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11. IntroductionIn his pioneering paper on the approximation of combinatorial optimization problems [15],David Johnson formally introduced the notion of approximable problem, proposed approxi-mation algorithms for several problems, and suggested a possible classi�cation of optimizationproblems on grounds of their approximability properties. Since then it was clear that, eventhough all NP-hard optimization problems are many-one polynomial-time reducible to eachother, they do not share the same approximability properties. The main reason of this fact isthat many-one reductions not always preserve the objective function and, even if this happens,they rarely preserve the quality of the solutions. It is then clear that a stronger kind of re-ducibility has to be used. Indeed, an approximation preserving reduction not only has to mapinstances of a problem A to instances of a problem B, but it also has to be able to come backfrom \good" solutions in B to \good" solutions in A. Surprisingly, the �rst de�nition of thiskind of reducibility was given as long as 13 years after Johnson's paper [26] and, after that, atleast seven di�erent de�nitions of approximation preserving reducibility appeared in the liter-ature (see Fig. 1). These de�nitions are identical with respect to the overall scheme but di�eressentially in the way they preserve approximability: they range from the Strict reducibilityin which the error cannot increase to the PTAS-reducibility in which there are basically norestrictions (see also Chapter 3 of [16]).PTAS-reducibility [10]P-reducibility [26]6L-reducibility [29] E-reducibility [19]Strict reducibility [26]����*����* HHHHY 6 HHHHYContinuous reducibility [31]A-reducibility [26]Figure 1. The taxonomy of approximation preserving reducibilitiesBy means of these reducibilities, several notions of completeness in approximation classeshave been introduced and, basically, two di�erent approaches were followed. On the one hand,the attention was focused on computationally de�ned classes of problems whose approxima-bility properties were well understood, such as NPO and APX: along this line of research,however, almost all completeness results dealt either with arti�cial optimization problems orwith problems for which lower bounds on the quality of the approximation were easily obtain-able [26, 9]. On the other hand, researchers focused on the logical de�nability of optimizationproblems and introduced several syntactically de�ned classes for which natural completenessresults were obtained [29, 27, 20]: unfortunately, the approximability properties of the prob-lems in these latter classes were not related to standard complexity-theoretic conjectures. A�rst step towards the reconciling of these two approaches consisted of proving lower bounds onthe approximability of complete problems for syntactically de�ned classes, unless P = NP (orsome other unlikely condition) [3, 23]. More recently, another step has been performed since theclosure of syntactically de�ned classes with respect to approximation preserving reducibilityhas been proved to be equal to the more familiar computationally de�ned classes [19].



2In spite of this important achievement, beyond APX we are still forced to distinguish be-tween maximization and minimization problems as long as we are interested in completenessproofs. Indeed, a result of [20] states that it is not possible to rewrite every NP maximizationproblem as an NP minimization problem unless NP=co-NP. A natural question is thus whetherthis duality extends to approximation preserving reductions.Finally, even though the existence of \intermediate" arti�cial problems, that is, problemsfor which lower bounds on their approximation are not obtainable by completeness resultswas proved in [9], a natural question arises: do natural intermediate problems exist? Observethat this question is also open in the �eld of decision problems even though the existence ofarti�cial NP-intermediate problems has been already proved [22]. For example, it is known thatthe graph isomorphism problem cannot be NP-complete unless the polynomial-time hierarchycollapses [30], but no similar result has ever been obtained showing that the problem does notbelong to P.1.1. Summary of the ResultsThe �rst goal of this paper is to de�ne an approximation preserving reducibility such thatall reductions that have appeared in the literature still hold and such that it can be usedfor as many approximation classes as possible. In spite of the fact that the L-reducibilityhas been the most widely used so far, we will give strong evidence that it cannot be usedto obtain completeness results in \computationally de�ned" classes such as APX, log-APX(that is, the class of problems approximable within a logarithmic factor), and poly-APX (thatis, the class of problems approximable within a polynomial factor). Indeed, on the one handthe L-reducibility is too weak and is not approximation preserving (unless P = NP \ co-NP),on the other it is too strict and does not allow to reduce problems which are known to beeasy to approximate to problems which are known to be hard to approximate (unless PNP �PNP[O(logn)]). The weakness of the L-reducibility is, essentially, shared by all reducibilities ofFig. 1 but the Strict reducibility and the E-reducibility, while the strictness of the L-reducibilityis shared by all of them but the PTAS-reducibility. The reducibility we propose is a combinationof the E-reducibility and of the PTAS-reducibility and, as far as we know, it is the strictestreducibility that allows to obtain all approximation completeness results that have appearedin the literature, such as, for example, the APX-completeness of the maximum satis�abilityproblem [10, 19] and the poly-APX-completeness of the maximum clique problem [19].The second group of results refers to the existence of natural complete problems in NPO. In-deed, both [26] and [9] provide examples of natural complete problems for the class of minimiza-tion and maximization NP problems, respectively. In Sect. 3 we will show the existence of bothmaximization and minimization NPO-complete natural problems. In particular, we prove thatMaximum 0� 1 Programming, Minimum 0� 1 Programming, and Minimum WeightedIndependent Dominating Set are NPO-complete. This result shows how making use of anatural approximation preserving reducibility is enough powerful to encompass the `duality'problem raised in [20]. Moreover, the same result can also be obtained when restricting our-selves to the class NPO PB (that is, the class of polynomially bounded NPO problems). Inparticular, we prove that Maximum PB 0 � 1 Programming, Minimum PB 0 � 1 Pro-gramming and Minimum Independent Dominating Set, are NPO PB-complete. Indeed,this result can also be obtained as a consequence of Theorem 6(a) of [19]. However, our proofdoes not make use of the PCP model.



3The third group of results refers to the existence of natural APX-intermediate problems.In particular, in Sect. 4, we will prove that Minimum Bin Packing (and other natural NPOproblems) cannot be APX-complete unless the polynomial-time hierarchy collapses. Since it iswell-known [25] that this problem belongs to APX and that it does not belong to PTAS (thatis, the class of NPO problems with polynomial-time approximation schemes) unless P=NP, ourresult thus yields the �rst example of a natural APX-intermediate problem (under a naturalcomplexity-theoretic conjecture). Roughly speaking, the proof of our result is structured intotwo main steps. In the �rst step, we show that ifMinimum Bin Packing is APX-complete thenthe problem of answering any set of k non-adaptive queries to an NP-complete problem can bereduced to the problem of approximating an instance ofMinimum Bin Packing within a ratiodepending on k. In the second step, we show that the problem of approximating an instanceofMinimum Bin Packing within a given performance ratio can be solved in polynomial-timeby means of a constant number of non-adaptive queries to an NP-complete problem. Thesetwo steps will imply the collapse of the query hierarchy which in turn implies the collapse ofthe polynomial-time hierarchy. As a side e�ect of our proof, we will show that if a problem isAPX-complete, then it does not admit an asymptotic approximation scheme: as far as we know,no general technique to obtain this kind of results was previously known.In the last group of results, we state new connections between the approximability proper-ties and the query complexity of NP-hard optimization problems. In several recent papers thenotion of query complexity (that is, the number of queries to an NP oracle needed to solve agiven problem) has been shown to be a very useful tool for understanding the complexity ofapproximation problems. In [8, 6] upper and lower bounds have been proved on the number ofqueries needed to approximate certain optimization problems (such as the maximum satis�a-bility problem and the maximum clique problem): these results dealt with the complexity ofapproximating the value of the optimum solution and not with the complexity of computingapproximate solutions. In this paper, instead, the complexity of \constructive" approximationwill be addressed by considering the languages that can be recognized by polynomial-time ma-chines which have a function oracle that solves the approximation problem. In particular, inSect. 4.1 we will be able to solve an open question of [6] proving that �nding the vertices of thelargest clique is more di�cult than merely �nding the vertices of a 2-approximate clique (thatis, a clique with at least half the size of the largest clique) unless the polynomial-time hierarchycollapses. On the one hand, the results of [8, 6] show that the query complexity is a goodmeasure of complexity to study approximability properties of optimization problems. On theother, our results show that completeness in approximation classes implies lower bounds on thequery complexity. In Sect. 5 we �nally show that the two approaches are basically equivalent bygiving su�cient and necessary conditions for approximation completeness in terms of query-complexity hardness and combinatorial properties. The importance of these results is twofold:they give new insights into the structure of complete problems in approximation classes andthey reconcile the approach based on standard computation models with the approach based onthe computation model for approximation proposed by [7]. As a �nal observation, our resultscan be seen as an extension of some results of [19] in which general su�cient conditions forAPX-completeness are proved.Due to the lack of space, the proofs of our results are all contained in the appendix wherethe problems mentioned in the text are also de�ned.



41.2. PreliminariesSince several introductory books on computational complexity theory [5, 12, 28] make somemention of approximation classes, we will start the following preliminaries on approximationclasses with some mention of computational complexity theory.De�nition 1. A language L belongs to the class PNP[f(n)] if it is decidable by a polynomial-time oracle Turing machine which asks at most f(n) queries to an NP-complete oracle, wheren is the input size.The class QH is equal to the union Sk>1 PNP[k]. Similarly, we can de�ne the function classesFPNP[f(n)].Theorem 1 ([33]). For any function f(n) 2 O(logn), if PNP[f(n)+1] � PNP[f(n)] then thepolynomial-time hierarchy collapses.We now give some standard de�nitions in the �eld of optimization and approximation theory.De�nition 2. An NP optimization problem A is a fourtuple (I; sol;m; goal) such that1. I is the set of the instances of A and it is recognizable in polynomial time.2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. These solutionsare short, that is, a polynomial p exists such that, for any y 2 sol(x), jyj � p(jxj). Moreover,it is decidable in polynomial time whether, for any x and for any y such that jyj � p(jxj),y 2 sol(x).3. Given an instance x and a feasible solution y of x, m(x; y) denotes the positive integermeasure of y (often also called the value of y). The function m is computable in polynomialtime and is also called the objective function.4. goal 2 fmax;ming.The class NPO is the set of all NP optimization problems.The goal of an NPO problem with respect to an instance x is to �nd an optimum solution,that is, a feasible solution y such that m(x; y) = goalfm(x; y0) : y0 2 sol(x)g.In the following opt will denote the function mapping an instance x to the measure of anoptimum solution. Max NPO is the set of maximization NPO problems and Min NPO is theset of minimization NPO problems.An NPO problem is said to be polynomially bounded if a polynomial q exists such that, forany instance x and for any solution y of x, m(x; y) � q(jxj). The class NPO PB is the set ofall polynomially bounded NPO problems. NPO PB = Max PB [Min PB where Max PB isthe set of all maximization problems in NPO PB and Min PB is the set of all minimizationproblems in NPO PB.De�nition 3. Let A be an NPO problem. Given an instance x and a feasible solution y of x,we de�ne the performance ratio of y with respect to x asR(x; y) = max�m(x; y)opt(x) ; opt(x)m(x; y)� :The performance ratio is always a number greater than 1 and is as close to 1 as the feasiblesolution is close to the optimum one.



5De�nition 4. Let A be an NPO problem and let T be an algorithm that, for any instance xof A, returns a feasible solution T (x). Given an arbitrary function r : N ! (1;1), we say thatT is an r(n)-approximate algorithm for A if, for any instance x, the performance ratio of thefeasible solution T (x) with respect to x veri�es the following inequality:R(x; T (x))� r(jxj):De�nition 5. Given a class of functions F , an NPO problem A belongs to the class F -APXif an r(n)-approximate polynomial-time algorithm T for A exists, for some function r 2 F .In particular, APX, log-APX, and poly-APX will denote the classes F -APX with F equal tothe set of constant functions, to the set O(logn), and to the set of polynomials, respectively.De�nition 6. An NPO problem A belongs to the class PTAS if an algorithm T exists suchthat, for any �xed rational r > 1, T (�; r) is a polynomial-time r-approximate algorithm for A.Clearly, the following inclusions hold:PTAS � APX � log-APX � poly-APX � NPO:It is also easy to see that these inclusions are strict if and only if P 6= NP.2. A new approximation preserving reducibilityWe will justify our de�nition by emphasizing the disadvantages of previously known reducibil-ities.2.1. The L-reducibilityThe �rst reducibility we shall consider is the L-reducibility (for linear reducibility) which isoften most practical to use in order to show that a problem is at least as hard to approximateas another.De�nition 7. Let A and B be two NPO problems. A is said to be L-reducible to B, in symbolsA �L B, if two functions f and g and two positive constants � and � exist such that:1. For any x 2 IA, f(x) 2 IB is computable in polynomial time.2. For any x 2 IA and for any y 2 solB(f(x)), g(x; y) 2 solA(x) is computable in polynomialtime.3. For any x 2 IA, optB(f(x)) � �optA(x).4. For any x 2 IA and for any y 2 solB(f(x)),joptA(x)�mA(x; g(x; y))j � �joptB(f(x))�mB(f(x); y)jClearly the L-reducibility preserves membership in PTAS. However, the next result gives astrong evidence that, in general, this reducibility is not approximation preserving. It also showsthat the behavior of L-reductions depends on the type (that is, maximization or minimization)of the problems involved.Theorem 2. The following hold:



61. L-reductions from minimization problems to optimization problems are approximation pre-serving.2. L-reductions from maximization problems to optimization problems are not approximationpreserving if and only if the 
-reducibility is di�erent from the many-one reducibility.Observe that in [14] it is shown that the hypothesis of the point (2) above is somewhat inter-mediate between P 6= NP \ co-NP and P 6= NP. In other words, there is strong evidence that,even though the L-reducibility is suitable to prove APX-completeness results, this reducibilitycannot be used to de�ne the notion of completeness within classes beyond APX. Moreover, itcannot be used to obtain positive results, that is, the existence of approximation algorithmsvia reductions.2.2. The E-reducibilityThe drawbacks of the L-reducibility are mainly due to the fact the relation between the per-formance ratios (not necessarily linear) is obtained by putting separate linear constraints onthe relations between both the optimum values and the absolute errors. The E-reducibility (forerror reducibility), instead, imposes a linear relation directly between the performance ratios.De�nition 8. Let A and B be two NPO problems. A is said to be E-reducible to B, in symbolsA �E B, if two functions f and g and a positive constant � exist such that:1. For any x 2 IA, f(x) 2 IB is computable in polynomial time.2. For any x 2 IA and for any y 2 solB(f(x)), g(x; y) 2 solA(x) is computable in polynomialtime.3. For any x 2 IA and for any y 2 solB(f(x)),RA(x; g(x; y))� 1 + �(RB(f(x); y)� 1):Observe that, for any function r, an E-reduction maps r(n)-approximate solutions into (1 +�(r(n)� 1))-approximate solutions so that it not only preserves membership in PTAS but alsomembership in any F -APX class where F is closed with respect to linear applications, suchas poly-APX, log-APX, and APX. As a consequence of this observation and of the results ofthe previous section, we have that NPO problems should exist which are L-reducible to eachother but not E-reducible. However, the following result shows that within the class APX theE-reducibility is just a generalization of the L-reducibility.Proposition 1. For any two NPO problems A and B, if A �L B and A 2 APX, then A �E B.Clearly, the converse of the above result does not hold since no problem in NPO�NPO PBcan be L-reduced to a problem in NPO PB while any problem in PO can be E-reduced to anyNPO problem.The E-reduction is still somewhat too strict. Indeed, the next result shows that, unlessPNP � PNP[O(logn)], PTAS problems exist which are not reducible to APX problems (observethat from the above proposition this fact holds for the L-reducibility as well). Intuitively, thisunnatural behavior is due to the fact that an E-reduction preserves optimum values.Proposition 2. Maximum Knapsack is not E-reducible to any NPO PB problem unlessPNP � PNP[O(logn)].



72.3. The AP-reducibilityWe have just observed that a drawback of the E-reducibility consists of preserving optimumsolutions. This is due to the fact that the linear relation between the performance ratios istoo restrictive. According to the de�nition of approximation preserving reducibilities given in[9], we could overcome this problem by expressing this relation by means of an implication.However, this solution is not su�cient: intuitively, since the function g does not know whichapproximation is required, it must still map optimum solutions into optimum solutions. The�nal step thus consists in letting the function g depend on the performance ratio. Indeed, inthe following de�nition (which is a restriction of the PTAS-reducibility introduced in [10]), wealso let the function f depend on this ratio because this feature will turn out to be useful inorder to prove interesting characterizations of complete problems in approximation classes.De�nition 9. Let A and B be two NPO problems. A is said to be AP-reducible to B, insymbols A �AP B, if two functions f and g and a positive constant � exist such that:1. For any x 2 IA and for any r > 1, f(x; r) 2 IB.2. For any x 2 IA, for any r > 1, and for any y 2 solB(f(x; r)), g(x; y; r) 2 solA(x).3. f and g are computable by two algorithms Tf and Tg, respectively, whose running time ispolynomial for any �xed r.4. For any x 2 IA, for any r > 1, and for any y 2 solB(f(x; r)),RB(f(x; r); y)� r implies RA(x; g(x; y; r))� 1 + �(r � 1):Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility. Moreover,it is easy to see that Proposition 2 does not hold for the AP-reducibility: indeed, any PTASproblem is AP-reducible to any NPO problem. As far as we know, this reducibility is thestrictest one appearing in the literature that allows to obtain natural APX-completeness results(for instance, the APX-completeness of Maximum Satisfiability [10, 19]).3. NPO-complete problemsWe will in this section prove that there are natural problems that are complete for the classesNPO and NPO PB. Previously, completeness results have been obtained just for Max NPO,Min NPO, Max PB, and Min PB [9, 26, 4, 17]. One example of such a result is the followingtheorem.Theorem 3 ([26, 9]). MinimumWeighted Satisfiability isMin NPO-complete andMax-imum Weighted Satisfiability is Max NPO-complete, even if only a subset fv1; : : : ; vsg ofthe variables has nonzero weight and w(vi) = 2s�i for i 2 [1::s].We will construct AP-reductions from maximization problems to minimization problemsand vice versa. Using these reductions we will show that a problem that is Max NPO-completeor Min NPO-complete in fact is complete for the whole of NPO, and that a problem that isMax PB-complete or Min PB-complete is complete for the whole of NPO PB.Theorem 4. MinimumWeighted Satisfiability andMaximumWeighted Satisfiabil-ityare NPO-complete.



8Corollary 1. Any Min NPO-complete problem is NPO-complete and any Max NPO-completeproblem is NPO-complete. The problems Minimum 0� 1 Programming, Traveling Sales-person Problem, and Minimum Weighted Independent Dominating Set are NPO-complete.We can also show that there are natural complete problems for the class of polynomiallybounded NPO problems.Theorem 5. Maximum PB 0� 1 Programming and Minimum PB 0� 1 Programmingare NPO PB-complete.Corollary 2. Any Min PB-complete problem is NPO PB-complete and any Max PB-completeproblem is NPO PB-complete.By using the construction of the proof of Theorem 5 together with the result that LongestInduced Path is not approximable within jV j1�" for any " > 0 unless P = NP [24], one canshow the following new hardness results for some NPO PB-complete problems.Theorem 6. The following problems are not approximable within n1�" for any " > 0 unlessP = NP: Maximum Number of Satisfiable Formulas [27] (n is the number of equations),Maximum Distinguished Ones [27] (n is the number of distinguished variables), MaximumPB 0� 1 Programming (n is the number of inequalities).The following problems are not approximable within n1=2�" for any " > 0 unless P = NP:Maximum PB 0�1 Programming (n is the number of variables), Maximum ConstrainedBinary Satisfiable Linear Subsystem [1] (n is the number of variables).The following problems are not approximable within n1=3�" for any " > 0 unless P = NP:Max-imum Ones [27] (n is the number of variables), Maximum Irrelevant Binary Variablesin Linear System [2] (n is the number of variables).4. Query complexity and APX-intermediate problemsDe�nition 10. Let A be an NPO problem and r be a function, then Ar(n) is the followingmulti-valued partial function: given an instance x of A, Ar(n)(x) is the set of feasible solutionsy of x such that R(x; y) � r(jxj).De�nition 11. Given an NPO problem A and a rational r � 1, a language L belongs to PArif two polynomial-time computable functions f and g exist such that, for any x, f(x) is aninstance of A, and, for any y 2 Ar(f(x)), g(x; y) = 1 if and only if x 2 L.The class AQH(A) is equal to the union Sr>1 PAr . Using techniques similar to those of [6, 8],we can prove the following result.Proposition 3. For any problem A in APX, AQH(A) � QH.Recall that an NPO problem admits an asymptotic polynomial-time approximation schemeif an algorithm T exists such that, for any x and for any r > 1, R(x; T (x; r)) � r + k=opt(x)with k constant and the time complexity of T (x; r) is polynomial with respect to jxj. Theclass of problems that admit an asymptotic polynomial-time approximation scheme is usuallydenoted as PTAS1. The following result shows that, for this class, the previous fact can bestrengthened.Proposition 4. Let A 2 PTAS1. Then, a constant h exists such that AQH(A) � PNP[h].



9The following fact, instead, states that any language L in the query hierarchy can be decidedusing just one query to A" where A is APX-complete and " depends on the level of the queryhierarchy L belongs to.Proposition 5. For any APX-complete problem A, QH � AQH(A).By combining Propositions 5 and 3, we thus have the following result that characterizes theapproximation query hierarchy of the hardest problems in APX.Theorem 7. For any APX-complete problem A, AQH(A) = QH.Finally, as a consequence of this theorem, of Proposition 4, of Theorem 1, and of the resultsof [13, 18, 11] we have the following result.Corollary 3. If the polynomial-time hierarchy does not collapse, then Minimum DegreeSpanning Tree, Minimum Bin Packing, and Minimum Edge Coloring are APX-intermediate.4.1. A remark on Maximum CliqueThe following two propositions are the analogous of Propositions 3 within NPO.Proposition 6. For any NPO problem A and for any r > 1, PAr � PNP[O(logn)].Proposition 7. For any NPO PB problem A and for any r > 1, PAr � PNP[log logn+O(1)].From Proposition 7, from the fact that PNP[logn] is contained in PMC1 where MC standsfor Maximum Clique [21], and from Theorem 1, it thus follows the next result that solves anopen question posed in [6]. Informally, this result states that it is not possible to reduce theproblem of �nding a maximum clique to the problem of �nding a 2-approximate clique (unlessthe polynomial-time hierarchy collapses).Theorem 8. If PMC1 � PMC2 then the polynomial-time hierarchy collapses, where MC standsfor Maximum Clique.5. Query complexity and completeness in approximation classesIn this �nal section, we shall give a full characterization of problems complete for poly-APXand for APX, respectively, in terms of query complexity.De�nition 12. NPFNP[q(n)] is the class of partial multi-valued functions computable by non-deterministic polynomial-time Turing machines which ask at most q(n) queries to an NP oraclein the entire computation tree.1De�nition 13. Let F and G be two partial multi-valued functions. We say that F many-onereduces to G (in symbols, F�mvG) if two polynomial-time algorithms t1 and t2 exist suchthat, for any x in the domain of F , t1(x) is in the domain of G and, for any y 2 G(t1(x)),t2(x; y) 2 F (x).1 We say that a multi-valued partial function F is computable by a nondeterministic Turing machine N if,for any x in the domain of F , an halting computation path of N(x) exists and any halting computation path ofN(x) outputs a value of F (x).



10We shall say that a function F is hard for NPFNP[q(n)] if, for any G 2 NPFNP[q(n)], G�mvF .The following de�nition is a constructive version of the de�nition of self-improvability givenin [27].De�nition 14. A problem A is self-improvable if two algorithms t1 and t2 exist such that, forany instance x of A and for any two rational r1; r2 > 1, x0 = t1(x; r1; r2) is an instance of Aand, for any y0 2 Ar2(x0), y = t2(x; y0; r1; r2) 2 Ar1(x). Moreover, for any �xed r1 and r2, therunning time of t1 and t2 is polynomial.From [27] it follows that the equivalence with respect to the AP-reducibility preserves theself-improvability property. We are now ready to state the main result of this section.Theorem 9. A poly-APX problem A is poly-APX-complete if and only if it is self-improvableand Ar0 is NPFNP[log logn+O(1)]-hard for some r0 > 1.The above theorem cannot be proved without the dependency of both f and g on r in thede�nition of AP-reducibility. Indeed, it is possible to prove that if only g has this propertythen, unless the polynomial-time hierarchy collapses, a self-improvable problem A exists suchthat A2 is NPFNP[log logn+O(1)]-hard and A is not poly-APX-complete.In order to characterize APX-complete problems, we have to de�ne the following combina-torial property.De�nition 15. An NPO problem A is linearly additive if a constant � and two algorithms t1and t2 exist such that, for any rational " > 0 and for any sequence x1; : : : ; xk of instances of A,x0 = t1(x1; : : : ; xk; ") is an instance of A and, for any y0 2 A1+"�=k(x0), t2(x1; : : : ; xk; y0; ") =y1; : : : ; yk where each yi is a (1+ ")-approximate solution of xi. Moreover, the running time oft1 and t2 is polynomial for every �xed " > 0.Theorem 10. An APX problem A is APX-complete if and only if it is linearly additive anda constant r0 exists such that Ar0 is NPFNP[1]-hard.Note that linear additivity plays for APX problem more or less the same role of self-improvability in poly-APX. These two properties are, in a certain sense, one the opposite of theother: while the query complexity of APX-complete problems depends on the performance ratioand does not depend on the size of the instance, the query complexity of poly-APX-completeproblems depends on the size of the instance and does not depend on the performance ratio.Indeed, it is possible to prove that no APX-complete problem can be self-improvable (un-less P= NP) and that no poly-APX-complete problem can be linearly additive (unless thepolynomial-time hierarchy collapses).It is also possible to establish query complexity results for log-APX-complete problem. Inparticular, even though we have not been able to establish a full characterization of log-APX-complete problems, we can prove the following result.Theorem 11. No log-APX-complete problem can be self-improvable unless the polynomialtime-hierarchy collapses.It is then an interesting open question to �nd a characterizing combinatorial property of log-APX-complete problems. Moreover, as a consequence of the above theorem and of the resultsof [19], we conjecture that the minimum set cover problem is not self-improvable.
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13AppendixWe will now give the proofs of the results presented in the paper, the de�nitions of theproblems and some additional references.A. Proof of the results of Section 2Proof of Theorem 2. (1) follows from the fact, noted in [29], that if a minimization problemA L-reduces to an optimization problem B and there is a polynomial-time r-approximationalgorithm for B, then there is a polynomial-time (1 + ��(r � 1))-approximation algorithm forA. In order to prove (2), �rst recall that in [36] it has been shown that the 
-reducibilityis di�erent from the many-one reducibility if and only if a polynomial-time recognizable setof satis�able Boolean formulas exists for which no polynomial-time algorithm can computea satisfying assignment for each of them. Assume now that there exists a polynomial-timerecognizable set S of satis�able Boolean formulas for which no polynomial-time algorithmcan compute a satisfying assignment for each of them. Consider the following maximizationproblems A = (IA; solA; mA) and B = (IB; solB; mB) where1. IA = S, solA(x) = fyjy is a truth assignment for xg, and2. mA(x; y) = ( jxj if y is a satisfying assignment for x,1 otherwiseand1. IB = S, solB(x) = fyjy is a truth assignment for xg, and2. mB(x; y) = ( 2jxj if y is a satisfying assignment for x,jxj otherwise.Clearly, problem B is in APX, while if A were in APX then there were a polynomial-timealgorithm that computes a satisfying assignment for each formula in S, contradicting the as-sumption. Moreover, it is easy to see that A is L-reducible to B.Conversely, assume that for any polynomial-time recognizable set of satis�able Booleanformulas there is a polynomial-time algorithm computing a satisfying assignment for eachformula in the set.Suppose that a maximization problem A is L-reducible to a maximization problem B viafunctions f and g and that B is r-approximable (r > 1). Let x be an instance of A and let ybe a solution of f(x) such that optB(f(x))=mB(f(x); y) � r. For the sake of convenience, setoptA = optA(x), mA = mA(x; g(x; y)), optB = optB(f(x)), and mB = mB(f(x); y). We showthat m = maxfmA; mB=�g is such that m � optA and optA=m � 1 + ��(r � 1), that is, m isa non-constructive approximation of optA. Let 
 = �r1+��(r�1) . There are two cases.1. optB � 
optA. By the de�nition of the L-reducibility, optA �mA � �(optB � mB). SinceoptB � 
optA and optB=mB � r, it holds that optA�mAoptA � 
� optB�mBoptB � 
�(1�1=r). Hence,optA=m � optA=mA � 1 + ��(r � 1).



142. optB > 
optA. It holds thatoptAm � optAmB=�< �(optB=
)mB (since optA < optB=
)� �(optB=
)(optB=r) (since mB � optB=r)= �r
= 1 + ��(r � 1):Now, it is not hard to see that a satis�able Boolean formula � can be constructed, in polynomialtime in the length of x, so that any satisfying assignment for � encodes a solution of x whosemeasure is at least m. By assumption it is possible to compute in polynomial time a satisfyingassignment for � and thus an approximate solution for x.Finally, if B is a minimization problem, we �rst L-reduce B to a maximization problem Cin APX [19] and then apply the above argument. utProof of Proposition 1. Let T be an r-approximation algorithm for A with r constant andlet (fL; gL; �L; �L) be an L-reduction from A to B. Then, for any x 2 IA and for any y 2solB(fL(x)), EA(x; gL(x; y))� �L�LEB(fL(x); y) whereE(w; z) = jopt(w)�m(w; z)jopt(w)denotes the relative error of the feasible solution z with respect to the instance w. If A is aminimization problem then, for any x 2 IA and for any y 2 solB(fL(x)),RA(x; gL(x; y)) = 1 +EA(x; gL(x; y)) � 1 + �L�LEB(fL(x); y)� 1 + �L�L(RB(fL(x); y)� 1):Otherwise we distinguish the following two cases.1. EB(fL(x); y) � 12�L�L : in this case we have thatRA(x; gL(x; y))� 1 = EA(x; gL(x; y))1�EA(x; gL(x; y))� �L�LEB(fL(x); y)1� �L�LEB(fL(x); y)� 2�L�L(RB(fL(x); y)� 1):2. EB(fL(x); y) > 12�L�L : in this case we have that RB(fL(x); y)� 1 � 12�L�L so thatRA(x; T (x))� 1 � r � 1 � 2�L�L(r � 1)(RB(fL(x); y)� 1):We can thus de�ne the E-reduction (fE ; gE; �E) as follows:1. For any x 2 IA, fE(x) = fL(x).



152. For any x 2 IA and for any y 2 solB(fE(x)),gE(x; y) = ( gL(x; y) if mB(fE(x); y) � mB(fE(x); T (x)),T (x) otherwise.3. �E = maxf2�L�L; 2�L�L(r� 1)g.From the above discussion it follows that this reduction is indeed an E-reduction. utProof of Proposition 2. From the results of [21] it follows that PNP � PMK1 , where MK standsfor Maximum Knapsack. If Maximum Knapsack is E-reducible to an NPO PB problemA, then PMK1 � PA1 . It is easy to see that PA1 � PNP[O(logn)] which, in turn, implies thatPNP � PNP[O(logn)]. utB. Proof of the results of Section 3Proof of Theorem 4. In order to establish the NPO-completeness of Minimum WeightedSatisfiability we just have to show that there is an AP-reduction from a Max NPO-completeproblem toMinimum Weighted Satisfiability. As the Max NPO-complete problem we willuse the restricted version of Maximum Weighted Satisfiability from Theorem 3.Let x be an instance of Maximum Weighted Satisfiability, i.e. a formula � over vari-ables v1; : : : ; vs with weights w(vi) = 2s�i and some variables with weight zero. We will �rstgive a simple reduction that preserves the approximability within the factor 2, and then adjustit to obtain an AP-reduction.Let f(x) be the formula � ^ �1 ^ � � � ^ �s where �i = (zi � v1 ^ � � � ^ vi�1 ^ vi), wherez1; : : : ; zs are new variables with weights w(zi) = 2i for i 2 [1::s] and where all other variables(even the v-variables) have zero weight. If y is a satisfying assignment of f(x), let g(x; y) be therestriction of the assignment to the variables that occur in �. This assignment clearly satis�es�. Note that exactly one of the z-variables is true in any satisfying assignment of f(x). If allz-variables were false, then all v-variables would be false and the value of the objective functionof x would be zero, which is not allowed.m(f(x); y) = 2i , zi = 1, v1 = v2 = � � � = vi�1 = 0; vi = 1, 2s�i � m(x; g(x; y))< 2 � 2s�i, 2sm(f(x); y) � m(x; g(x; y))< 2 2sm(f(x); y)This is in particular true for the optimum solution. Thus the performance ratio forMaximumWeighted Satisfiability isR(x; g(x; y)) = opt(x)m(x; g(x; y)) < 2 2sopt(f(x))2sm(f(x); y) = 2m(f(x); y)opt(f(x)) = 2R(f(x); y);



16which means that the reduction preserves the approximability within 2.Let us now extend the construction in order to obtain R(x; g(x; y))� (1 + 2�k)R(fk(x); y)for every nonnegative integer k. The reduction described above corresponds to k = 0.We use 2k � s new variables named zi;b1;:::;bk , where i 2 [1::s] and bj 2 f0; 1g for j 2 [1::k].Let fk(x) = � ^ V�i;b1;:::;bk , where�i;b1;:::;bk = (zi;b1;:::;bk � v1 ^ � � � ^ vi�1 ^ vi ^ (vi+1 = b1) ^ � � � ^ (vi+k = bk)) :De�ne g(x; y) as above. Finally, de�new(zi;b1;:::;bk) = & K � 2sw(vi) +Pkj=1 bjw(vi+j)' = & K � 2i1 +Pkj=1 bj2�j ' :By choosing K large enough (about 2s) we can disregard the e�ect of the ceiling operation inthe following computations.As in the previous reduction exactly one of the z-variables is true in any satisfying assign-ment of fk(x). If, in a solution y of fk(x), zi;b1;:::;bk = 1, then we havem(fk(x); y) = w(zi;b1;:::;bk)and we know thatm(x; g(x; y))� w(vi) + kXj=1 bjw(vi+j) = 2s�i(1 + kXj=1 bj2�j)and thatm(x; g(x; y))� w(vi) + kXj=1 bjw(vi+j) + sXj=k+i+1w(vj) < 2s�i(1 + kXj=1 bj2�j)(1 + 2�k):Thus we get K � 2sm(fk(x); y) � m(x; g(x; y))< K � 2sm(fk(x); y)(1 + 2�k):and therefore R(x; g(x; y)) < (1 + 2�k)R(fk(x); y). Given any r > 1, if we choose k such that2�k � (r � 1)=r, e.g. k = dlog r � log(r � 1)e, then R(fk(x); y) � r implies R(x; g(x; y)) <(1 + 2�k)R(fk(x); y) � r+ r2�k � r+ r� 1 = 1+ 2(r� 1). This is obviously an AP-reductionwith � = 2.A very similar proof can be used to show that Maximum Weighted Satisfiability isNPO-complete. utProof of Corollary 1. Theorem 4 says that Minimum Weighted Satisfiability is NPO-complete. Per de�nitionMinimumWeighted Satisfiability can be reduced to any Min NPO-complete problem. Hence any Min NPO-complete problem is also complete for NPO. In thesame way, since Maximum Weighted Satisfiability is NPO-complete and can be reducedto any Max NPO-complete problem, any Max NPO-complete problem is NPO-complete.Min NPO-completeness forMinimum 0�1 Programming and Traveling SalespersonProblem was shown in [26], and therefore they are NPO-complete. ForMinimum WeightedIndependent Dominating Set we need a PTAS-reduction fromMinimum Weighted Sat-isfiability.Given an instance of Minimum Weighted Satisfiability, we �rst write the formula inconjunctive normal form. For every variable vi we construct two nodes ai and ai with weights



17w(ai) = w(ai) = w(vi). For every clause cj we construct a node bj with enormous weight. Wechoose a weight larger that the sum of the weights of all variables, namely Psi=1w(vi) + 1.We add edges between ai and ai for each i. For each i and j we also add edges as follows. Ifthe variable vi is used positively in clause cj we add an edge between the corresponding nodesai and bj. If the variable vi is used negatively in clause cj we add an edge between ai and bj.One solution to the independent dominating set problem is fa1; : : : ; asg, and this solutionhas smaller objective value than any solution that contains a b-node. It is easy to see that inany solution at most one of ai and ai for any i is included, that the corresponding assignment(vi = 1 if and only if ai is included) satis�es the CNF formula, and that the objective valuesof both solutions are the same. The reduction is PTAS-preserving. utProof of Theorem 5.Maximum PB 0�1 Programming is known to be Max PB-complete [4]and Minimum PB 0� 1 Programming is known to be Min PB-complete [17]. Thus we justhave to show that there are AP-reductions from a Min PB-complete problem toMaximum PB0�1 Programming and from a Max PB-complete problem toMinimum PB 0�1 Program-ming. As the Min PB-complete problem we will use Minimum Independent DominatingSet and as the Max PB-complete problem we will use Longest Induced Path.Both reductions follow the same idea. The objective function, i.e. the number of nodes in thesolution (in the independent dominating set and in the induced path, respectively), is encodedby introducing an order of the nodes in the solution. The order is encoded by a squared numberof 0� 1 variables in the programming problem, see Fig. 2. A solution of size 1 shall correspondto the 0 � 1 programming objective value n, and a solution of size p shall correspond to anobjective value of jnp k. -6 ij 0 0 1 0 0 00 0 0 0 1 01 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 06?size ofsolutionsolution: � � � � � � 6?one 1 in each row6?only zeros in upper partFigure 2. The idea of the reduction from Minimum Independent Dominating Set/Longest In-duced Path to Maximum/Minimum PB 0� 1 Programming. The variable xji = 1 if and only if viis the jth node in the solution. There is at most one 1 in each column and in each row.The reduction from Minimum Independent Dominating Set to Maximum PB 0 �1 Programming is constructed as follows. Given an instance of Minimum IndependentDominating Set, i.e. a graph with nodes V = fv1; : : : ; vmg and edges E, construct m2variables xji , 1 � i; j � m and the following inequalities:8i 2 [1::m] mPj=1 xji � 1 (at most one 1 in each column) (1)8j 2 [1::m] mPi=1 xji � 1 (at most one 1 in each row) (2)8j 2 [1::m� 1] mPi=1 xji � mPi=1xj+1i � 0 (only zeros in upper part) (3)



188(vi; vj) 2 E mPk=1 xki + mPk=1 xkj � 1 (independence) (4)8i 2 [1::m] mPk=1 xki + Pj:(vi;vj)2Ek2[1::m]xkj � 1 (domination) (5)The objective function is de�ned asn � mXp=2�� np� 1�� �np�� mXi=1 xpi : (6)In order to express the objective function with only binary coe�cients we have to introduce nnew variables y1; : : : ; yn where yj = 1 �Pmi=1 xpi for bn=pc < j � bn=(p � 1)c and yj = 1 forj � bn=mc. The objective function is then Pnj=1 yj . One can now verify that an independentdominating set of size s will exactly correspond to a solution of the 0�1 programming problemwith objective value �ns � and vice versa.Suppose that the minimum independent dominating set has size M , then the performanceratio s=M for the independent dominating set problem will correspond to the performanceratio � nM ��ns � = sM �1� mn �for the 0 � 1 programming problem, where mn is the relative error due to the 
oor operation.By choosing n large enough the relative error can be made arbitrarily small. Thus It is easy tosee that the reduction is an AP-reduction.Halld�orsson has proved that, unless P = NP, Minimum Independent Dominating Setis not approximable within n1�" for any " > 0, where n is the sum of the number of nodesand edges in the graph [34]. Together with the reduction above this result will tell that, unlessP = NP, Maximum PB 0� 1 Programming is not approximable within q1�" for any " > 0,where q is the number of inequalities, and is not approximable within r1=2�" for any " > 0,where r is the number of variables.A similar construction can be used to reduce Longest Induced Path to Minimum PB0 � 1 Programming. Given an instance of Minimum Independent Dominating Set, i.e.a graph with nodes V = fv1; : : : ; vmg and edges E, construct m2 variables xji , 1 � i; j � m asabove and use the inequalities (1){(3) together with the new inequalities:8(vi; vj) 2 E; k 2 [1::m� 2]; l 2 [k + 2::m] xki + xlj � 1 (induced) (7)8(vi; vj) =2 E 8k 2 [1::m� 1] xki + xk+1j � 1 (path) (8)Use the same objective function as (6) above. It is not hard to show that this reduction is aAP-reduction. utThe results of Theorem 6 are proved in [35].C. Proof of the results of Section 4Proof of Proposition 3. Assume that A is a maximization problem (the proof for minimizationproblems is similar), let T be an r-approximate polynomial-time algorithm for A, for some



19r > 1, and let L 2 PA� for some �. Two polynomial-time computable functions f and g thenexist witnessing this fact. For any x, let m = m(f(x); T (f(x))), so that m � opt(f(x)) � rm.We can then partition the interval [m; rm] into dlog� re subintervals[m; �m); [�m; �2m); : : : ; [�blog� rc; rm];and start looking for the subinterval containing the optimum value (a similar technique hasbeen used in [8, 6]). This can clearly be done using dlog� re queries to an NP-complete oracle.One more query is su�cient to know whether a feasible solution y exists in that interval suchthat g(x; y) = 1. Since y is �-approximate, it follows that L can be decided using dlog� re + 1queries, that is, L 2 QH. utProof of Proposition 4. Let A be a minimization problem in PTAS1 (the proof for maximizationproblem is very similar). By de�nition, a constant k and an algorithm T exist such that forany instance x and for any r > 1m(x; T (x; r))� r � opt(x) + k:We will now prove that a constant h exists such that for any r > 1 a function lr 2 PFNP[h�1]exists such that for any instance x of the problem Aopt(x) � lr(x) � r � opt(x):Given an instance x, we can check whether opt(x) = 0 by means of a single query to anNP oracle, so we can restrict ourselves to instances such that opt(x) � 1. Note that, for theseinstances, T2 is a (k+2)-approximate algorithm. Let us �x an r > 1, let " = r�1, y = T1+"=2(x)and mapp = m(x; T2(x)). We have to distinguish two cases.1. mapp � 2k(k + 2)=": in this case, opt(x) � 2k=", that is, opt(x)"=2 � 1. Thenm(x; y) � opt(x)(1 + "=2) + opt(x)"=2 = opt(x)(1+ ") = r � opt(x):That is, y is a r-approximate solution for x, and we can set lr(x) = m(x; y).2. m(x; y) < 2k(k + 2)=": in this case, opt(x) < 2k(k+ 2)=". Then,m(x; y) � opt(x) + opt(x)"=2 + k < opt(x) + 2k(k + 2) + k:If h = dlog k(2k+ 5)e+1, then h� 1 queries to NP are su�cient to �nd the optimum valuem� = opt(x) by means of a binary search technique: in this case lr(x) = m�.Let now L be a language in AQH(A), then L 2 PAr for some r > 1: let f and g be thefunctions witnessing that L 2 PAr . Observe that, for any x, x 2 L if and only if a solution yfor f(x) exists such that m(x; y) � lr(x) and g(x; y) = 1: that is, given hr(x), deciding whetherx 2 L is an NP problem. Since lr(x) is computable by means of h � 1 queries to NP, we havethat L 2 Pnp[h]. utIn order to prove Proposition 5, we need the following technical result.Claim. For any APX-complete problem A and for any k, two polynomial-time computablefunctions f and g and a constant r exist such that, for any k-tuple (x1; : : : ; xk) of instances ofPartition, x = f(x1; : : : ; xk) is an instance of A and if y is a solution of x whose performanceratio is smaller than r then g(x; y) = (b1; : : : ; bk) where bi 2 f0; 1g and bi = 1 if and only if xiis a yes-instance.



20Proof. Let xi = (Ui; si) be an instance of Partition for i = 1; : : : ; k. Without loss of generality,we can assume that the Uis are pairwise disjoint and that, for any i, Pu2Ui si(u) = 2. Let wbe an instance ofMinimum Ordered Bin Packing de�ned as follows (a similar constructionhas been used in [37] in order to prove negative results on the approximability of MinimumOrdered Bin Packing).1. U = Ski=1 Ui [ fu1; : : : ; uk�1g where the uis are new items.2. For any u 2 Ui, s(u) = si(u) and s(ui) = 1 for i = 1; : : : ; k � 1.3. For any i < j � k, for any u 2 Ui, and for any u0 2 Uj , u � ui � u0.Any solution of w must be formed by a sequence of packings of U1; : : : ; Uk such that, forany i, the bins used for Ui are separated by the bins used for Ui+1 by means of one bin whichis completely �lled by ui. In particular, the packings of the Uis in any optimum solution mustuse either two or three bins: two bins are used if and only if xi is a yes-instance. The optimummeasure thus is upper bounded by 4k � 1 so that any (1 + 1=4k)-approximate solution isoptimum.Since Minimum Ordered Bin Packing belongs to APX and A is APX-complete, thenan AP-reducibility (f1; g1; �) exists from Minimum Ordered Bin Packing to A. We canthen de�ne x = f(x1; : : : ; xk) = f1(w; 1 + 1=(4�k) and r = 1 + 1=4�k. For any r-approximatesolution y of x, the fourth property of the AP-reducibility implies that z = g1(x; y; 1+ 1=4�k)is a (1 + 1=4k)-approximate solution of w and thus an optimum solution of w. From z, we caneasily derive the right answers to the k queries x1; : : : ; xk. utProof of Proposition 5. Let L 2 QH, then L 2 PNP[h]. It is well known that L can be reduced tothe problem of answering k = 2h�1 non-adaptive queries to NP. More formally, two functionst1 and t2 exist such that, for any x, t1(x) = (x1; : : : ; xk), where x1; : : : ; xk are k instances of thePartition problem, and for any (b1; : : : ; bk) 2 f0; 1gk, t2(x; b1; : : : ; bk) 2 f0; 1g. Moreover, if,for any j, bj = 1 if and only if Ij 2 Partition, then t2(x; b1; : : : ; bk) = 1 if and only if x 2 L.Let now f ,g and r be the two functions and the constant from the preceding Claim appliedto problem A and constant k. For any x, x0 = f(t1(x)) is an instance of A such that if y is ar-approximate solution for x0, then t2(g(x; y)) = 1 if and only if x 2 L. Thus, L 2 PAr . utPropositions 6 and 7 can be easily proved similarly to Proposition 3 by means of the binarysearch technique.D. Proof of the results of Section 5Proof of Theorem 9. Let A be a poly-APX-complete problem. Since Maximum Clique isself-improvable [12] and poly-APX-complete [19], we have that A is self-improvable. It is thensu�cient to prove that A2 is hard for NPFNP[log logn+O(1)].Since A is poly-APX-complete, Maximum Clique �AP A: let � be the constant ofthis reduction. From [7] we have that any function F in NPFNP[log logn+O(1)] many-one re-duces to Maximum Clique1+1=�. From the de�nition of AP-reducibility, we also have thatMaximum Clique1+1=��mvA2 so that F many-one reduces to A2.Conversely, let A be a poly-APX self-improvable problem such that, for some r0, Ar0is NPFNP[log logn+O(1)]-hard. We will show that, for any problem B in poly-APX, B isAP-reducible to A. To this aim, we introduce the following partial multi-valued functionmultisat: given in input a sequence (�1; : : : ; �m) of instances of the satis�ability problemwith m � log j(�1; : : : ; �m)j, a possible output is a satisfying truth-assignment for �i� where



21i� = maxfij�i is satis�ableg. From [7] it follows that this function is NPFNP[log logn+O(1)]-complete.It is easy to see that, since B is in poly-APX, two algorithms tB1 and tB2 exist such that,for any �xed r > 1, t1(x) = tB1 (x; r) and t2(x) = tB2 (x; r) are a many-one reduction fromBr to multisat. Moreover, since Ar0 is NPFNP[log logn+O(1)]-hard, then a many-one reduction(tM1 ; tM2 ) exists from multisat to Ar0 . Finally, let tA1 and tA2 be the functions witnessing theself-improvability of A.The AP-reduction from B to A can then be derived as follows:x; r tB1 (x;r)�����������! x0 tM1 (x0)�����������! x00 tA1 (x00;r0;r)�����������! x000#y tB2 (x;y0;r) ����������� y0 tM2 (x0;y00) ����������� y00 tA2 (x00;y000;r0;r) ����������� y000It is easy to see that if y000 is an r-approximate solution for the instance x000 of A, then y is anr-approximate solution of the instance x of B. utRecall that in [7] an extension of Theorem 1 is proved, that is, for any q(n) 2 O(logn), ifNPFNP[q(n)+1] is contained in NPFNP[q(n)], then the polynomial hierarchy collapses.In the same paper, a characterization of the classes NPFNP[q(n)] is given such that anyfunction F 2 NPFNP[k] is reducible to answering with witnesses a set of 2k non-adaptivequeries to NP. Moreover, it is easy to see that any function that is reducible to answeringwith witnesses 2k� 1 non-adaptive queries to NP is contained in NPFNP[k]. From the proofs ofPropositions 3 and 4, it follows the following fact.Claim. Let A be an rA-approximable APX problem, then, for any r > 1, Ar is reducible toanswering with witnesses a set of dlogr rAe non-adaptive queries to an NP oracle. Let A be anAPX-complete problem, then a constant 
 exists such that, for any k, the problem of answeringwith witnesses a set of k non-adaptive queries to Partition is reducible to A1+
=k .Proof of Theorem 10. Let A be an rA-approximable APX-complete problem, let 
 be theconstant in the preceding Claim, then A1+
=2 is hard for NPFNP[1]. Fix any r > 1, let r = 1+"and let x1; : : : ; xk be instances of A: for any i = 1; : : : ; k the problem of �nding a r-approximatesolution yi for xi is reducible to the problem of answering with witnesses a set of dlogr rAeparallel queries to Partition. Without loss of generality, we can assume r < rA (otherwisethe reduction is trivial), and thus we have dlogr rAe � 1 + (rA � 1)=(r � 1) � c=" for acertain constant ". Moreover, answering kc=" non-adaptive queries to Partition is reducibleto (1 + 
"=kc)-approximating a single instance of A, that is, A is linearly additive.Conversely, let A be a linearly additive APX problem such that Ar0 is NPFNP[1]-hard andlet B be an rB-approximable APX problem. Given an instance x of B, for any r = 1 + " > 1we can reduce the problem of �nding an 1 + "-approximate solution for x to the problem ofanswering with witnesses c=" queries to Partition, for a proper constant c not depending on ".Moreover, each of these questions is reducible to Ar0 , since an NPFNP[1] can clearly answer withwitness to an NP query. From linear additivity, it follows that r0-approximating c=" instanceof A is reducible to (1 + �"=c)-approximating a single instance of A. This is an AP-reductionfrom B to A with � = c=�. utProof of Theorem 11. Let us consider the optimization problemMax Number of SatisfiableFormulas-log de�ned as follows.



22Instance: Set of m boolean formulas �1; : : : ; �m in 3CNF, such that �1 is a tautology andm � log j�1; : : : ; �mjSolution: Truth-value assignment � to the variables of �1; : : : ; �mMeasure: The number of satis�ed formulas, i.e., jfi such that �i is satis�ed by �gj.Clearly,Max Number of Satisfiable Formulas-log is in log-APX, since the measure ofany assignment � is at least 1, and the optimum value is always smaller that logn, where n isthe size of the input. We will show that, for any r < 2, MNSFr is hard for NPFNP[log log logn�1],where MNSF stands for Max Number of Satisfiable Formulas-log.Given log logn queries to NP (of size polynomial in n)  1; : : : ;  log logn, we can constructan instance � = �1; : : : ; �m of Max Number of Satisfiable Formulas-log where �1 is atautology and the formulas �2i = : : : = �2i+1�1 are satis�able if and only if at least i clausesamong  1; : : : ;  log logn (these formulas can be easily constructed using the standard proof ofCook's theorem). Note thatm = 2log logn+1�1, and by adding dummy clauses to some formulaswe can achieve the bound m � log j�1; : : : ; �mj. Moreover, from a r-approximate solution for� we can decide how many clauses in  1; : : : ;  log logn are satis�able, and we can also recoverwitnesses for such formulas, that is, any function in NPFNP[log log logn�1] is MV-reducible toMNSFr.Let A be a self-improvable log-APX-complete problem, then, for any function F 2NPFNP[log log logn�1], F�mvMNSF1:5�mvA1+�=2�mvA256 where � is the constant in the AP-reduction fromMax Number of Satisfiable Formulas-log to A. Thus, for any x instanceof F , computing F (x) is reducible to �nding a 256-approximate solution for an instance x0 ofA, moreover, the size of x0 is polynomial in jxj, that is jx0j � jxjc for a certain constant c. SinceA 2 log � APX, it is possible to �nd in polynomial time a (r log jx0j)-approximate solution yfor x0. By means of the usual binary search technique, we can �nd a 256-approximate solutionfor x0 using dlogdlog256(r log jx0j)ee � log log log jxjrc � 3 adaptive queries to NP. Thus,NPFNP[log log logn�1] � NPFNP[log log log jxjrc�3]which implies the collapse of the polynomial hierarchy. utE. A List of NPO ProblemsE.1.Maximum CliqueInstance: Graph G = (V;E).Solution: A clique in G, i.e. a subset V 0 � V such that every two vertices in V 0 are joinedby an edge in E.Measure: Cardinality of the clique, i.e., jV 0j.E.2.Minimum Independent Dominating SetInstance: Graph G = (V;E).Solution: An independent dominating set for G, i.e., a subset V 0 � V such that for allu 2 V � V 0 there is a v 2 V 0 for which (u; v) 2 E, and such that no two vertices in V 0 arejoined by an edge in E.Measure: Cardinality of the independent dominating set, i.e., jV 0j.



23E.3.Minimum Weighted Independent Dominating SetInstance: Graph G = (V;E) and a weight function w : V ! N .Solution: An independent dominating set for G, i.e., a subset V 0 � V such that for allu 2 V � V 0 there is a v 2 V 0 for which (u; v) 2 E, and such that no two vertices in V 0 arejoined by an edge in E.Measure: The sum of the weights of the independent dominating set, i.e., Pv2jV 0j w(v).E.4.Maximum Weighted Satisfiability and Minimum Weighted SatisfiabilityInstance: Set of variables X , boolean quanti�er-free �rst-order formula � over the variablesX , and a weight function w : X ! N .Solution: Truth assignment that satis�es �.Measure: The sum of the weight of the satis�ed variables.E.5.Maximum 0� 1 Programming and Minimum 0� 1 ProgrammingInstance: Integer m � n-matrix A 2 Zm�n, integer m-vector b 2 Zm, nonnegative integern-vector c 2 Nn.Solution: A binary n-vector x 2 f0; 1gn such that Ax � b.Measure: The scalar product of c and x, i.e., nXi=1 cixi.E.6.Maximum PB 0� 1 Programming and Minimum PB 0� 1 ProgrammingInstance: Integer m � n-matrix A 2 Zm�n, integer m-vector b 2 Zm, nonnegative binaryn-vector c 2 f0; 1gn.Solution: A binary n-vector x 2 f0; 1gn such that Ax � b.Measure: The scalar product of c and x, i.e., nXi=1 cixi.F. A List of APX ProblemsF.1.Minimum Bin PackingInstance: Finite set U of items, and a size s(u) 2 Q \ (0; 1] for each u 2 U .Solution: A partition of U into disjoint sets U1; U2; : : : ; Um such that the sum of the sizes ofthe items in each Ui is at most 1.Measure: The number of used bins, i.e., the number of disjoint sets, m.F.2.Minimum Ordered Bin PackingInstance: Finite set U of items, a size s(u) 2 Q\ (0; 1] for each u 2 U , and a partial order �on U .Solution: A partition of U into disjoint sets U1; U2; : : : ; Um such that the sum of the sizes ofthe items in each Ui is at most 1 and, for any u 2 Ui and for any u0 2 Uj such that u � u0,i � j.Measure: The number of used bins, i.e., the number of disjoint sets, m.



24F.3.Maximum KnapsackInstance: Finite set U , for each U a size s(u) 2 Z+ and a value v(u) 2 Z+, a positive integerB 2 Z+.Solution: A subset U 0 � U such that Pu2U 0 s(u) � B.Measure: Total weight of the chosen elements, i.e., Pu2U 0 v(u).G. Additional references34. Halld�orsson, M. M. (1993), \Approximating the minimummaximal independence number", Inform.Process. Lett. 46, 169{172.35. Kann, V. (1995), \Strong lower bounds of the approximability of some NPO PB-complete max-imization problems", Technical Report TRITA-NA-9501, Department of Numerical Analysis andComputing Science, Royal Institute of Technology, Stockholm.36. Long, T.J. (1981), \On 
-reducibility versus polynomial time many-one reducibility", TheoreticalComputer Science 14, 91{101.37. Queyranne, M. (1985), \Bounds for assembly line balancing heuristics", Operations Research 33,1353{1359.


