Sort Inheritance for Order-Sorted Equational
Presentations

Claus Hintermeier, Claude Kirchner, Héléne Kirchner

CRIN-CNRS & INRIA-Lorraine
BP239, 54506 Vandceuvre-lés-Nancy Cedex
France
E-mail: hinterme@loria.fr, ckirchne@loria.fr, hkirchne@loria.fr

Abstract. In an algebraic framework, where equational, membership
and existence formulas can be expressed, decorated terms and rewriting
provide operational semantics and decision procedures for these formu-
las. We focus in this work on testing sort inheritance, an undecidable
property of specifications, needed for unification in this context. A test
and three specific processes, based on completion of a set of rewrite
rules, are proposed to check sort inheritance. They depend on the kinds
of membership formulas (¢ : A) allowed in the specifications: flat and
linear, shallow and general terms ¢ are studied.

1 Introduction

The operationalisation of order-sorted frameworks ([Obe62, SS87, SNGMS89,
GM92]) led to several problems in the past, due to the purely syntactic treatment
of membership formulas (¢ : A), also called term declarations. Assuming them
as parsing-oriented declarations, a first pitfall is that equality in the quotient
algebra is no more a congruence in general: consider for example two sorts A
and B, with A < B, two constants (¢ : A) and (b : B), a unary operator
f A A, and the equality a = b. Although f(a) = f(b) is expected, f(b)
is not well-formed if parsing is performed using only the membership formulas
(a:A), (b:B)and (f(z) : A) for any variable of sort A, corresponding to the
operator declarations.

One possible solution to this problem is to impose sort-decreasingness
and confluence of the rules associated with the equalities in a specification
(see [GM92, GKK90]). However, there are examples, where sort-decreasingness
i1s an uncomfortable restriction: for instance a definition of the square function
on integers is given with two sorts Nat and Int with Nat < Int, operators
0 :+— Nat, x : Int, Int — Int, sq : Int — Nat, and for any variable z :: Int,
sq(x) = x * . However orienting this last equality is problematic since the rule
sq(x) = x * x is not sort-decreasing.

Even with confluent and sort-decreasing rules, syntactic sorts are restrictive,
since terms, that are not syntactically well-formed, can evaluate to a well-formed
one: a well-known example is the stack of naturals, with sorts Nat (naturals),
St (stacks) and NeSt (non-empty stacks), such that NeSt < St, operators

nil :+— St, push : Nat, St — NeSt, pop : NeSt — St, top : NeSt — Nat,
variables # 1 Nat, z = St, and two rewrite rules top(push(x,z)) — x and
pop(push(z, z)) — z.

The term top(pop(push(2, push(1l,nil)))) is not syntactically well-formed but
clearly is semantically meaningful, since it evaluates to 1.

A solution for this problem were retracts, proposed in [GIM85, GM92]. An-
other solution consists in the semantic interpretation of membership formu-
las, i.e. equal terms belong by definition to the same sorts. Assuming sort-
decreasingness, the term to be reduced is meaningful if and only if its normal
form is well-formed [Wer93]. This approach also solves the congruence problem.

In order to further increase expressivity of order-sorted specifications, it
makes sense to allow term declarations of the form (¢ : A), that generalise flat
and linear declarations, such as (f(x) : B) for any (« :: A) to declare an operator
f A — B. Non-linear term declarations are useful for instance in a speci-
fication involving again naturals and integers and the declarations Nat < Int,
0 :+— Nat, suc : Nat — Nat, opp : Int — Int, x : Int,Int — Int. Now,
(z * x : Nat) for any « :: Int is a flat but non-linear membership formula.

Therefore, we adopt an algebraic framework called G-algebra, where mem-
bership formulas and equalities interact to compute semantic sorts of terms.
However deduction in this context needs a unification which is undecidable in
general, due to semantic membership and general term declarations.

In [HKK94a, HKK94b], we proposed an extended term structure, called dec-
orated terms, where each node contains the set of sorts already proved for the
corresponding subterm. Rewriting is defined on these terms and a completion
process is proposed, based on the hypothesis that the axiomatisation is modu-
larised in three parts: (i) equalities (¢ = t'), (ii) term declarations (¢ : A) and
(iii) sort inclusions (A < B). (i) and (ii) are handled via rewrite rules (decorated
and decoration rules) and are thus modified and enriched during completion. On
the contrary, (iii) is stable during the whole completion. In particular, matchers
and unifiers are computed using as usual the term structure but also the sort
information given in decorations and in the fized sort structure. Since matching
and unification use only the sort information available in the decorated term
at unification or matching time, they are correct but non complete in general
for the peak reduction involved in the completion process. This completeness
property will be achieved only at the end of the completion process provided
it does not fail. In order to get an algorithm that computes a complete set of
unifiers on decorated terms, it is necessary that the sort information given in
part (iii) contains enough information to have the following property, called sort
inheritance: if a term ¢ can be proved to be of sorts A;, ¢ € [1..n], then there
must exist a sort C' with C' < A; for all i € [1..n]. Sort inheritance is in general
undecidable. In [HKK94a], the completion process is performed assuming sort in-
heritance. When a fair completion does not fail, the resulting set of rewrite rules
provides a way to prove not only equational theorems of the form (¢ = t’) but
also membership theorems (¢ : A) and existence theorems (EX t) (cf. [Sco77]).

Thus sort inheritance is a crucial property in this framework. We propose

in this paper a test of sort inheritance based on the computation of top critical
pairs between decoration rules generated during completion. It the test succeeds,
it provides a counter-example for sort inheritance. Conversely, if the test never
succeeds during completion, the specification is proved sort inheriting in three
different situations: the first one is the case of flat and linear term declarations.
This 1s the simplest case that corresponds to usual operator declarations. In that
case, the test for sort inheritance can be postponed at the end of the completion
process. The second case is when term declarations are shallow (i.e. have no
variable at depth more than one). Then simplification and critical pair compu-
tation must be adapted to simultaneously reduce identical subterms at the same
depth. Eventually, for general term declarations, all identical subterms have to
be reduced in one step during simplification and a specific completion strategy
has to be designed. This last case also forbids inter-reduction using decorated
rewrite rules, which may cause divergence of the process in many cases.

This paper focusses on checking sort inheritance and is built as follows. The
algebraic framework is stated in Section 2 and Section 3 explains the assump-
tions for the used sort structure. Then, in Section 4, the notions of decorated
terms and rewriting with decorated and decoration rewrite rules are briefly re-
called, with a completeness theorem stating the equivalence of replacement of
equal by equal on decorated terms with deduction in G-algebra. Section 5 briefly
gives the results of [HKK94a]. Section 6 provides the test for detecting non sort
inheritance and successively considers the case of flat and linear term declara-
tions, shallow declarations, and any kind of term declarations. In the conclusion,
our approach 1s briefly compared with other related works. The full version of
this paper [HKK94b] includes all proofs; examples and extended discussions of
the concepts introduced here.

2 G-Algebra

A main feature of G-algebra is that function and term declarations, usually seen
as part of the (static) signature in classical approaches, become formulas and
are involved in proofs at the same level as equalities.

Our notations are consistent with [SNGM89, DJ90]. All notions concerning
terms are defined in the same way as for classical terms.

Let X = (8, F) be a signature, providing a set of sorts § and of function
symbols F. § always contains the universal sort symbol §2. The set of terms
T(X,X) is defined as in the unsorted case, but each variable x € X belongs to
a unique sort, say A, denoted by sort(z). This is written (z :: A). With A € S
and ¢, € T(X, &), existence formulas (EX t), membership formulas (¢ : A) and
equalities (f = ¢') are all implicitly closed by universal quantification.

Presentations P are sets of formulas. A pair (signature,presentation) is
called specification. A X-algebra A is given by a domain |.A| and interpretations
for each symbol in § and F: each A € § is interpreted as a non-empty set A4,
24 as |A|, and each f € F as a partial function f4 : |[A|*#() 5 |A]. A
variable assignment o is a mapping from X to 24 with a(z) € A* whenever

sort(z) = A (for all x € X). A model of P is a Y-algebra s.t. for all variable
assignments «, for all (EX t) € P, a*(t) € 24 for all (t : A) € P, a*(t) € AA
and for all (t =¢') € P, a™(t) = a*(t'), where o™ is the unique homomorphic
extension of & on terms. Homomorphisms are identical to those of [SNGM89]. If
some formula ¢ is true in all models of P, we write P |= ¢.

In [Még90] (see also [HKK94a]), a sound and complete set of deduction rules
is proposed, giving a relation of deductibility, s.t. F and | coincide. The in-
volved substitutions o are supposed to be conform with the current presentation,
ie. (1) €oand (x 0 A) € P implies P - (¢ : A).

Specifications with inhabited sorts (i.e. for each A € 8, there is some ¢ €
T(X),st. P (t:A)) have an initial Z-model whose domainis {t € T(X) | P F
EX t}. The congruence = defined on 7(X) as {(t,t') | P+ FEX t, EX ¢/, t =1} is
s.t. the quotient 7(X),_ is initial in the class of models of P.

The main difference w.r.t. purely syntactic approaches, like [GM92], relies
on the typing notion. Instead of syntactic typing, where the judgement whether
sometin T(X, X) belongs to asort A € S only depends on the term declarations
in P, in our approach (as in [WD89, Com92, Wit92, Wer93]), such a judgement
also depends on equalities. This actually corresponds to the intuition that equal
terms belong to the same sorts and is reflected by the semantic sort rule in the
deduction system of G-algebra [Még90]:

‘t:A,t:s = SZA‘

Let us come back to the stack of naturals example, expressed in G-algebra:

z:Nat z:: 5t y:: NeSty: 5t
p— nil : St push(z,z): NeSt
) pop(y) : St top(y) : Nat

top(push(z,z)) = = | pop(push(z,z)) =z

First remark that (y :: NeSt),(y : St) is the G-algebra way to express
NeSt < St. Then P [pop(pop(push(y, push(xz,nil)))) : St and P £
pop(pop(push(z, nil))) : St. Note also, that the first membership formula is not
syntactically well-formed, although the term makes sense in any model of P.

3 The Sort Structure

In order to effectively compute in G-algebra, we have to overcome the difficulty
of semantic sorts. Indeed, defining a semantic sort ordering <g” in P as the
transitive and reflexive closure of the relation: A <™ B if (z :: A) € P implies
Pt (z : B), results in undecidability of the subsort relation. Consequently, we
need to work with an approximation. We use a syntactic relation, defined as the
transitive and reflexive closure of A<Y"B if {# :: A, « : B} C P. Therefore,
expressing a subsort relation A<E" B in our framework is equivalent to give a
variable definition (# :: 4) and a corresponding term declaration (z : B).

In ordered sort structures, incomparable sorts Ay,..., A, without common
subsort are considered to have no term in common. If there are common subsorts

Bi, ... B, usually as in [GM92], only terms in these common subsorts are con-
sidered to be simultaneously in A;,..., A,. This i1s guaranteed by a restriction
called regularity, saying that each term must have a unique least sort. Regularity
ensures decidability of unification and therefore feasibility of completion.

Our approach introduces new sorts in order to cope also with terms in all
A;, i € [L.n], but not in the B;’s, j € [1..m]. Hence, the next step is to find a
replacement for regularity, adapted to the extended sort structure, that ensures
decidability of unification. We call a specification (X, P) sort inheriting (ST for
short) w.r.t. a subsort ordering <, if for any term ¢t € T(X, X),¥VT' C S :

(VAeT, Prt:A)= (3CeS VAT C <A

Fortunately, sort inheritance w.r.t. <g'" is stricter than <§™. Hence, it is suf-
ficient to test SI w.r.t. <g'", the decidable relation. This motivates to write SI
without precising the used relation, which implicitly means ST w.r.t. <§’". Sort
inheritance is undecidable in general, but a constructive test computing terms
that destroy SI is developed in Section 6. Simple restrictions such as syntactic
regularity and sort-decreasingness of [SNGM8&9, GKK90, Wal92] are sufficient to
ensure SI.
We assume in the following that:

— (1) all sorts are non-empty,

— (2) <&", the strict part of <g'", does not contain cycles,

— (3) the specification has bounded membership, i.e. {4 | P F ¢ : A} is finite
forallt € T(X, X),

— (4) the set mib(S) of maximal elements of the set of lower bounds of any
subset of sorts S C § is computable.

In our framework, since emptiness of sorts is related to equality, it is undecid-
able, but can be enforced by a decidable syntactic non-emptiness condition. In
signatures with finite S, as in G-algebra, (2) is decidable, (3) is trivial and (4)
is satisfied. However, in polymorphic signatures more sophisticated properties
have to be introduced (see [Smo89]).

To express unifiers of two variables using SI instead of regularity, an extended
sort structure (S, §§in) is needed. For a finite subset S of & s.t. mib(S) # @ and
all A € S are incomparable, the sort (S) may be understood as the intersection
of all sorts A in S. Instead of ({A,...}), we simply write (A,...) and {(A) is
written A. Sy denotes the set of all (S). The sort ordering <g'" is conservatively
extended to a new subsort relation §§iﬂ defined by:

(S) <Y (S)if VB € S, 34 €S, st ASPTB.

Ezample 1. Let § = {Zero, P, N, Int}, st. Zero <J"P, Zero <F"N,
P <d"Int, N<F"Int. Then S, = {Zero, (P,N), P, N, Int}. Now,
(P, N) §§iﬂ N, since N<Z'"N. Analogously, (P, N) §§iﬂ P. Furthermore,
Zero §§iﬂ (P,N), since Zero<G"P and Zero<y"N. Finally, N §§iﬂ Int
and P §§iﬂ Int hold as before. Remark that interpreting (P, N) intuitively as
intersection of P and N results in the same subsort relation.

OGO Q.G

@}

In what follows, we assume (X, P) to be a fixed specification leading to an
extended sort set S, with a subsort relation §§in.

4 Decorated Terms, Rewriting and Presentations

Semantic sorts lead to difficulties when parsing terms. Clearly, as long as there
is no decision procedure for typing in some presentation P, we need to restrict
the sorts of terms to those which are currently proved. Hence, we extend the
term structure with typing information in each node.

Terms and Substitutions. Let X, be a Sy-sorted variable set and V a set
of set-variables disjoint from AXy. A decorated term is either a decorated vari-
able 1A} where (z ©: A) € Xy, or of the form f(t1, ... 1,"°")% where
1191, .. 1,7 are decorated terms, f € F with arity(f) = n. Subsets S,S; of
So, for i € [1..n], are called decorations. t,4 stands for ¢** without decorations.

A decorated term ¢ is said valid in a presentation P if all its subterms u¥
satisfy V(..., A,..) € U, P F (a(unq) : A4) for all T(XZ, X)-instances & of upgq.
Ta(Se, F, Xo) or just Ty is the set of decorated (X, Xo)-terms, VTg the set of
valid terms in 7. t*? represents ¢ with empty decorations everywhere, except at
positions with variables, where #*° becomes z15974®)} Syntactic equality over
decorated terms is denoted by =;.

To get decidable notions of matching and unification, we need to express
SI on decorated terms as a property on their decorations only. Obviously, we
have to avoid arbitrary decorations, since they can be interpreted incorrectly as
membership formulas. Hence, it only makes sense to define SI on valid terms.
Furthermore, a decidable test of SI can only be assured on subsets of V7.
Therefore, we need a property for arbitrary subsets 7 of V74. So, a specification
(X, P) is T-SI, if:

viTeT : ACeSVAeT : C <" A).

This means that we have added a sort (S) with S = min({B | (..., B,...) €
T}) to Sy w.r.t. S, i.e. intuitively for the intersection of all sorts from S occurring
in the decoration 7. Hence, every term in T is covered by some unique, minimal

sort, just as this 1s the case with regularity. The difference is that SI is defined
after an extension of the sort structure and furthermore SI is relative to a set of
valid decorated terms. Remark that the extension of the sort structure depends
only on the subsort relation <§'" and not on membership formulas, which are a
priori undecidable.

Decorated substitutions are a subset of P-conform substitutions. We restrict
the used membership theory once more to the information already existing in
the term nodes, modulo a SI closure that computes minimal sorts and performs
transitive closure on them w.r.t. <syn The SI closure S of S is defined as:

S={D eS8y | HTY),....(T,) €S : (min(U 7)) <" by
1€[1..n]

Ezample 2. Let S = {A, B,C, D} with D<F" B, D<Z"C and therefore Sy =
{4, B,C,D,(B,C)} with D §§i” (B,CY, (B,CY §§i” B and (B,C) < sy” C.

OB ONNO
Q}
(o)

Let now S; = {A} Se = {D}, S5 = {B,C} and S; = {4, B, ('} be subsets
of 8. Then S; = {A}, S» = {B,C, D,(B,C)}, S3 = {B,C,(B,C)} and S =
{4, B,C,(B,C)}.

S C S’ abbreviates S C §’, S~ S" means S C 5 and S C S. The SI closure s

of t** is obtained by recursively applying = to its decorations. ¢*5 = ¢/*5' is writ-
ten ¢ =, ¢'*5" and means syntactic equality up to the SI closure of decorations
at each node.

A decorated substitution o is a mapping from decorated variables in Xy to
valid decorated terms, such that if o(2°) =4 ¢ with t7 #, % and (z :: 4) €
P, then A € T'. Remark that A ~ S, since z is a decorated variable. We represent
o by its graph U;epy i@ = t;74} and Dom(o) = {z; | i € [1..n]}.

Decorated term subsumption, matching and unification can be defined as for
classical terms [JK91], using decorated substitutions and terms instead of the
classical ones together with =; as term equality. The exact definitions can be
found in [HKK94b] together with a matching and unification algorithm.

Rewriting. A decorated equality is a pair of decorated terms, denoted by
(p* = q:SI), P, q:SI € T4. A decorated rewrite rule is an ordered pair of deco-
rated terms, written (p*° — q:SI), st. pS, ¢ € Ty and Var(p®) D Var(qzsl).
Applying equalities and decorated rewrite rules on valid terms is defined ana-
logously to undecorated equalities and rewrite rules (as e.g. in [DJ90]), except

that the equality symbol (=) and substitutions have to be replaced by decorated
equality modulo ST (22;) and decorated substitutions.

A decorated one-step equality application in E is written ¢*° <—<>—>°E’U’¢ t’:SI,
where ¢ € E,w € Oce(t¥) and ¢ is a decorated substitution. Decorated rewriting
is analogously denoted by ¢*° >—>°1‘§L’U’¢ t’:SI, where ¢ € R and w, o are as before.
If the used rule/equality, substitution or occurrence is not needed in the current

context, we may simply omit it in our notation.

Ezample 3. Let top(push(xAVeth A5t ANesthyANat} _y p{Nat} he 5 decorated
rewrite rule in R. Then top(push(0V®} nil 152y cannot be rewritten, but
tOp(push(O:{Nat} ’ nil:{St}):{NaSt}):{N@t} — R Oz{Nat})

Another kind of rules 1s introduced, whose purpose is to increase decorations.
Let s be in V. A decoration rewrite rule is of the form ([— [Vt if S T s),
where 'Y € T; and S C 8.

The valid decorated term t7 rewrites in D to t’:TI, written ¢t7 —
if ¢ = (¥ — [#Y9if 5 Zs)e D, t:T|w =4 u'Y, 0 is a decorated match from 'V
to u:U’ S % 7 and t/:T’ =y t:T[O'(l:U):UUSl]w.

Decorated and decoration rewriting are stable by context and substitution.
Furthermore, they preserve validity of terms. To prove termination, the classical
notion of reduction ordering can easily be extended on decorated terms (see
[HKIK94b] for details). A decorated or decoration rewrite step is denoted by
—RruD, an application of —p or «=—p i1s denoted by «~—pyg. A star over a
relation denotes its reflexive and transitive closure.

Ezample 4. Let (0°° — 0=YINat} if {Nat} ¢ s) be a decoration rewrite rule.
Then 047} sy 0N T2t} Remark that {Nat, Int} ~ {Nat} if Nat Si‘in Int.

w0 4T
)

Decorated Presentations. In order to replace F-derivations in the G-algebra
deduction system [Még90] by «=—p g r-steps, we have to extract a set of deco-
rated equalities F'p and a set of decoration rules Dp from P. Therefore, we take
for each subterm u of a term appearing in a formula in P a decoration rewrite
rule ((u?)* — (u?)=U1 if {2} @ s). Forall (u: A)in P, st. u g X, we
add ((u?)* — (u¥?)*U 14} if {A} € s5). The resulting set of decoration rewrite
rules is called Dp. Analogously, Ep is defined as the set of decorated equalities
(pH? = ¢4?), for each equality (p = ¢) in P. Now, we can state:

Theorem 1. [HKK94b] Let t, 1’ be two terms, P be a Z-presentation. Let A be
a sort and U be a set of sorts. Then:

(Prt=t") & 3ty, Ast. ¥ i, to:{A,}UU s paup,
: < st. 1Y «——p,uUE : .

(Prt:A) &3¢, A <" Ast. t40 Fmp yp, 714100

(P EXt) &3t st S um, ATV

5 Completion

In order to further motivate the need for SI, let us briefly recall the completion
process in which it appears as an essential requirement. A completion proce-
dure is described in [HKK94a] by a set OSC of rules that transforms triples

P = (D, E,R), called decorated presentations, starting from Py = (Dp, Ep,).
Do, Eoo, Roo denote the sets of persisting rules and equalities in a derivation
using OSC. The purpose of completion is to generate a resulting decorated pre-

sentation, given by (Deo, Foo, Roo) Where Eo, = 0, that satisfies the following
properties for Do, U Ry

e Church-Rosser property:

PHt=t)e R A S ¥ Sg yp t7IAIS 2 p 140,
e Type completeness:

PH(t:A) o3 S A <EP A S op, 11405
¢ Existential completeness:

Ph(EXt) e I, A S 40 5p (p tH1AIVS,

The completion procedure essentially computes critical pairs between the
two kinds of decoration/decorated rewrite rules, in order to handle critical in-
teractions between membership formulas and rewrite rules in a convenient way.
Simplification of critical pairs and inter-reduction of rules using decoration and
decorated rules are allowed as in usual completion. The difference relies in the
orientation process that always produces rewrite rules that increase the sort in-
formation at the replacement position, but in addition may introduce new mem-
bership formulas via decoration rewrite rules. The two orientation rules are given
in Figure 1 and use an ordering >4 on decorated terms defined in [HKK94b].

1. Orient_SD
D Eu{p®=¢"}R
DB, RU{p® = ¢}

if p° >q¢% and 5 C 5

2. Orient NSD
D.EU{p® =¢" R
DU{(¢° = ¢°U5\" i S\ S €9}, B, RU{p® = ¢V}
if p° > ¢%Y and S ¢ 5
and if ¢ € Xy with ¢ :: A then {A} = SUS’

Fig. 1. Orientation rules for decorated equations.

Assuming a sort inheriting initial presentation, the main result for the com-
pletion process is stated in the next theorem.

Theorem 2. [HKK94b] Let P be SI and Poo = (Doo, Feo, Reo) obtained with
OS8C from (Dp, Ep,0) s.t. Foo =0 and all critical pairs of Doy U Roo have been
computed. Then Do U Roo is terminating, Church-Rosser, type complete and
existentially complete on VT;.

In the orientation rules given in Figure 1, decorated equations of the form
(p® = 2) s.t. SUS’ # sort(x) are not oriented, and thus the condition E., =)

of Theorem 2 may not be fulfilled. We add a failure rule detecting this case:

Detect_Subsort

D EU {p:SU{B} =(z = A):SI},R
L.,

if x€Xyandz::A€P andnot A <" B

With this additional failure rule, we can improve Theorem 2 with another
result more precisely stated in [HKK94a]: starting from a sort inheriting pre-
sentation, when completion succeeds (i.e. terminates after computing all the
critical pairs and without any application of the Detect_Subsort rule), then
<F" = <¥™. When Detect_Subsort is applicable, then <§" # <™. This
means in particular that the unification algorithm used in the completion does
not always compute a complete set of unifiers in the initial presentation. How-
ever when Detect_Subsort applies, it provides us with the information that
P F (z : B). Adding this term declaration to the presentation yields a conserva-
tive extension of the initial presentation P. Consequently, the completion can be
restarted, but now using more information, since <g'" has then been increased.

6 Testing Sort Inheritance

Since all results of the last section depend on the sort inheritance of P, we
are now left with the problem of designing a test for this undecidable property.
We propose in this section a test that is applied in three kinds of completion
processes according to the form of term declarations. In all three cases; the
completion process including the test allows checking sort inheritance of the
initial presentation.

The test for detecting non sort inheritance is realized by the Detect_NonSI
rule given below.

Detect _NonSI
D Ui o {(pi* = pi 7 if S; € s5)},E R

T0,L
if (3o, Vi € [1..n],1(po®) =4 ¥(pi?))

Clearly, if Detect_NonSI applies, then P is not SI. If Py, = (L, L, 1), then
we can add (¢(p?)nq : C), since this is a conservative extension of the initial
presentation P. As in the case of Detect_Subsort, the completion can then be
restarted.

Moreover, this test characterises SI on the set of decorated terms called D-
typable, i.e. reachable with D from terms with empty decorations, provided
confluence of D:

Proposition3. In « decorated presentation P = (D, E, R), let us consider the
set Tp = {t |3t € T4*P : ¢/ «F—p t}. Let us assume that D is confluent on
Tp. Then, the Detect_NonSI-rule succeeds on D iff P is not Tp-SL

The main difficulty is to extend this result from 7p to the set of all valid
decorated terms. This extension relies on the following facts.

(1) The proof of Theorem 1 reveals that for each G-algebra proof, there is a
proof using «—p gy, s.t. all decorated terms ¢ in the latter have a typing
proof (t5)40 «S—p 7,

(2) If we check that the set of all typable terms does not contain any counter-
example for SI, then the unification algorithm computes all critical pairs needed
for peak reduction.

(3) Typability can be preserved until P, if proof reductions and completion
strategies are adapted to the form of term declarations.

The main problems are hence first to find a proof transformation that pre-
serves typability of terms and second to ensure that the set of typable terms at
each step of the completion does not contain a counter-example for SI.

Under these conditions, if completion does not fail, P is SI: indeed if ¢ is a
counter-example for ST of P, there must exist (cf. Theorem 1) a proof

o (til«@ H*>—>PD 2t H*>—>PD RA H*>—>PD H*>—>PD t, o H*>—>PD tiim)

such that S C Usep.nS:. By proof reduction, we get a rewrite proof:
/A (t:w D URw t’:SI) with Ujep..n)S: € 5 and 5" is also a counterexam-
ple for SI. Since typability is preserved, ¢*> has yet a typing proof using D,
(' «5—p 157), so Detect_NonST must apply to Do, .

6.1 Flat and Linear Term Declarations

Let us call 88C the set of completion rules OSC with the two additional failure
rules Detect _Subsort and Detect _NonSI.

The case of flat and linear term declarations is the most simple one. We
can even postpone the relatively expensive application of the Detect nonSI
rule to the final decorated presentation, provided we ensure that if we simplify
decoration rewrite rules with decorated rewrite rules, then the latter are deco-
ration preserving, i.e. of the form ¢ : [— ¥, In this case, we call also the
completion derivation decoration preserving.

Theorem4. [HKK94b] Let Ps, # (L,L1,1) be obtained with SSC from
(Dp, Ep,0). Let us assume furthermore that all terms in Do, are flat and linear,
Eo =0, all critical pairs of Doy U Reo have been computed and the completion
derwvation is decoration preserving. Then the initial presentation P is ST on VT
and Do, U Roo ts Church-Rosser, type and existentially complete.

Intuitively, if all terms in Do, are flat and linear and Po, # (L, L, L), the
rewrite proofs with Dy, U R and all terms in proofs in intermediate decorated
presentation P, only contain De,-typable terms; so Tp_ -SI is equivalent to V7-
SI. Therefore, it is sufficient to test SI on D, .

6.2 Shallow Term Declarations

A similar result to Theorem 4 for flat, possibly non-linear term declarations can
be proved. It covers the class of presentations with shallow term declarations
(t : A), where all £ € Var(t) occur either at the top or at depth one in ¢.
These presentations can be conservatively transformed into presentations with
flat, possibly non-linear term declarations.

Dropping the linearity condition forces us to simultaneously reduce identical
subterms at the same depth, and to prohibit decoration rewrite rule simplifica-
tion with decorated rewrite rules. Let ¢ ¢/ € Ta(Se, F, Xo), ¢ € R and k
be a natural number. Then ¢ layer rewrites to t’:SI, written ¢ i:%%a’k t’:SI,
if there exists a maximal set O of positions w in ¢ s.t.Vw € O, |w| = k and ¢
concurrently rewrites at positions in O with the same rule ¢ and substitution o.

Ezample 5. Let ¢ = (opp(opp(xiNathydInthydinth _y p{Natly ¢ R bhe a deco-
rated rewrite rule. Consider the decorated following terms:

t = (Opp(Opp(O:{Nat}):{Int}):{[nt} * Opp(Opp(O:{Nat}):{Int}):{[nt}):{[nt}
ty = (Opp(Opp(S(O:{Nat}):{Nat}):{[nt}):{]nt} * Opp(Opp(O:{Nat}):{Int}):{[nt}):{[nt}
ts = (Opp(Opp(O:{Nat}):{Int}):{[nt} * S(Opp(Opp(O:{Nat}):{Int}):{[nt}):{Int}):{[nt}

Let o = {&{Nat} oy 01Nt} Then

t ;3%071 (Oz{Nat} * Oz{Nat}):{Int}
ty ;3%071 (Opp(Opp(S(O:{Nat}):{Nat}):{Int}):{]nt} * Oz{Nat}):{Int}
ts ;3%071 (Oz{Nat} * S(Opp(Opp(O:{Nat}):{Int}):{[nt}):{[nt}):{Int}

Remark that in t5, the left subterm of * does not match ¢ and in ¢3, there are
two identical redexes, but at different depth.

Let us call £LS8C the set of completion rules similar to SSC, except that layer
rewriting is used instead of standard decorated rewriting defined in section 4,
which also changes the definition of critical pairs (see [HKK94b]), now called
layer critical pairs.

Theorem 5. [HKK94b] Let Py # (L, L, 1) be obtained with LSC from
(Dp,Ep,B). Let us assume furthermore that Eo, = 0, all layer critical pairs
of Doo U Roo have been computed, and all terms in all generated decoration rules
are flat. Then the initial presentation P 1s ST on Vg and Do U Roo ts Church-
Rosser, type and existentially complete.

Once more, one can prove that it is sufficient to test SI in D,. The follow-
ing example illustrates the use of this proposition and provides a comparison
with [Wer93]. Remark that =g and —— g coincide here, whenever =g is used.

Frample6. P ={x = N,y Z,z = Z, x:2,0: N, suc(zx): N, opply) : Z

sq(y) « N, sqri(e) : Nyl - Nyyxz 2 Z, o] = 2, sq(y) = y =y, opp(y) = opp(y) =
y* y} The initial decoration rules are:

0% — 0ViN} if {N} ¢s
suc(zINT)s 5 sye(pAN)sUINT if {N} ¢+
Opp(y:{Z}):s — Opp(y:{Z}):sU{Z} if {Z} % s

sq(y i) — sq(yl4))0i) if {N} ¢ s
sqrt(x:{N})” — sqrt(x:{N}):su{N} if {N} s

|y 23| 5 |yt 23 |s0iN} if {N} s
(120w 28y o (2L AT ol2) if (7)) @ s

The initial decorated equalities:

|x:{N}|:® — AN}
Sq(y:{Z}):(D — (y:{Z} * y:{Z}):(Z)
(Opp(y:{Z}):(b * Opp(y:{Z}):(Zl):(D — (y:{Z} * y:{Z}):(Zl

After simplification with decoration rewrite rules, we get:

sq(y 21y ANY = (121 121y 2}
(Opp(y:{Z}):{Z} " Opp(y:{Z}):{Z}):{Z} — (y:{Z} * y:{Z}):{Z}

Now, decorating and orienting the equalities yields:

AN VY (V)
Sq(y:{Z}):{N} — (y:{Z} * y:{Z}):{N,Z}
:Z*:Z:s_> :Z*:Z:sUN if IN s
(y{}y{}) (y{}y{}){} {N} ¢
0 {Z1{2} 4 o AZN\AZINAZY (A2} 4 123N 2]
(opp(yt?7) pp(yt20) 7)) (y yie)

This is already the final presentation, since no more completion rule is applicable.
The equality sqrt(sq(y)) = sqrt(sq(opp(y))) can be proved as follows:

sqrt(sq(y)):w lpur =a gqrt((yi‘?z} * yi{Z})i{NVZ})i{N}
=q sqrt(sq(opp(y)))*? Lpur.

6.3 Arbitrary Term Declarations

Further extension for non-linear arbitrary term declarations needs a different
proof reduction [HKK94b] and a rewrite relation in which all identical redexes are
reduced simultaneously. A decorated term ¢° rewrites in a mazimally subterm
sharing way into 38 using a decorated rewrite rule ¢ [= ¢ and a
decorated substitution o if there exists a maximal set of positions O = {w €
Oce(t®) | %), =4 o(I'°1)} s.t. t concurrently rewrites at all positions in O. This

is written % »—»Iaf 15" Clearly, this changes once again the definition of critical
pairs.

Ezample 7. Consider once more ¢,t1,12,t3 and o from example 5. Then

t]U:i (Oz{Nat} * Oz{Nat}):{Int}

[
o w Ry¢ (Opp(Opp(S(O:{Nat}):{Nat}):{Int}):{]nt} " Oz{Nat}):{Int}
ts »_»%¢ (Oz{Nat} " 5(0:{Nat}):{[nt}):{[nt}

Remark that in ¢5, again the left subterm of * does not match o, but in t3, the
two identical redexes are reduced simultaneously this time.

The set of completion rules called MSSC is obtained from SSC by drop-
ping any simplification by decorated rewrite rules and using adequate critical
pairs, called M&S8-critical pairs. The completion rules have to be applied with a
strategy that essentially gives a higher priority to computation of critical pairs
between decoration rewrite rules (see [HKK94b]).

Theorem 6. Let Po, # (L, L, 1) be obtained with MSSC from (Dp, Fp,0) s.t
the strategy restrictions are fulfilled. Lel us assume furthermore that Eo, = 0 and
all MSS-critical pairs of Dog U Roy have been computed. Then the initial pre-
sentation P 1s ST on VT and Dy, U Roo ts Church-Rosser, type and existentially
complete.

Remark that under the conditions of this theorem, P is SI and hence full
OS8C from [HKK94a] can be applied to continue completion, i.e. essentially inter-
reduce the rules in Dy, U R,. Note that every izi}g’a’k and »—»Iaf step can be
replaced by a sequence of >—>1§’¢’w steps, 1.e. all proofs using the former relations
can be transformed into ones using >—>1§’¢’w only.

In order to illustrate the difficulties arising with non-flat, non-linear term
declarations, consider the following example:

Ezample 8. Let nil — List and cons : NatList — List be the usual operator
declarations for lists of natural numbers. Now, if we want to distinguish lists,
where two identical numbers follow each other (let us call them M L, for multi-
lists), we need to say something like, cons(z, cons(z,!)) : M L, where x is of sort
Nat and ! of sort List.

Remark that ML should now be declared as subsort of List, i.e.
ML<§"List. The non-linear, non-flat term declaration becomes in the deco-
rated term framework the following self-overlapping decoration rewrite rule ¢:

cons(x:{N‘”}, COns(x:{Nat} ’ l:{List}):{List}):s
— COnS(l‘:{Nat},COnS(l‘:{Nat}, l:{List}):{List}):sU{ML} if {ML} % s

Now, overlapping ¢ at position 2 with itself or the result of the overlap can
be repeated ad infinitum, resulting in a non-terminating completion of the set
of decoration rewrite rules. Hence, the SI test is not complete either, since we
cannot guarantee confluence. This situation may be encountered with practically
relevant examples — for instance multisets realized as ordered lists.

The way out of this dilemma seems to be the use of more sophisticated
decoration rewrite rules, like the following ¢':

COns(x:{Nat} ’ cons(x:{N‘”}, l:{List}):{ML}):s
— COnS(l‘:{Nat},COnS(l‘:{Nat}, l:{List}):{ML}):sU{ML} if {ML} % s

Remark that the only difference to ¢ consists in the decoration at position 2,
which became ML instead of List. Using ¢ and ¢’ does not prevent ¢ from
being self-overlapping but makes the result of the overlap being subsumed by
¢'. Hence, the completion of ¢ and ¢’ only terminates.

¢’ does not correspond to any formula in G-algebra. However, allowing
for conditional rules for membership formulas, similar to the sort constraints
in [GIM85], gives an extension of G-algebra where ¢ is translated into the fol-
lowing formula:

cons(x,cons(x,l)) : ML if cons(z,l): ML

We extended (G-algebras lately to an equational Horn clause logics, called
G"-logics [HKM94], where sets of nesting depth up to n can be specified. Sets of
depth 1 correspond with sorts. G™-logics share the useful properties of existence
of a sound and complete deduction system and initial models with G-algebras.
We hope to extend the results given in this paper to a fragment of G™-logics
covering the problems illustrated by the last example.

7 Related Work and Conclusion

Completion procedures for order-sorted algebraic specifications have already
been proposed, but either fail by non-sort decreasingness or do not han-
dle term declarations and semantic sorts. The completion using “syntactic
sorts” [GKK90] is subsumed by our completion, i.e. for every completion in that
framework, we can do a similar one using our decorated completion.

The tree automata approach of [Com92] produces rewrite rule schemas using
second order variables instead of critical pairs between decoration rewrite rules
and decorated rewrite rules. In [HKK94b], we give an example for a specification,
that can be completed in a finite number of steps using our approach, but which
does not terminate with the approach described in [Com92].

Another related approach is the signature extension method [CH91], which
introduces new function symbols in order to solve the problem of equalities that
cannot be oriented into sort-decreasing rules. However, this technique does not
seem to be well-adapted to functional programming, since evaluation may result
in a term involving a new function symbol that has no interpretation in the
initial specification.

The T-contact method ([Wer93]) uses variable overlaps in order to cope with
non-sort-decreasing rules. This results in a high number of new equations and
may cause the completion to diverge.

The works of L. With (see [Wit92]) or Watson and Dick [WD89]) are very
close to our approach, but do not really contain solutions concerning the un-
decidability problems for unification. More detailed comparisons with all these
approaches can be found in [HKK94b]. We currently investigate relations with
unified algebras [Mos89] or many-sorted algebras with semantic sorts and sort
operations [Mei92].

To summarize, the main contribution of this paper relies in the elaboration
of a test for sort inheritance in presentations with term declarations. Even when
term declarations are not explicitely used in specifications, they may occur as a
consequence of equality orientation when the semantic sort approach is adopted
(see Example 6) and it is thus crucial to handle them in completion.

Decorations have been successfully used to formalize typing and to compute
with semantic sorts. While keeping the interesting notion of sorts as constraints,
they provide an adequate tool for testing sort inheritance.
Acknowledgements: We thank Uwe Waldmann and Andreas Werner for their com-
ments on earlier drafts of this work. This work is partially supported by the Esprit
Basic Research working group 6112, COMPASS.

References

[CHI1] H. Chen and J. Hsiang. Order-sorted equational specification and com-
pletion. Technical report, State University of New York at Stony Brook,
November 1991.

[Com92] H. Comon. Completion of rewrite systems with membership constraints. In
W. Kuich, editor, Proceedings of ICALP 92, volume 623 of Lecture Notes
in Computer Science. Springer-Verlag, 1992.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 6, pages 244—
320. Elsevier Science Publishers B. V. (North-Holland), 1990.

[GIMS85] J. A. Goguen, J.-P. Jouannaud, and J. Meseguer. Operational semantics
for order-sorted algebra. In W. Brauer, editor, Proceeding of the 12th Inter-
national Colloquium on Automata, Languages and Programmang, Nafplion
(Greece), volume 194 of Lecture Notes in Computer Science, pages 221-231.
Springer-Verlag, 1985.

[GKK90] 1. Gnaedig, C. Kirchner, and H. Kirchner. Equational completion in order-
sorted algebras. Theoretical Computer Science, 72:169-202, 1990.

[GM92] J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduc-
tion for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 2(105):217-273, 1992.

[HKK94a] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-typed compu-
tations for order-sorted equational presentations —extended abstract—. In
S. Abiteboul and E. Shamir, editors, Proc. 21st International Colloquium
on Automata, Languages, and Programming, volume 820 of Lecture Notes
in Computer Science, pages 450—-461. Springer-Verlag, 1994.

[HKK94b] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-typed com-
putations for order-sorted equational presentations. research report 2208,
INRIA, Inria Lorraine, March 1994. 114 p., also as CRIN report 93-R-309.

[HKM94] C. Hintermeier, H. Kirchner, and P. Mosses. R"- and G"-logics. Technical

[TK91]

[Meég90]

[Mei92]

[Mos89]

[Obe62]

[ScoTT]

[Smo89]

report, Centre de Recherche en Informatique de Nancy, 1994.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:
a rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic. Fssays in honor of Alan Robinson, chapter 8, pages
257-321. The MIT press, Cambridge (MA, USA), 1991.

A. Mégrelis. Algébre galactique — Un procédé de calcul formel, relatif aux
semi-fonctions, a linclusion et a l’égalité. Theése de Doctorat d’Université,
Université de Nancy 1, 1990.

K. Meinke. Algebraic semantics of rewriting terms and types. In
M. Rusinowitch and J. Rémy, editors, Proceedings 3rd International Work-
shop on Conditional Term Rewriting Systems, Pont-a-Mousson (France),
volume 656 of Lecture Notes in Computer Science, pages 1-20. Springer-
Verlag, 1992.

P. D. Mosses. Unified algebras and institutions. In Proceedings 4th IEEE
Symposium on Logic in Computer Science, Pacific Grove, pages 304-312,
1989.

A. Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Math.
Annalen, 145(1):297-333, 1962.

D. Scott. Identity and existence in intuitionistic logic. In M. P. Fourman
and C. J. Mulvey, editors, Applications of Sheaves, volume 753 of Lecture
Notes in Mathematics, pages 660—696. Springer-Verlag, 1977.

G. Smolka. Logic Programming over Polymorphically Order-Sorted Types.
PhD thesis, FB Informatik, Universitit Kaiserslautern, Germany, 1989.

[SNGM89] G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order-sorted equa-

[5887]

[Wal92]

[WD89]

[Wer93]

[Wit92]

tional computation. In H. Ait-Kaci and M. Nivat, editors, Resolution of
Equations in Algebraic Structures, Volume 2: Rewriting Techniques, pages
297-367. Academic Press, 1989.

M. Schmidt-Schaufi. Computational Aspects of an Order-Sorted Logic with
Term Declarations. PhD thesis, Universitit Kaiserslautern (Germany),
1987.

U. Waldmann. Semantics of order-sorted specifications. Theoretical Com-
puter Science, 94(1):1-33, 1992.

P. Watson and J. Dick. Least sorts in order-sorted term rewriting. Techni-
cal report, Royal Holloway and Bedford New College, University of London,
1989.

A. Werner. A semantic approach to order-sorted rewriting. In C. Kirchner,
editor, Proceedings 5th Conference on Rewriting Techniques and Applica-
tions, Montreal (Canada), volume 690 of Lecture Notes in Computer Sci-
ence, pages 47-61. Springer-Verlag, 1993.

L. With. Completeness and confluence of order-sorted term rewriting.
In M. Rusinowitch and J.-L. Rémy, editors, Proceedings 3rd Interna-
tional Workshop on Conditional Term Rewriting Systems, Pont-a-Mousson
(France), number 656 in Lecture Notes in Computer Science, pages 393-407.
Springer-Verlag, July 1992.

This article was processed using the #TEX macro package with LLNCS style

