
Query Classes?Martin Staudt, Matthias Jarke, Manfred A. Jeusfeld, Hans W. NissenInformatik V, RWTH Aachen, Ahornstr. 55, 52056 Aachen, GermanyAbstract. Deductive object-oriented databases advocate the advantageof combining object-oriented and deductive paradigms into a single datamodel. Certainly, the query language in such a data model has to reectthe amalgamation because it works as the interface to the user and/or ap-plication program. This paper proposes a language to formulate queriesas classes related to the schema classes and constrained by an associativemembership condition. Answers are then regarded as their instances. Theinterpretation is based on a deductive database view of queries. Genericquery classes are introduced with a simple parameter substitution con-struct. The syntactic separation of structural and associative conditionsopens the way to semantic query optimization: subsumption between thestructural parts of queries can be decided e�ciently.1 IntroductionThe query language of a database determines which and how information canbe retrieved from the database. Users generally demand a query language to bedeclarative and e�cient (i.e. easy to optimize). In the case of (deductive) object-oriented databases the query language must be closely related to the data model.Ideally, queries would be just class descriptions where instances are not insertedby the user but computed by the query evaluator.For this purpose, we propose an amalgamation of paradigms from object-oriented databases (query by class), deductive databases (query by rule), andknowledge representation languages (query by concept). The next section reviewsrelated work on each of the aspects. Section 3 contains the exposition of our querylanguage, discusses the interaction between the paradigms and reports shortlyon the inuence of each of the three faces on the implementation of query classesin the deductive object base management system ConceptBase. Finally, section4 briey presents �elds of applications where our approach has been successfullyused.? This work was supported in part by the Commission of the European Communitiesunder ESPRIT Basic Research Action 6810 (Compulog 2) and by the Ministry ofScience and Research of Nordrhein-Westfalen.

2 Three Views of QueriesThe basic understanding of what constitutes a query strongly inuences thedesign of a query language and a query processing concept, and thus whichof the desirable features it can o�er. In this section, we review query modelsfollowed in the areas of object-oriented databases, deductive databases, and AIconcept languages which understand queries, respectively, as{ classes of answer objects manipulated by methods,{ deduction rules with parameterized answer attributes, or{ concepts with automatic classi�cation through subsumption relationships.It turns out that each of these approaches basically follows the idea to makequeries the same kind of thing it also handles otherwise. Each is particularlysuitable for certain application areas of query handling. Moreover, there arespeci�c reasons for this suitability which lie in the very nature of the approaches.In the last subsection, we draw together these observations to come up with alist of requirements our query model has to satisfy.Query by Class: The Object-OrientedApproach.Object-oriented data-bases (OODB) combine the paradigms of object identity, class membership, in-heritance, and methods from object-oriented programming languages with thedatabase functionalities of persistence, concurrency, security, and declarativequerying.Since classes are the mechanism for managing sets of objects it is naturalto use them also for describing query results, seen as sets of answer objects. Ageneral advantage of queries as classes is that answers can be managed the sameway as the objects in the OODB. Methods for processing answer objects can beattached to query classes. The answer objects can be organized in generaliza-tion/aggregation hierarchies and reuse methods of OODB classes. Moreover, theintegration of methods in OODB suggests an implementation approach to queryevaluation/view maintenance based on triggers attached to speci�c object/queryclass subtypes.Query by Rule: The Deductive Approach. A deductive database con-sists of a �nite set of facts (extensional database), and a �nite set of deductiverules (intensional database). We restrict ourselves to rules where negation in theconclusion literal is disallowed and negated literals in the rule body must obeythe strati�cation condition (Datalog:). With these assumptions the preferredinterpretation is a certain minimal Herbrand model, the so-called perfect model.It can be computed using a �xpoint operator [10]. Queries in deductive data-bases look rather simple compared to object-oriented databases but they havesome advantages. The membership condition is de�ned by the rules which havea matching conclusion literal. Thus, it is very easy to formulate parameterizedversions of a query just by replacing one or more variables by a constant.Implementation techniques for query optimization have been thoroughly in-vestigated yielding algorithms for recursion optimization (magic sets [3], query/subquery approach [27]), and deductive integrity enforcement (e.g. [8], [21]).

View maintenance algorithms (storing the result of a query and keeping it up-to-date with the database) have been less studied but are rather simple general-izations of integrity enforcement. Some work has been done on updating viewsin deductive databases, esp. by abductive reasoning [17].Query by Concept: A Type Inferencing Approach. Starting with KL-One [7], concept languages in arti�cial intelligence have pursued the idea to de�neknowledge bases as type lattices of so-called concepts. Because of the restrictedusage of logical connectives a dedicated syntax for concept expressions has beendeveloped: the axioms (schema) are written as C v E (necessary condition)or C = E (necessary and su�cient condition) where E is constructed fromother de�ned concepts and binary predicates expressing relationships betweenconcepts.The main purpose is to relate concepts to each other, e.g. to derive thesubsumption between two concepts C and D. One should note that conceptlanguages make statements for all possible models of the theory whereas databaselanguages usually only consider the current database state as their model.Systems such as CANDIDE [2] and CLASSIC [5] use concept descriptionsas a exible query language for databases. Queries are just considered as a newconcept which is positioned in the concept lattice by subsumption algorithms.Answers to the query are all instances of all subconcepts and some instancesof the direct super concepts (satisfying the additional constraints of the newconcept).The bene�t of concept lattices is that the search space of a query (i.e., a newconcept) is greatly reduced. The exact placement of a query into the lattice opensthe ability for intensional query answering: instead of enumerating all instancesof the query the system answers with the names of the subconcepts of the query(slightly more complicated for the contribution of the direct super concepts). Onthe other hand, if the extension of a super concept is materialized then a querysubsumed by such a concept may reuse the extensions as a �ne range.Summary of Requirements. Our short review has shown that each ap-proach has advantages supporting certain functionalities of a desired query sys-tem. The question addressed in our approach is how to integrate the three ap-proaches. The following basic observations underly our solution, the query class:{ Queries as classes and queries as concepts o�er the same object-orientedstructure for questions and answers; therefore, this will be our approach.{ To integrate objects and rules, we need an object model with a logic-based se-mantics that allows a two-way transition between both. Our model of choice,Telos (see section 3), goes even further by o�ering an object model with astandard deductive database semantics, it has a precise translation into facts,rules, and integrity constraints of a deductive database.{ Concept language subsumption algorithms can be expected to work safelyand e�ectively only for a sublanguage of the query language o�ered, e.g.,by a full deductive database. A way has therefore to be found to o�er bothaspects separately. Complete subsumption is only done on the sublanguage

(subsequently called type system). As in programming languages and inconstraint logic programming, the communication between both formalismsis one-way, that is, the type system inuences query processing but not viceversa.3 Query Classes in O-TelosThe O-Telos data model [14] is a variant of the knowledge representation lan-guage Telos [20]. In the following subsections we introduce the basic propertiesof the data model and show how queries in each of their roles �t into this frame-work. With each role we explain briey its inuence on the implementation ofquery classes in ConceptBase [13], a deductive object base management system.A detailed description of the implementation is given in [25].The syntax of query classes is a class de�nition with superclasses, attributes,and a membership condition. The interpretation is based on a deductive rulecontaining predicates for each of the clauses in the class de�nition. Integrationwith concept languages is viewed as the extraction of the structurel part of aquery class, i.e., the portion of the query which is representable as a conceptexpression.3.1 Representing Objects and FormulasWe de�ne deductive object bases as deductive databases with builtin axiomsformalizing the three object-oriented abstraction dimensions of classi�cation,aggregation, and generalization. More speci�cally, a deductive object base is atriple DOB = (OB;R; IC) where OB is the extensional object base, R and ICcontain deduction rules and integrity constraints. The axioms are represented asprede�ned formulas in R and IC. Let ID and LAB be sets of identi�ers, andlabels resp. An extensional O-Telos object base is a �nite setOB � fP (o; x; l; y) j o; x; y 2 ID; l 2 LABg:The elements of OB are called objects with identi�er o, source and destina-tion components x and y and name l. Objects of the form P (o; o; l; o) are calledindividuals, P (o; x; in; c) describes an instantiation relationship whereas special-izations are of the form P (o; c; isa; d). All other objects P (o; x; l; y) are calledattributes. This arrangement of an extensional object base permits an intuitiverepresentation as a semantic net: individuals as nodes, all other objects as links.A third view on deductive object bases results in a frame-based notation of ob-jects which only relies on object labels. Around the name l of an object o wegroup the names of all other objects which have o as source component.The running example in this paper is based on the following scenario froma medical database: Patients are persons, su�er from diseases and take drugswhich have an e�ect on diseases. The frame notation of the objects Patientand Drug is e.g. the following:

Patient isA Person with Drug withattribute attributesuffers:Disease; against:Diseasetakes:Drug endendWe use the following literals when de�ning the complete axiomatization butalso when specifying deductive rules and integrity constraints: (x in y) denotesan instantiation relationship between x and y, (c isA d) an specialization rela-tionship between c and d, and (x m y) indicates that there exists an attributeof category m with source x and destination y.O-Telos requires a set of 35 axioms and axiom schemata implemented asbuiltin deductive rules or integrity constraints of the deductive object base [14].Here, we refer to a few important ones. Like most OODB and semantic datamodels, O-Telos requires that instances of an object are also instances of itssuperclasses. Another important property of the language is realized by the at-tribute typing axiom: instantiation relationships between objects imply instanti-ation relationships between their source resp. destination components. A similarrestriction holds for specialization links and allows a consistent way of re�ningattributes of classes by their subclasses. Thus, although attributes of an objectare not explicitly inherited by subclasses they can nevertheless be instantiatedby their instances.Instantiation links between objects in OB constitute di�erent layers withinan object base. O-Telos does not restrict the number of layers; classes can beinstances of other classes (metaclasses), these can be instances of metameta-classes, and so on. In addition to the O-Telos axioms the sets R and IC containapplication speci�c deduction rules and integrity constraints which are speci�edin a many-sorted �rst order language. Variable quanti�cations range over classesand are interpreted as instantiation relationships.As an example a deduction rule can be de�ned that deduces for a givenpatient doctors who are suited to give him medical treatment. The constantthis refers to the instances of the class which carries the rule. Similarly onemay impose an integrity constraint on Patient that all instances actually musthave a �ller for the suffers attribute. As a consequence of the attribute typingaxiom, the variable ranges can be used to determine type errors inside a formula.Patient isA Person withattributesuited_doc:Doctorrulesuited_rule:$ forall p/Doctor,d/Disease(this suffers d) and (p specialist d)==> (this suited_doc p) $constraintmustsuffer:$ exists d/Disease (this suffers d) $end3.2 Queries as ClassesThe query language CBQL [24] represents queries as classes whose instances arethe answer objects to the query. These query classes are themselves instances

of the prede�ned object QueryClass and contain necessary and su�cient mem-bership conditions for their instances (=answers). These conditions can be usedto check whether a given object is an instance of a query class or not. On theother hand, they can be used to compute the set of answer objects. Query classeshave superclasses to which they are connected by an isa-link. These superclassesrestrict the set of possible answers to their common instances.Two di�erent kinds of query class attributes can be distinguished. Retrievedattributes are already de�ned for one of the superclasses of the query class. Anexplicit speci�cation of such an attribute in a query class description meansthat answer instances are given back with values for this attribute, similar torelational projection. In addition a necessary condition for the instantiation byan admissible value is included. The attributes of superclasses can also be re�ned,i.e. the target class is substituted by a subclass which results in an additionalvalue restriction. If we assume a subclass Antibiotics of Drug the query classQueryClass MaleOldAntibioticsPatient isA MalePatient,OldPatient withattributetakes:Antibioticsendhas those male and old patients as instances who take antibiotics. In additionthe concrete drugs are included in the answer description.Computed attributes have values derived in the query evaluation process. Nei-ther the extensional object base contains this relationship between the answerinstance and the attribute value, nor is it inferable by deduction rules. For pre-scribing how to deduce these new relationships by analogy to deduction rules andintegrity constraints, many-sorted �rst order logic expressions are admissible asbuilding elements for query classes.QueryClass WrongDrugPatient isA Patient withattribute, parameterwrong:Drugconstraintwrongconstr:$ (this takes wrong) andnot exists d/Disease ((this suffers d) and(wrong against d)) $endAs in section 3.1 this refers to the answer instances of WrongDrugPatient,namely all patients who take a drug which is against a disease they don't su�erfrom. The computed attribute wrong is identi�ed with the variable of the samename within the formula. All deduced wrong drugs are part of the answer.The logical expression in query classes descriptions can also contain arbi-trary other constraints for the answer instances which would then work like theselection operation in relational databases.In order to avoid the frequent reformulation of similar more specializedqueries, attributes of query classes can be declared as parameters. Substitu-tion of a concrete value for such an attribute or specialization of its target classby a subclass leads to a subclass of the original query which implies a subsetrelationship of the answer sets. For the parameter wrong the expressions

WrongDrugPatient(Aspirin/wrong)WrongDrugPatient(wrong:Antibiotics)denote two derived query classes which restrict the answer instances of Wrong-DrugPatient to those patients who take Aspirin resp. a drug of the classAntibiotics as wrong drug. For example, WrongDrugPatient(Aspirin/wrong)is a shorthand for the (non-parameterized) query classQueryClass WrongAspirinPatient isA Patient withconstraintAspiconstr:$ (this takes Aspirin) andnot exists d/Disease ((this suffers d) and(Aspirin against d)) $endExpressions denoting (derived) query classes are allowed to occur within thede�nitions of other query classes and objects and are managed as full-edgedobjects, too. Most of the compilation steps applied to normal classes are alsoapplied to them, e.g. type checking of attributes. ConceptBase stores queries asany other class. When methods are de�ned for schema classes then all subclassesincluding query classes inherit these methods.3.3 Queries as RulesIn deductive databases queries are represented as intensional relations derivedby a set of rules. We have shown above that O-Telos object bases are just specialcases of deductive databases. Obviously it should be possible to extend this viewto query classes.The de�nition of a query class Q induces a so called query literalQ(x; x1; :::; xn)whose arity depends on the number of attributes and parameters of Q. The �rstargument x of Q stands for the answer object identi�ers. Query classes are trans-formed to rules2 concluding their corresponding query literals. By convention theobject identi�er of an individual with name i is written as #i.{ For each superclass C of Q the body of this rule contains a literal In(i;#C)where #C is the object identi�er of the class C and i is a new variablereplacing this in the query class description.{ Attributes a:C of the �rst type (de�ned for a superclass or re�ned) result ina conjunction In(v;#C) ^A(i; a; v) where v is a new variable.{ Attributes a:C of the second type just require In(v;#C) where v is a newvariable.{ The logical formula describing the derivation of attribute values and otheradditional restrictions is transformed straightforward by substituting thenewly introduced variables v and i for their symbolic counterparts a andthis, replacing all occuring object names by object identi�ers and resolvingtyped quanti�cations.2 We use a predicate-like notation of the literals to formulate deduction rules: In(x,y)for (x in y) and A(x,m,y) for (x m y).

{ As a last step all generated expressions have to be linked by conjunctions.The new variables become arguments of the query literal.Following these steps the example query class WrongDrugPatient is trans-formed to the following rule:8i; v In(i;#Patient) ^ In(v;#Drug) ^^A(i; takes; v) ^:9d In(d;#Disease)^A(i; suffers; d) ^A(v; against; d))WrongDrugPatient(i; v)Each query class yields exactly one rule concluding its corresponding queryliteral. Hence with closed world assumption the rule body provides a necessaryand su�cient characterization of class membership.The deduction rule form of queries not only provides a clean semantics butalso a whole array of algorithms for evaluation and optimization known from thedeductive database area [10]. In ConceptBase, the deductive rules are rewrittenwith the magic set method [3]. The main advantage of our query language is thatit completely falls into Datalog:. Thus, virtually any evaluation method fromthis area is applicable. Optimization of rules and integrity constraints bene�tsfrom the prede�ned axioms of the object model by elimination of redundantpredicates [15]. This also enhances the maintenance of materialized views, i.e.stored answers to a query [16]. Recently, compilation of deductive rules intoalgebra expressions has been added to ConceptBase. It pro�ts from the factthat the object model provides an access predicate for each class attribute.3.4 Queries as ConceptsIn programming languages objects (variables, functions, etc.) usually have types.Type constructors for tuples ([]), sets (f g), lists etc. allow to handle objects ofarbitrarily complex structure. In the same way most object-oriented databasesdistinguish between objects and values on the one hand and classes and typeson the other hand. Objects have an unique identity and an assigned value of acertain type. Classes are object containers which collect objects of the same type(sometimes called member type).O-Telos only provides the diction of classes where membership is constrainedby the builtin axioms and by user-de�ned constraints. Nevertheless we can ex-tract type information from classes. A class de�nition is divided into a 'clean'part, i.e. its type, and a 'dirty' part containing all aspects for which the typesystem is not powerful enough. The example classPatient isA Person withattributesuffers:Disease;takes:Drugend

carries the information that patients have attributes takes and suffers,each with certain value restrictions. In addition, patients have attributes (e.g.name and address) de�ned for the superclass Person. Under consideration thattakes and suffers can have multiple �llers, a (member) type of Patient couldbe the following:[suffers : fDiseaseTg; takes : fDrugTg; name : string; address : AddressT]where AT is a shorthand for the type of a class A. The relationship between typesin OODB's and concept languages are discussed in [4]. It turns out that the latterallow more restrictions on objects than the common plain type languages.Following the syntax used in the concept language literature for our patientexample, we get a member type PatientT for Patient.PatientT v 8suffers:DiseaseT u 8takes:DrugT u PersonTThe type information can be regarded as being a layer orthogonal to theobject base de�nition presented in 3.1.The 'type view' of deductive object bases introduced so far only used the 8-and u- constructor for types and represented necessary conditions in the sensethat e.g. every patient is also a person and that all attribute �llers for the takesattribute are drugs. Both conditions are guaranteed by O-Telos axioms. Thetype expression above doesn't cover neither the constraint nor the deductiverule speci�ed for Patient in 3.1. These parts of the class de�niton are referredto as the dirty part of a class de�nition.On the other hand type restrictions may also be interpreted as su�cientmembership conditions for their instances which in concept languages leads tothe distinction between (de�ned) concepts and primitive concepts (the latterwith only necessary conditions) [6]. Thus we can say that ordinary classes in anO-Telos object base have primitive concepts as their types. Primitive concepts(as e.g. PatientT) are directly subordinated under their corresponding typeexpression in the lattice which exactly represents the interpretation as necessaryconditions. De�ned concepts are related to their de�ning expression by equality.There is an obvious correspondence between query classes and de�ned con-cepts since both state su�cient membership conditions. As with ordinary classesquery classes often have 'dirty' parts not expressible by the type language. Itcan be distinguished between query classes that actually use only type languageconform constructs { with a de�ned concept as their type { and those who haveadditional parts and hence have just a primitive concept as their type.The goal of a separation between a type layer and the usual object layer fora deductive object base is to shift several kinds of inferences to the type layerwhich promises more e�cient computations due to the lower complexity of theunderlying language. The concept language community has examined a broadpalette of type languages and o�ers e�cient algorithms for several of them [12]. Ifone of these languages is chosen as type language for a deductive object base withcorresponding syntactic object counterparts for type language constructs (ase.g., atleastn and atmostn above) we can apply these well understood inference

algorithms at the type level to infer new information at the object level. The morecomplete the type language is, the more conditions of classes and query classescan be expressed in concept expressions and used for these inferences. A simpleexample is to support a type language extension with cardinality restrictions� n r and � n r for �llers of an attribute r by additional new built-in attributecategories atmostn and atleastn.One example how inferences at the type layer may a�ect operations on theobject layer is the computation of subsumption relationships between queriesin order to avoid superuous recomputations and reuse queries with stored an-swers. The determination of such relationships between queries and views thatare materialized promises increasing e�ciency. An e�cient calculus for decidingsubsumption in this case is presented in [9]. The following simple query classesshall demonstrate this.QueryClass DrugPatient isA Patient withattributetakes:DrugendQueryClass AntibioticsPatient isA Patient withattributetakes:Antibioticsconstraintappconstr:$ (this suffers Appendicitis) $endDrugPatient contains all those patients that take atleast one drug, Antibi-oticsPatient requires a value restriction for takes to drugs of the class Anti-biotics, at least one �ller for takes and Appendicitis as �ller for suffers.Note that the speci�ed value �ller3 Appendicitis belongs to the 'dirty' part ofAntibioticsPatient and hence this query class has only a primitive conceptas its type. It can be deduced thatAntibioticsPatientT v PatientT u 8takes:AntibioticsT u � 1 takesv PatientT u � 1 takes = DrugPatientTprovided that AntibioticsT v DrugT .Whenever the query AntibioticsPatient has to be evaluated and the ob-ject base already contains the answers to DrugPatient since it is designed asmaterialized view, it is not necessary to scan all patients in the object base butonly the precomputed answer set of drug taking patients.4 ApplicationsThe implementation of query classes in ConceptBase has turned out to be auseful basis for several application areas that can exploit the di�erent facets ofqueries as classes, as rules, and as concepts. While some of these applications3 Several concept languages o�er an enumeration construct which would allow to ex-press such a condition in the type language.

used the query language concept as is, others base extensions such as access toexternal data stores on it.Software databases and repositories.Dynamic clusters are introduced in[22] as collections of objects where the membership frequently changes. Instead ofprocedurally assigning objects to such classes, a membership condition expressedas a query class automatically classi�es objects into the correct clusters. Due tothe deductive nature of query classes, the dynamic aspect of re-assigning objectsis completely covered by view maintenance. The application mainly pro�ts fromqueries as classes: the dynamic cluster is a query class persistently stored onthe object base. It also pro�ts from the representation of classes as objects inO-Telos. In fact, there are many queries which actually have class objects asanwers. This feature of query classes is sometimes called schema querying ormeta querying.Securitymanagement. Security is becoming an increasing concern in manydatabases. The Group Security Model GSM [26] uses generalization and aggre-gation to de�ne task-based access to parts of the object base (identi�ed byclasses). The question what information a certain task may access is encoded asa query class. Thus, the deductive view is applied for evaluation while the object-oriented view and the availability of parameterized query classes are exploitedfor the precise and concise characterization of access right patterns.Integration of heterogeneous databases. In many applications, the in-formation to be processed is distributed in more or less autonomous informa-tion bases. Data may be replicated or even contradictory, the languages maybe heterogeneous. We have made a �rst attempt with query classes to schemaintegration of distributed relational databases [19]. The system represents thebase relations and their abstractions to the integrated schema uniformly as queryclasses. The deductive interpretation is used for accessing the base relations fromqueries formulated at the level of the integrated schema. Object-oriented prin-ciples come into play when organizing the communication between the externaldatabases: each database can be seen as a class with a small interface of methodso�ered to the integrated system.5 ConclusionsThis paper presented a way to integrate the view of queries as classes, rules,and concepts. In one sentence the idea is the following: queries are expressedas classes, evaluated as deductive rules, and semantically optimized as concepts.The �rst view o�ers easy formulation since relationship of queries to schemaclasses is expressed by subclass and attribute statements in a simple frame no-tation. The second view, queries as rules, provides the e�cient evaluation algo-rithms like magic sets and mapping to algebra expressions. Finally, we proposedto extract the structural part from a query (queries as concepts) and make itsubject to reasoning on subsumption relationship between the answer sets of twoqueries.

Previous integration e�orts only concentrated on two of the three aspects ofqueries. Similar to our approach, CoCoon [23] integrates concepts with classesbut with a �xed and very simple type system (only lattice of attribute names).[1] presents a query language combining deduction with object-orientation. Anintegration of deductive rules and concept languages is investigated in [11]. Viewsin the object-oriented query language XSQL [18] are quite similar to query classesby seperating the signature of the answer objects from the membership condition.However, XSQL is too expressive (wrt. object model and generation of OID'sinside a query) for allowing the optimization techniques discussed here.Several applications of query classes in ConceptBase have validated the use-fulness of the idea but also pointed out the need for various extensions, bothfrom the user side (imprecise and intelligent question answering) and from thesystem side (integration of multiple formalisms). Finally, the symmetric evalu-ation of updates on answers to queries (view update) is a major challenge: adeclarative language for both updates and retrieve methods.References1. S. Abiteboul, "Towards a deductive object-oriented database language", Data &Knowledge Engineering, 5, 1990, pp. 263{287.2. H.W. Beck, S.K. Gala, and S.B. Navathe, "Classi�cation as a query processingtechnique in the CANDIDE semantic data model", in Proc. 5th Int. Conf. onData Engineering, 1989, pp. 572{581.3. C. Beeri and R. Ramakrishnan, "On the power of magic", in Proc. 6th ACMSIGMOD-SIGACT Symp. on Principles of Database Systems, 1987.4. A. Borgida, "From type systems to knowledge representation: natural semanticsspeci�cations for description logics", Int. Journal of Intelligent and CooperativeInformation Systems 1(1), pp. 93{126, 1992.5. A. Borgida, R.J. Brachman, D. McGuiness, and L.A. Resnick, "CLASSIC: Astructural data model for Objects", in Proc. ACM-SIGMOD Int. Conf. on Man-agement of Data, 1989, pp. 58{67.6. R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L.A. Resnick, and A.Borgida, "Living with CLASSIC:When and how to use a KL-ONE-like language",in Principles of Semantic Networks(Sowa J.,ed.), Morgan Kaufmann, 1991.7. R.J. Brachman and J.G. Schmolze, "An overview of the KL-ONE knowledgerepresentation system", Cognitive Science 9(2), pp. 171{216, 1985.8. F. Bry, H. Decker, and R. Manthey, "A uniform approach to constraint sat-isfaction and constraint satis�ability in deductive databases", in Int. Conf. onExtending Database Technology, 1988, pp. 488{505.9. M. Buchheit, M.A. Jeusfeld, W. Nutt, and M. Staudt, "Subsumption betweenqueries to object-oriented databases", appears in Proc. EDBT'94, Cambridge,UK, March 1994.10. S. Ceri, G. Gottlob, and L. Tanca, Logic programming and databases, Springer-Verlag, 1990.11. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, "A hybrid system withdatalog and concept languages", in Trends in Arti�cial Intelligence, (ArdizzoneE., Gaglio S., Sorbello F., eds.), LNAI 549, Springer Verlag, pp. 88-97, 1991.

12. B. Hollunder, W. Nutt, M. Schmidt-Schauss, "Subsumption algorithms forconcept description languages", in Proc. 9th European Conf. on Arti�cial In-telligence, pp. 348{353, 1990.13. M. Jarke (ed.), ConceptBase V3.1 user manual, Report Aachener Informatik-Berichte Nr. 92-17, RWTH Aachen, Germany, 1992.14. M.A. Jeusfeld, Update control in deductive object bases (in German). In�x-Verlag,St.Augustin, Germany, 1992.15. M.A. Jeusfeld and M. Jarke, "From relational to object-oriented integrity simpli-�cation", in Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases,LNCS 566, Springer-Verlag, pp. 460{477, 1991.16. M.A. Jeusfeld and M. Staudt, "Query optimization in deductive object bases",in Query Processing for Advanced Database Applications, (Freytag et al., eds.),Morgan-Kaufmann, 1993.17. A.C. Kakas and P. Mancarella, "Database updates through abduction", in Proc.16th Int. Conf. on Very Large Databases, 1990, pp. 650{661.18. M. Kifer, W. Kim, Y. Sagiv, "Querying object-oriented databases", in Proc.ACM-SIGMOD Int. Conf. on Management of Data, San Diego, Ca., 1992, pp.393{402.19. A. Klemann, Schema integration of relational databases (in German), Diplomathesis, Universit�at Passau, Germany, 1991.20. J. Mylopoulos, A. Borgida,M. Jarke, and M. Koubarakis, "Telos: a language forrepresenting knowledge about information systems", in ACM Trans. InformationSystems 8(4), pp. 325{362, 1990.21. A. Oliv�e, "Integrity constraints checking in deductive databases", in Proc. 17thInt. Conf. on Very Large Databases,1991, pp. 513{524.22. T. Rose, M. Jarke, J. Mylopoulos, "Organizing software repositories - model-ing requirements and implementation experiences", in Proc. 16th Int. ComputerSoftware & Applications Conf., Chicago, Ill., 1992.23. M.H. Scholl, C. Laasch, and M. Tresch, "Updatable views in object oriented data-bases", in Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases,Munich, Germany, 1991.24. M. Staudt, Query representation and evaluation in deductive object bases (inGerman), Diploma thesis, Universit�at Passau, Germany, 1990.25. M. Staudt, H.W. Nissen, M.A. Jeusfeld, "Query by class, rule, and concept", inApplied Intelligence, Special issue on Knowledge Base Management, (MylopoulosL., ed.), 1993.26. G. Steinke, "Design aspects of access control in a knowledge base system", inComputers & Security, 10, 7, 1991, pp. 612{625.27. L. Vieille, "Recursive axioms in deductive databases: The query-subquery ap-proach", In Proc. 1st Int. Conf. on Expert Database Systems, 1986.

This article was processed using the LaTEX macro package with LLNCS style

