Query Classes*

Martin Staudt, Matthias Jarke, Manfred A. Jeusfeld, Hans W. Nissen

Informatik V, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Germany

Abstract. Deductive object-oriented databases advocate the advantage
of combining object-oriented and deductive paradigms into a single data
model. Certainly, the query language in such a data model has to reflect
the amalgamation because it works as the interface to the user and/or ap-
plication program. This paper proposes a language to formulate queries
as classes related to the schema classes and constrained by an associative
membership condition. Answers are then regarded as their instances. The
interpretation is based on a deductive database view of queries. Generic
query classes are introduced with a simple parameter substitution con-
struct. The syntactic separation of structural and associative conditions
opens the way to semantic query optimization: subsumption between the
structural parts of queries can be decided efficiently.

1 Introduction

The query language of a database determines which and how information can
be retrieved from the database. Users generally demand a query language to be
declarative and efficient (i.e. easy to optimize). In the case of (deductive) object-
oriented databases the query language must be closely related to the data model.
Ideally, queries would be just class descriptions where instances are not inserted
by the user but computed by the query evaluator.

For this purpose, we propose an amalgamation of paradigms from object-
oriented databases (query by class), deductive databases (query by rule), and
knowledge representation languages (query by concept). The next section reviews
related work on each of the aspects. Section 3 contains the exposition of our query
language, discusses the interaction between the paradigms and reports shortly
on the influence of each of the three faces on the implementation of query classes
in the deductive object base management system ConceptBase. Finally, section
4 briefly presents fields of applications where our approach has been successfully
used.

* This work was supported in part by the Commission of the European Communities
under ESPRIT Basic Research Action 6810 (Compulog 2) and by the Ministry of
Science and Research of Nordrhein-Westfalen.

2 Three Views of Queries

The basic understanding of what constitutes a query strongly influences the
design of a query language and a query processing concept, and thus which
of the desirable features it can offer. In this section, we review query models
followed in the areas of object-oriented databases, deductive databases, and Al
concept languages which understand queries, respectively, as

— classes of answer objects manipulated by methods,
— deduction rules with parameterized answer attributes, or
— concepts with automatic classification through subsumption relationships.

It turns out that each of these approaches basically follows the idea to make
queries the same kind of thing it also handles otherwise. Each is particularly
suitable for certain application areas of query handling. Moreover, there are
specific reasons for this suitability which lie in the very nature of the approaches.
In the last subsection, we draw together these observations to come up with a
list of requirements our query model has to satisfy.

Query by Class: The Object-Oriented Approach. Object-oriented data-
bases (OODB) combine the paradigms of object identity, class membership, in-
heritance, and methods from object-oriented programming languages with the
database functionalities of persistence, concurrency, security, and declarative
querying.

Since classes are the mechanism for managing sets of objects it is natural
to use them also for describing query results, seen as sets of answer objects. A
general advantage of queries as classes is that answers can be managed the same
way as the objects in the OODB. Methods for processing answer objects can be
attached to query classes. The answer objects can be organized in generaliza-
tion/aggregation hierarchies and reuse methods of OODB classes. Moreover, the
integration of methods in OODB suggests an implementation approach to query
evaluation/view maintenance based on triggers attached to specific object/query
class subtypes.

Query by Rule: The Deductive Approach. A deductive database con-
sists of a finite set of facts (extensional database), and a finite set of deductive
rules (intensional database). We restrict ourselves to rules where negation in the
conclusion literal is disallowed and negated literals in the rule body must obey
the stratification condition (Datalog™). With these assumptions the preferred
interpretation is a certain minimal Herbrand model, the so-called perfect model.
It can be computed using a fixpoint operator [10]. Queries in deductive data-
bases look rather simple compared to object-oriented databases but they have
some advantages. The membership condition is defined by the rules which have
a matching conclusion literal. Thus, it is very easy to formulate parameterized
versions of a query just by replacing one or more variables by a constant.

Implementation techniques for query optimization have been thoroughly in-
vestigated yielding algorithms for recursion optimization (magic sets [3], query/
subquery approach [27]), and deductive integrity enforcement (e.g. [8], [21]).

View maintenance algorithms (storing the result of a query and keeping it up-
to-date with the database) have been less studied but are rather simple general-
izations of integrity enforcement. Some work has been done on updating views
in deductive databases, esp. by abductive reasoning [17].

Query by Concept: A Type Inferencing Approach. Starting with KL-
One [7], concept languages in artificial intelligence have pursued the idea to define
knowledge bases as type lattices of so-called concepts. Because of the restricted
usage of logical connectives a dedicated syntax for concept expressions has been
developed: the axioms (schema) are written as C' C FE (necessary condition)
or C' = F (necessary and sufficient condition) where E is constructed from
other defined concepts and binary predicates expressing relationships between
concepts.

The main purpose is to relate concepts to each other, e.g. to derive the
subsumption between two concepts ' and D. One should note that concept
languages make statements for all possible models of the theory whereas database
languages usually only consider the current database state as their model.

Systems such as CANDIDE [2] and CLASSIC [5] use concept descriptions
as a flexible query language for databases. Queries are just considered as a new
concept which is positioned in the concept lattice by subsumption algorithms.
Answers to the query are all instances of all subconcepts and some instances
of the direct super concepts (satisfying the additional constraints of the new
concept).

The benefit of concept lattices is that the search space of a query (i.e., a new
concept) is greatly reduced. The exact placement of a query into the lattice opens
the ability for intensional query answering: instead of enumerating all instances
of the query the system answers with the names of the subconcepts of the query
(slightly more complicated for the contribution of the direct super concepts). On
the other hand, if the extension of a super concept is materialized then a query
subsumed by such a concept may reuse the extensions as a fine range.

Summary of Requirements. Our short review has shown that each ap-
proach has advantages supporting certain functionalities of a desired query sys-
tem. The question addressed in our approach is how to integrate the three ap-
proaches. The following basic observations underly our solution, the query class:

— Queries as classes and queries as concepts offer the same object-oriented
structure for questions and answers; therefore, this will be our approach.

— To integrate objects and rules, we need an object model with a logic-based se-
mantics that allows a two-way transition between both. Our model of choice,
Telos (see section 3), goes even further by offering an object model with a
standard deductive database semantics, it has a precise translation into facts,
rules, and integrity constraints of a deductive database.

— Concept language subsumption algorithms can be expected to work safely
and effectively only for a sublanguage of the query language offered, e.g.,
by a full deductive database. A way has therefore to be found to offer both
aspects separately. Complete subsumption is only done on the sublanguage

(subsequently called type system). As in programming languages and in
constraint logic programming, the communication between both formalisms
is one-way, that is, the type system influences query processing but not vice
versa.

3 Query Classes in O-Telos

The O-Telos data model [14] is a variant of the knowledge representation lan-
guage Telos [20]. In the following subsections we introduce the basic properties
of the data model and show how queries in each of their roles fit into this frame-
work. With each role we explain briefly its influence on the implementation of
query classes in ConceptBase [13], a deductive object base management system.
A detailed description of the implementation is given in [25].

The syntax of query classes is a class definition with superclasses, attributes,
and a membership condition. The interpretation is based on a deductive rule
containing predicates for each of the clauses in the class definition. Integration
with concept languages is viewed as the extraction of the structurel part of a
query class, 1.e., the portion of the query which is representable as a concept
expression.

3.1 Representing Objects and Formulas

We define deductive object bases as deductive databases with builtin axioms
formalizing the three object-oriented abstraction dimensions of classification,
aggregation, and generalization. More specifically, a deductive object base is a
triple DOB = (OB, R, IC) where OB is the extensional object base, R and IC
contain deduction rules and integrity constraints. The axioms are represented as
predefined formulas in R and IC. Let ID and LAB be sets of identifiers, and
labels resp. An extensional O-Telos object base is a finite set

OB C {P(o,2,1,y) | 0,2,y € ID,1 € LAB}.

The elements of OB are called objects with identifier o, source and destina-
tion components # and y and name [. Objects of the form P(o, 0,1, 0) are called
individuals, P(o,,in,c) describes an instantiation relationship whereas special-
izations are of the form P(o, ¢, isa,d). All other objects P(o,,!,y) are called
attributes. This arrangement of an extensional object base permits an intuitive
representation as a semantic net: individuals as nodes, all other objects as links.
A third view on deductive object bases results in a frame-based notation of ob-
jects which only relies on object labels. Around the name [of an object o we
group the names of all other objects which have o as source component.

The running example in this paper is based on the following scenario from
a medical database: Patients are persons, suffer from diseases and take drugs
which have an effect on diseases. The frame notation of the objects Patient
and Drug is e.g. the following:

Patient isA Person with Drug with

attribute attribute
suffers:Disease; against:Disease
takes:Drug end
end

We use the following literals when defining the complete axiomatization but
also when specifying deductive rules and integrity constraints: (x in y) denotes
an instantiation relationship between x and y, (¢ isA d) an specialization rela-
tionship between ¢ and d, and (x m y) indicates that there exists an attribute
of category m with source x and destination y.

O-Telos requires a set of 35 axioms and axiom schemata implemented as
builtin deductive rules or integrity constraints of the deductive object base [14].
Here, we refer to a few important ones. Like most OODB and semantic data
models, O-Telos requires that instances of an object are also instances of its
superclasses. Another important property of the language is realized by the at-
tribute typing axiom: instantiation relationships between objects imply instanti-
ation relationships between their source resp. destination components. A similar
restriction holds for specialization links and allows a consistent way of refining
attributes of classes by their subclasses. Thus, although attributes of an object
are not explicitly inherited by subclasses they can nevertheless be instantiated
by their instances.

Instantiation links between objects in OB constitute different layers within
an object base. O-Telos does not restrict the number of layers; classes can be
instances of other classes (metaclasses), these can be instances of metameta-
classes, and so on. In addition to the O-Telos axioms the sets R and IC' contain
application specific deduction rules and integrity constraints which are specified
in a many-sorted first order language. Variable quantifications range over classes
and are interpreted as instantiation relationships.

As an example a deduction rule can be defined that deduces for a given
patient doctors who are suited to give him medical treatment. The constant
this refers to the instances of the class which carries the rule. Similarly one
may impose an integrity constraint on Patient that all instances actually must
have a filler for the suffers attribute. As a consequence of the attribute typing
axiom, the variable ranges can be used to determine type errors inside a formula.
Patient isA Person with

attribute
suited_doc:Doctor
rule
suited_rule:$ forall p/Doctor,d/Disease
(this suffers d) and (p specialist d)
==> (this suited_doc p) $
constraint

mustsuffer:$ exists d/Disease (this suffers d) $
end

3.2 Queries as Classes

The query language CBQL [24] represents queries as classes whose instances are
the answer objects to the query. These query classes are themselves instances

of the predefined object QueryClass and contain necessary and sufficient mem-
bership conditions for their instances (=answers). These conditions can be used
to check whether a given object is an instance of a query class or not. On the
other hand, they can be used to compute the set of answer objects. Query classes
have superclasses to which they are connected by an isa-link. These superclasses
restrict the set of possible answers to their common instances.

Two different kinds of query class attributes can be distinguished. Retrieved
attributes are already defined for one of the superclasses of the query class. An
explicit specification of such an attribute in a query class description means
that answer instances are given back with values for this attribute, similar to
relational projection. In addition a necessary condition for the instantiation by
an admissible value is included. The attributes of superclasses can also be refined,
i.e. the target class is substituted by a subclass which results in an additional
value restriction. If we assume a subclass Antibiotics of Drug the query class

QueryClass MaleOldAntibioticsPatient isA MalePatient,0ldPatient with
attribute
takes:Antibiotics
end

has those male and old patients as instances who take antibiotics. In addition
the concrete drugs are included in the answer description.

Computed attributes have values derived in the query evaluation process. Nei-
ther the extensional object base contains this relationship between the answer
instance and the attribute value, nor is it inferable by deduction rules. For pre-
scribing how to deduce these new relationships by analogy to deduction rules and
integrity constraints, many-sorted first order logic expressions are admissible as
building elements for query classes.

QueryClass WrongDrugPatient isA Patient with
attribute, parameter
wrong:Drug
constraint
wrongconstr:$ (this takes wrong) and
not exists d/Disease ((this suffers d) and
(wrong against d)) $
end

As in section 3.1 this refers to the answer instances of WrongDrugPatient,
namely all patients who take a drug which is against a disease they don’t suffer
from. The computed attribute wrong is identified with the variable of the same
name within the formula. All deduced wrong drugs are part of the answer.

The logical expression in query classes descriptions can also contain arbi-
trary other constraints for the answer instances which would then work like the
selection operation in relational databases.

In order to avoid the frequent reformulation of similar more specialized
queries, attributes of query classes can be declared as parameters. Substitu-
tion of a concrete value for such an attribute or specialization of its target class
by a subclass leads to a subclass of the original query which implies a subset
relationship of the answer sets. For the parameter wrong the expressions

WrongDrugPatient (Aspirin/wrong)
WrongDrugPatient (wrong:Antibiotics)

denote two derived query classes which restrict the answer instances of Wrong-
DrugPatient to those patients who take Aspirin resp. a drug of the class
Antibiotics as wrong drug. For example, WrongDrugPatient (Aspirin/wrong)
is a shorthand for the (non-parameterized) query class

QueryClass WrongAspirinPatient isA Patient with
constraint
Aspiconstr:$ (this takes Aspirin) and
not exists d/Disease ((this suffers d) and
(Aspirin against d)) $
end

Expressions denoting (derived) query classes are allowed to occur within the
definitions of other query classes and objects and are managed as full-fledged
objects, too. Most of the compilation steps applied to normal classes are also
applied to them, e.g. type checking of attributes. ConceptBase stores queries as
any other class. When methods are defined for schema classes then all subclasses
including query classes inherit these methods.

3.3 Queries as Rules

In deductive databases queries are represented as intensional relations derived
by a set of rules. We have shown above that O-Telos object bases are just special
cases of deductive databases. Obviously it should be possible to extend this view
to query classes.

The definition of a query class Q induces a so called query literal Q(x, 21, ...,)
whose arity depends on the number of attributes and parameters of Q. The first
argument = of) stands for the answer object identifiers. Query classes are trans-
formed to rules? concluding their corresponding query literals. By convention the
object identifier of an individual with name i is written as #i.

— For each superclass C of Q the body of this rule contains a literal In(i, #C)
where #C' is the object identifier of the class C and ¢ is a new variable
replacing this in the query class description.

— Attributes a:C of the first type (defined for a superclass or refined) result in
a conjunction In(v, #C) A A(i, a,v) where v is a new variable.

— Attributes a:C of the second type just require In(v,#C') where v is a new
variable.

— The logical formula describing the derivation of attribute values and other
additional restrictions 1s transformed straightforward by substituting the
newly introduced variables v and ¢ for their symbolic counterparts a and
this, replacing all occuring object names by object identifiers and resolving
typed quantifications.

2 We use a predicate-like notation of the literals to formulate deduction rules: In(x,y)
for (x in y) and A(x,m,y) for (x m y).

— As a last step all generated expressions have to be linked by conjunctions.
The new variables become arguments of the query literal.

Following these steps the example query class WrongDrugPatient is trans-
formed to the following rule:

Vi, v In(i, # Patient) A In(v, #Drug) A
NA(i,takes, v) A—3d In(d, #Disease)
NA(i, suf fers,d) AN A(v, against, d)
= WrongDrugPatient(i, v)

Each query class yields exactly one rule concluding its corresponding query
literal. Hence with closed world assumption the rule body provides a necessary
and sufficient characterization of class membership.

The deduction rule form of queries not only provides a clean semantics but
also a whole array of algorithms for evaluation and optimization known from the
deductive database area [10]. In ConceptBase, the deductive rules are rewritten
with the magic set method [3]. The main advantage of our query language is that
it completely falls into Datalog™. Thus, virtually any evaluation method from
this area is applicable. Optimization of rules and integrity constraints benefits
from the predefined axioms of the object model by elimination of redundant
predicates [15]. This also enhances the maintenance of materialized views, i.e.
stored answers to a query [16]. Recently, compilation of deductive rules into
algebra expressions has been added to ConceptBase. It profits from the fact
that the object model provides an access predicate for each class attribute.

3.4 Queries as Concepts

In programming languages objects (variables, functions, etc.) usually have types.
Type constructors for tuples ([]), sets ({ }), lists etc. allow to handle objects of
arbitrarily complex structure. In the same way most object-oriented databases
distinguish between objects and values on the one hand and classes and types
on the other hand. Objects have an unique identity and an assigned value of a
certain type. Classes are object containers which collect objects of the same type
(sometimes called member type).

O-Telos only provides the diction of classes where membership is constrained
by the builtin axioms and by user-defined constraints. Nevertheless we can ex-
tract type information from classes. A class definition is divided into a ’clean’
part, i.e. its type, and a ’dirty’ part containing all aspects for which the type
system 1s not powerful enough. The example class

Patient isA Person with
attribute
suffers:Digease;
takes:Drug
end

carries the information that patients have attributes takes and suffers,
each with certain value restrictions. In addition, patients have attributes (e.g.
name and address) defined for the superclass Person. Under consideration that
takes and suffers can have multiple fillers, a (member) type of Patient could
be the following:

[suffers : {DiseaseT}, takes : {DrugT}, name : string, address : AddressT)

where AT is a shorthand for the type of a class A. The relationship between types
in OODB’s and concept languages are discussed in [4]. Tt turns out that the latter
allow more restrictions on objects than the common plain type languages.

Following the syntax used in the concept language literature for our patient
example, we get a member type Patientl for Patient.

PatientT C Vsuf fers.Diseasel Tl Ytakes.Drug? N PersonT

The type information can be regarded as being a layer orthogonal to the
object base definition presented in 3.1.

The ’type view’ of deductive object bases introduced so far only used the V-
and - constructor for types and represented necessary conditions in the sense
that e.g. every patient is also a person and that all attribute fillers for the takes
attribute are drugs. Both conditions are guaranteed by O-Telos axioms. The
type expression above doesn’t cover neither the constraint nor the deductive
rule specified for Patient in 3.1. These parts of the class definiton are referred
to as the dirty part of a class definition.

On the other hand type restrictions may also be interpreted as sufficient
membership conditions for their instances which in concept languages leads to
the distinction between (defined) concepts and primitive concepts (the latter
with only necessary conditions) [6]. Thus we can say that ordinary classes in an
O-Telos object base have primitive concepts as their types. Primitive concepts
(as e.g. PatientT) are directly subordinated under their corresponding type
expression in the lattice which exactly represents the interpretation as necessary
conditions. Defined concepts are related to their defining expression by equality.

There is an obvious correspondence between query classes and defined con-
cepts since both state sufficient membership conditions. As with ordinary classes
query classes often have ’dirty’ parts not expressible by the type language. It
can be distinguished between query classes that actually use only type language
conform constructs — with a defined concept as their type — and those who have
additional parts and hence have just a primitive concept as their type.

The goal of a separation between a type layer and the usual object layer for
a deductive object base is to shift several kinds of inferences to the type layer
which promises more efficient computations due to the lower complexity of the
underlying language. The concept language community has examined a broad
palette of type languages and offers efficient algorithms for several of them [12]. If
one of these languages is chosen as type language for a deductive object base with
corresponding syntactic object counterparts for type language constructs (as
e.g., atleastn and atmostn above) we can apply these well understood inference

algorithms at the type level to infer new information at the object level. The more
complete the type language is, the more conditions of classes and query classes
can be expressed in concept expressions and used for these inferences. A simple
example 1s to support a type language extension with cardinality restrictions
> nr and < nr for fillers of an attribute r by additional new built-in attribute
categories atmostn and atleastn.

One example how inferences at the type layer may affect operations on the
object layer is the computation of subsumption relationships between queries
in order to avoid superfluous recomputations and reuse queries with stored an-
swers. The determination of such relationships between queries and views that
are materialized promises increasing efficiency. An efficient calculus for deciding
subsumption in this case is presented in [9]. The following simple query classes
shall demonstrate this.

QueryClass DrugPatient isA Patient with
attribute
takes:Drug
end

QueryClass AntibioticsPatient isA Patient with
attribute
takes:Antibiotics
constraint
appconstr:$ (this suffers Appendicitis) $
end
DrugPatient contains all those patients that take atleast one drug, Antibi-
oticsPatient requires a value restriction for takes to drugs of the class Anti-
biotics, at least one filler for takes and Appendicitis as filler for suffers.
Note that the specified value filler® Appendicitis belongs to the ’dirty’ part of
AntibioticsPatient and hence this query class has only a primitive concept

as its type. It can be deduced that

AntibioticsPatientT T PatientT T Ytakes. AntibioticsT 1 > 1takes
C PatientT N > 1takes = DrugPatientT

provided that AntibioticsT T Drugl.

Whenever the query AntibioticsPatient has to be evaluated and the ob-
ject base already contains the answers to DrugPatient since it is designed as
materialized view, it is not necessary to scan all patients in the object base but
only the precomputed answer set of drug taking patients.

4 Applications

The implementation of query classes in ConceptBase has turned out to be a
useful basis for several application areas that can exploit the different facets of
queries as classes, as rules, and as concepts. While some of these applications

? Several concept languages offer an enumeration construct which would allow to ex-
press such a condition in the type language.

used the query language concept as is, others base extensions such as access to
external data stores on it.

Software databases and repositories. Dynamic clusters are introduced in
[22] as collections of objects where the membership frequently changes. Instead of
procedurally assigning objects to such classes, a membership condition expressed
as a query class automatically classifies objects into the correct clusters. Due to
the deductive nature of query classes, the dynamic aspect of re-assigning objects
1s completely covered by view maintenance. The application mainly profits from
queries as classes: the dynamic cluster is a query class persistently stored on
the object base. It also profits from the representation of classes as objects in
O-Telos. In fact, there are many queries which actually have class objects as
anwers. This feature of query classes is sometimes called schema gquerying or
meta querying.

Security management. Security is becoming an increasing concern in many
databases. The Group Security Model GSM [26] uses generalization and aggre-
gation to define task-based access to parts of the object base (identified by
classes). The question what information a certain task may access is encoded as
a query class. Thus, the deductive view is applied for evaluation while the object-
oriented view and the availability of parameterized query classes are exploited
for the precise and concise characterization of access right patterns.

Integration of heterogeneous databases. In many applications, the in-
formation to be processed is distributed in more or less autonomous informa-
tion bases. Data may be replicated or even contradictory, the languages may
be heterogeneous. We have made a first attempt with query classes to schema
integration of distributed relational databases [19]. The system represents the
base relations and their abstractions to the integrated schema uniformly as query
classes. The deductive interpretation is used for accessing the base relations from
queries formulated at the level of the integrated schema. Object-oriented prin-
ciples come into play when organizing the communication between the external
databases: each database can be seen as a class with a small interface of methods
offered to the integrated system.

5 Conclusions

This paper presented a way to integrate the view of queries as classes, rules,
and concepts. In one sentence the idea is the following: queries are expressed
as classes, evaluated as deductive rules, and semantically optimized as concepts.
The first view offers easy formulation since relationship of queries to schema
classes is expressed by subclass and attribute statements in a simple frame no-
tation. The second view, queries as rules, provides the efficient evaluation algo-
rithms like magic sets and mapping to algebra expressions. Finally, we proposed
to extract the structural part from a query (queries as concepts) and make it
subject to reasoning on subsumption relationship between the answer sets of two
queries.

Previous integration efforts only concentrated on two of the three aspects of
queries. Similar to our approach, CoCoon [23] integrates concepts with classes
but with a fixed and very simple type system (only lattice of attribute names).
[1] presents a query language combining deduction with object-orientation. An
integration of deductive rules and concept languages is investigated in [11]. Views
in the object-oriented query language XSQL [18] are quite similar to query classes
by seperating the signature of the answer objects from the membership condition.
However, XSQL is too expressive (wrt. object model and generation of OID’s
inside a query) for allowing the optimization techniques discussed here.

Several applications of query classes in ConceptBase have validated the use-
fulness of the idea but also pointed out the need for various extensions, both
from the user side (imprecise and intelligent question answering) and from the
system side (integration of multiple formalisms). Finally, the symmetric evalu-
ation of updates on answers to queries (view update) is a major challenge: a
declarative language for both updates and retrieve methods.

References

1. S. Abiteboul, ”Towards a deductive object-oriented database language”, Data &
Knowledge Engineering, 5, 1990, pp. 263-287.

2. H.W. Beck, S.K. Gala, and S.B. Navathe, ”Classification as a query processing
technique in the CANDIDE semantic data model”, in Proc. 5th Int. Conf. on
Data Fngineering, 1989, pp. 572-581.

3. C. Beeri and R. Ramakrishnan, ”On the power of magic”, in Proc. 6th ACM
SIGMOD-SIGACT Symp. on Principles of Database Systems, 1987.

4. A. Borgida, ”From type systems to knowledge representation: natural semantics
specifications for description logics”, Int. Journal of Intelligent and Cooperative
Information Systems 1(1), pp. 93-126, 1992.

5. A. Borgida, R.J. Brachman, D. McGuiness, and L.A. Resnick, "CLASSIC: A
structural data model for Objects”, in Proc. ACM-SIGMOD Int. Conf. on Man-
agement of Data, 1989, pp. 58-67.

6. R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L.A. Resnick, and A.
Borgida, ”Living with CLASSIC: When and how to use a KL-ON E-like language”,
in Principles of Semantic Networks(Sowa J.,ed.), Morgan Kaufmann, 1991.

7. R.J. Brachman and J.G. Schmolze, ”An overview of the KL-ONE knowledge
representation system”, Cognitive Science 9(2), pp. 171-216, 1985.

8. F. Bry, H. Decker, and R. Manthey, ”A uniform approach to constraint sat-
isfaction and constraint satisfiability in deductive databases”, in Int. Conf. on
Extending Database Technology, 1988, pp. 488-505.

9. M. Buchheit, M.A. Jeusfeld, W. Nutt, and M. Staudt, ”Subsumption between
queries to object-oriented databases”, appears in Proc. FDBT’94, Cambridge,
UK, March 1994.

10. S. Cen, G. Gottlob, and L. Tanca, Logic programming and databases, Springer-
Verlag, 1990.

11. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, ” A hybrid system with
datalog and concept languages”, in Trends in Artificial Intelligence, (Ardizzone
E., Gaglio S., Sorbello F., eds.), LNAI 549, Springer Verlag, pp. 88-97, 1991.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

B. Hollunder, W. Nutt, M. Schmidt-Schauss, ”Subsumption algorithms for
concept description languages”, in Proc. 9th FEuropean Conf. on Artificial In-
telligence, pp. 348-353, 1990.

M. Jarke (ed.), ConceptBase V3.1 user manual, Report Aachener Informatik-
Berichte Nr. 92-17, RWTH Aachen, Germany, 1992.

M.A. Jeusfeld, Update control in deductive object bases (in German). Infix-Verlag,
St.Augustin, Germany, 1992.

M.A. Jeusfeld and M. Jarke, ” From relational to object-oriented integrity simpli-
fication”, in Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases,
LNCS 566, Springer-Verlag, pp. 460-477, 1991.

M.A. Jeusfeld and M. Staudt, "Query optimization in deductive object bases”,
in Query Processing for Advanced Database Applications, (Freytag et al., eds.),
Morgan-Kaufmann, 1993.

A.C. Kakas and P. Mancarella, ” Database updates through abduction”, in Proc.
16th Int. Conf. on Very Large Databases, 1990, pp. 650—661.

M. Kifer, W. Kim, Y. Sagiv, "Querying object-oriented databases”, in Proc.
ACM-SIGMOD Int. Conf. on Management of Data, San Diego, Ca., 1992, pp.
393-402.

A. Klemann, Schema integration of relational databases (in German), Diploma
thesis, Universitat Passau, Germany, 1991.

J. Mylopoulos, A. Borgida,M. Jarke, and M. Koubarakis, *Telos: a language for
representing knowledge about information systems”, in ACM Trans. Information
Systems 8(4), pp. 325-362, 1990.

A. Olivé, ”Integrity constraints checking in deductive databases”, in Proc. 17th
Int. Conf. on Very Large Databases, 1991, pp. 513-524.

T. Rose, M. Jarke, J. Mylopoulos, ”Organizing software repositories - model-
ing requirements and implementation experiences”, in Proc. 16th Int. Computer
Software & Applications Conf.; Chicago, Ill., 1992.

M.H. Scholl, C. Laasch, and M. Tresch, ”Updatable views in object oriented data-
bases”, in Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases,
Munich, Germany, 1991.

M. Staudt, Query representation and evaluation in deductive object bases (in
German), Diploma thesis, Universitdt Passau, Germany, 1990.

M. Staudt, H.W. Nissen, M.A. Jeusfeld, ”Query by class, rule, and concept”, in
Applied Intelligence, Special issue on Knowledge Base Management, (Mylopoulos
L., ed.), 1993.

G. Steinke, ”Design aspects of access control in a knowledge base system”, in
Computers & Security, 10, 7, 1991, pp. 612-625.

L. Vieille, ”Recursive axioms in deductive databases: The query-subquery ap-
proach”, In Proc. 1st Int. Conf. on Fapert Database Systems, 1986.

This article was processed using the IATpX macro package with LLNCS style

