failure to
identify all these factors

The aim is to predict how the system will behave in
production, with increasing levels of precision.

A key element of that science could be a detailed
taxonomy of performance defects. There exists at
least one taxonomy of software defects [BEIZ90] which
provides a guide to the thought process needed to
create such a taxonomy. From a systems-within-
systems perspective, though, a definitive taxonomy of
performance defects needs a top-level classification
describing the level of scope considered.

The proposed model presents what amounts to a
checklist by which one can assess one’s organization.
Yet this model addresses only the structural or
qualitative aspect of an enterprise. Further work is
needed to develop this model’s quantitative
counterpart, assessing how much performance
activities cost versus the benefits they bring. In other
words, given a type of system, a number of users, and
other parameters, what performance activities are
needed? How much do they cost over the entire life
cycle? What costs and risks are likely if they are not
incorporated into the life cycle?

7.2 Conclusions

While much of the background of this paper comes
from a limited number of enterprises, the author
believes it nonetheless sketches a picture of maturity
which will apply to a variety of enterprises and
systems. The questions it asks are fundamental:

• How are we ensuring the performance of
systems?

• Are we presenting the right requirements to

developers to ensure performance in the real
world?

• How does performance work dovetail with the

needs of the enterprise, the larger system?

The last question is most important, because it
embodies the fundamental assumption of performance
work. Saving time and saving system resources at all
levels of scope saves money.

This paper has proposed a model of performance
process maturity, beginning from a state of low
discipline, leadership, and order, and progressing
through increasing refinement, rationalization, and
common sense. For each level of maturity, it has
described typical patterns of behavior, likely areas of
strength and weakness, and ways to move ahead.

This paper presents ideals for increasing performance
process maturity. It is hoped that by presenting those
ideals in the context of a structured series of steps, it
helps inspire both performance workers and managers
to reach for those ideals.

References

[BEIZ90] Beizer, B., Software Testing
Techniques, Second Edition, Van Nostrand Reinhold,
ISBN 0-442-20672-0 (1990).

[SMIT02] Smith, C. U., notes from Software
Performance Engineering seminar held April 28
through May 2, 2002, in Santa Fe, New Mexico, page
1-4.

[SWIS01] Swisher-Roth, A., “Presenting to Non-
Technical Managers”, from the Computer
Measurement Group (CMG) 2001 Conference
Proceedings, paper number 300.

Trademarks

Capability Maturity Model is a registered mark of the
Software Engineering Institute.

Compaq Insight Manager and Response Time
Workbench are trademarks of the Hewlett-Packard
Company and/or Compaq Computer Corporation.

Patrol Predict and Best/1 are trademarks of BMC
Corporation.

eQ Management Suite is a trademark of Heroix
Corporation.

Mercury LoadRunner is a trademark of Mercury
Interactive Corporation.

SPE·ED is a trademark of Performance Engineering
Services.

Other company, product, or service names may be
trademarks or service marks of others.

	CMG 2004 Main Menu
	Subject Index
	Author Index
	Acrobat® Help
	Search This Paper

