
Sort Inheritance for Order-Sorted EquationalPresentationsClaus Hintermeier, Claude Kirchner, Hélène KirchnerCRIN-CNRS & INRIA-LorraineBP239, 54506 Vand÷uvre-lès-Nancy CedexFranceE-mail: hinterme@loria.fr, ckirchne@loria.fr, hkirchne@loria.frAbstract. In an algebraic framework, where equational, membershipand existence formulas can be expressed, decorated terms and rewritingprovide operational semantics and decision procedures for these formu-las. We focus in this work on testing sort inheritance, an undecidableproperty of speci�cations, needed for uni�cation in this context. A testand three speci�c processes, based on completion of a set of rewriterules, are proposed to check sort inheritance. They depend on the kindsof membership formulas (t : A) allowed in the speci�cations: �at andlinear, shallow and general terms t are studied.1 IntroductionThe operationalisation of order-sorted frameworks ([Obe62, SS87, SNGM89,GM92]) led to several problems in the past, due to the purely syntactic treatmentof membership formulas (t : A), also called term declarations. Assuming themas parsing-oriented declarations, a �rst pitfall is that equality in the quotientalgebra is no more a congruence in general: consider for example two sorts Aand B, with A � B, two constants (a : A) and (b : B), a unary operatorf : A 7! A, and the equality a = b. Although f(a) = f(b) is expected, f(b)is not well-formed if parsing is performed using only the membership formulas(a : A), (b : B) and (f(x) : A) for any variable x of sort A, corresponding to theoperator declarations.One possible solution to this problem is to impose sort-decreasingnessand con�uence of the rules associated with the equalities in a speci�cation(see [GM92, GKK90]). However, there are examples, where sort-decreasingnessis an uncomfortable restriction: for instance a de�nition of the square functionon integers is given with two sorts Nat and Int with Nat � Int, operators0 : 7! Nat, � : Int; Int 7! Int, sq : Int 7! Nat, and for any variable x :: Int,sq(x) = x � x. However orienting this last equality is problematic since the rulesq(x) ! x � x is not sort-decreasing.Even with con�uent and sort-decreasing rules, syntactic sorts are restrictive,since terms, that are not syntactically well-formed, can evaluate to a well-formedone: a well-known example is the stack of naturals, with sorts Nat (naturals),St (stacks) and NeSt (non-empty stacks), such that NeSt � St, operators

nil : 7! St, push : Nat; St 7! NeSt, pop : NeSt 7! St, top : NeSt 7! Nat,variables x :: Nat, z :: St, and two rewrite rules top(push(x; z)) ! x andpop(push(x; z)) ! z.The term top(pop(push(2; push(1; nil)))) is not syntactically well-formed butclearly is semantically meaningful, since it evaluates to 1.A solution for this problem were retracts, proposed in [GJM85, GM92]. An-other solution consists in the semantic interpretation of membership formu-las, i.e. equal terms belong by de�nition to the same sorts. Assuming sort-decreasingness, the term to be reduced is meaningful if and only if its normalform is well-formed [Wer93]. This approach also solves the congruence problem.In order to further increase expressivity of order-sorted speci�cations, itmakes sense to allow term declarations of the form (t : A), that generalise �atand linear declarations, such as (f(x) : B) for any (x :: A) to declare an operatorf : A 7! B. Non-linear term declarations are useful for instance in a speci-�cation involving again naturals and integers and the declarations Nat � Int,0 : 7! Nat, suc : Nat 7! Nat, opp : Int 7! Int, � : Int; Int 7! Int. Now,(x � x : Nat) for any x :: Int is a �at but non-linear membership formula.Therefore, we adopt an algebraic framework called G-algebra, where mem-bership formulas and equalities interact to compute semantic sorts of terms.However deduction in this context needs a uni�cation which is undecidable ingeneral, due to semantic membership and general term declarations.In [HKK94a, HKK94b], we proposed an extended term structure, called dec-orated terms, where each node contains the set of sorts already proved for thecorresponding subterm. Rewriting is de�ned on these terms and a completionprocess is proposed, based on the hypothesis that the axiomatisation is modu-larised in three parts: (i) equalities (t = t0), (ii) term declarations (t : A) and(iii) sort inclusions (A � B). (i) and (ii) are handled via rewrite rules (decoratedand decoration rules) and are thus modi�ed and enriched during completion. Onthe contrary, (iii) is stable during the whole completion. In particular, matchersand uni�ers are computed using as usual the term structure but also the sortinformation given in decorations and in the �xed sort structure. Since matchingand uni�cation use only the sort information available in the decorated termat uni�cation or matching time, they are correct but non complete in generalfor the peak reduction involved in the completion process. This completenessproperty will be achieved only at the end of the completion process providedit does not fail. In order to get an algorithm that computes a complete set ofuni�ers on decorated terms, it is necessary that the sort information given inpart (iii) contains enough information to have the following property, called sortinheritance: if a term t can be proved to be of sorts Ai, i 2 [1::n], then theremust exist a sort C with C � Ai for all i 2 [1::n]. Sort inheritance is in generalundecidable. In [HKK94a], the completion process is performed assuming sort in-heritance. When a fair completion does not fail, the resulting set of rewrite rulesprovides a way to prove not only equational theorems of the form (t = t0) butalso membership theorems (t : A) and existence theorems (EX t) (cf. [Sco77]).Thus sort inheritance is a crucial property in this framework. We propose

in this paper a test of sort inheritance based on the computation of top criticalpairs between decoration rules generated during completion. It the test succeeds,it provides a counter-example for sort inheritance. Conversely, if the test neversucceeds during completion, the speci�cation is proved sort inheriting in threedi�erent situations: the �rst one is the case of �at and linear term declarations.This is the simplest case that corresponds to usual operator declarations. In thatcase, the test for sort inheritance can be postponed at the end of the completionprocess. The second case is when term declarations are shallow (i.e. have novariable at depth more than one). Then simpli�cation and critical pair compu-tation must be adapted to simultaneously reduce identical subterms at the samedepth. Eventually, for general term declarations, all identical subterms have tobe reduced in one step during simpli�cation and a speci�c completion strategyhas to be designed. This last case also forbids inter-reduction using decoratedrewrite rules, which may cause divergence of the process in many cases.This paper focusses on checking sort inheritance and is built as follows. Thealgebraic framework is stated in Section 2 and Section 3 explains the assump-tions for the used sort structure. Then, in Section 4, the notions of decoratedterms and rewriting with decorated and decoration rewrite rules are brie�y re-called, with a completeness theorem stating the equivalence of replacement ofequal by equal on decorated terms with deduction in G-algebra. Section 5 brie�ygives the results of [HKK94a]. Section 6 provides the test for detecting non sortinheritance and successively considers the case of �at and linear term declara-tions, shallow declarations, and any kind of term declarations. In the conclusion,our approach is brie�y compared with other related works. The full version ofthis paper [HKK94b] includes all proofs, examples and extended discussions ofthe concepts introduced here.2 G-AlgebraA main feature of G-algebra is that function and term declarations, usually seenas part of the (static) signature in classical approaches, become formulas andare involved in proofs at the same level as equalities.Our notations are consistent with [SNGM89, DJ90]. All notions concerningterms are de�ned in the same way as for classical terms.Let � = (S;F) be a signature, providing a set of sorts S and of functionsymbols F . S always contains the universal sort symbol
. The set of termsT (�;X) is de�ned as in the unsorted case, but each variable x 2 X belongs toa unique sort, say A, denoted by sort(x). This is written (x :: A). With A 2 Sand t; t0 2 T (�;X), existence formulas (EX t), membership formulas (t : A) andequalities (t = t0) are all implicitly closed by universal quanti�cation.Presentations P are sets of formulas. A pair (signature; presentation) iscalled speci�cation. A �-algebra A is given by a domain jAj and interpretationsfor each symbol in S and F : each A 2 S is interpreted as a non-empty set AA,
A as jAj, and each f 2 F as a partial function fA : jAjarity(f) ! jAj. Avariable assignment � is a mapping from X to
A with �(x) 2 AA whenever

sort(x) = A (for all x 2 X). A model of P is a �-algebra s.t. for all variableassignments �, for all (EX t) 2 P, ��(t) 2
A, for all (t : A) 2 P, ��(t) 2 AAand for all (t = t0) 2 P, ��(t) = ��(t0), where �� is the unique homomorphicextension of � on terms. Homomorphisms are identical to those of [SNGM89]. Ifsome formula � is true in all models of P, we write P j= �.In [Még90] (see also [HKK94a]), a sound and complete set of deduction rulesis proposed, giving a relation ` of deductibility, s.t. ` and j= coincide. The in-volved substitutions � are supposed to be conform with the current presentation,i.e. (x 7! t) 2 � and (x :: A) 2 P implies P ` (t : A).Speci�cations with inhabited sorts (i.e. for each A 2 S, there is some t 2T (�), s.t. P j= (t : A)) have an initial�-model whose domain is ft 2 T (�) j P `EX tg. The congruence � de�ned on T (�) as f(t; t0) j P ` EX t;EX t0; t = t0g iss.t. the quotient T (�)=� is initial in the class of models of P.The main di�erence w.r.t. purely syntactic approaches, like [GM92], relieson the typing notion. Instead of syntactic typing, where the judgement whethersome t in T (�;X) belongs to a sort A 2 S only depends on the term declarationsin P, in our approach (as in [WD89, Com92, Wit92, Wer93]), such a judgementalso depends on equalities. This actually corresponds to the intuition that equalterms belong to the same sorts and is re�ected by the semantic sort rule in thededuction system of G-algebra [Még90]:t : A; t = s) s : ALet us come back to the stack of naturals example, expressed in G-algebra:P = 8>><>>:x :: Nat; z :: St y :: NeSt; y : Stnil : St push(x; z) : NeStpop(y) : St top(y) : Nattop(push(x; z)) = x pop(push(x; z)) = z9>>=>>;First remark that (y :: NeSt); (y : St) is the G-algebra way to expressNeSt � St. Then P j= pop(pop(push(y; push(x; nil)))) : St and P 6j=pop(pop(push(x; nil))) : St. Note also, that the �rst membership formula is notsyntactically well-formed, although the term makes sense in any model of P.3 The Sort StructureIn order to e�ectively compute in G-algebra, we have to overcome the di�cultyof semantic sorts. Indeed, de�ning a semantic sort ordering �semS in P as thetransitive and re�exive closure of the relation: A �semS B if (x :: A) 2 P impliesP ` (x : B), results in undecidability of the subsort relation. Consequently, weneed to work with an approximation. We use a syntactic relation, de�ned as thetransitive and re�exive closure of A�synS B if fx :: A; x : Bg � P. Therefore,expressing a subsort relation A�synS B in our framework is equivalent to give avariable de�nition (x :: A) and a corresponding term declaration (x : B).In ordered sort structures, incomparable sorts A1; : : : ; An without commonsubsort are considered to have no term in common. If there are common subsorts

B1; : : :Bm, usually as in [GM92], only terms in these common subsorts are con-sidered to be simultaneously in A1; : : : ; An. This is guaranteed by a restrictioncalled regularity, saying that each term must have a unique least sort. Regularityensures decidability of uni�cation and therefore feasibility of completion.Our approach introduces new sorts in order to cope also with terms in allAi, i 2 [1::n], but not in the Bj 's, j 2 [1::m]. Hence, the next step is to �nd areplacement for regularity, adapted to the extended sort structure, that ensuresdecidability of uni�cation. We call a speci�cation (�;P) sort inheriting (SI forshort) w.r.t. a subsort ordering �, if for any term t 2 T (�;X); 8T � S :(8A 2 T;P ` t : A)) (9C 2 S; 8A 2 T;C � A)Fortunately, sort inheritance w.r.t. �synS is stricter than �semS . Hence, it is suf-�cient to test SI w.r.t. �synS , the decidable relation. This motivates to write SIwithout precising the used relation, which implicitly means SI w.r.t. �synS . Sortinheritance is undecidable in general, but a constructive test computing termsthat destroy SI is developed in Section 6. Simple restrictions such as syntacticregularity and sort-decreasingness of [SNGM89, GKK90, Wal92] are su�cient toensure SI.We assume in the following that:� (1) all sorts are non-empty,� (2) <synS , the strict part of �synS , does not contain cycles,� (3) the speci�cation has bounded membership, i.e. fA j P ` t : Ag is �nitefor all t 2 T (�;X),� (4) the set mlb(S) of maximal elements of the set of lower bounds of anysubset of sorts S � S is computable.In our framework, since emptiness of sorts is related to equality, it is undecid-able, but can be enforced by a decidable syntactic non-emptiness condition. Insignatures with �nite S, as in G-algebra, (2) is decidable, (3) is trivial and (4)is satis�ed. However, in polymorphic signatures more sophisticated propertieshave to be introduced (see [Smo89]).To express uni�ers of two variables using SI instead of regularity, an extendedsort structure (S�;�synS�) is needed. For a �nite subset S of S s.t.mlb(S) 6= ; andall A 2 S are incomparable, the sort hSi may be understood as the intersectionof all sorts A in S. Instead of hfA; : : :gi, we simply write hA; : : :i and hAi iswritten A. S� denotes the set of all hSi. The sort ordering �synS is conservativelyextended to a new subsort relation �synS� de�ned by:hSi �synS� hS0i if 8B 2 S0; 9A 2 S; s:t: A�synS B:Example 1. Let S = fZero, P , N , Intg, s.t. Zero �synS P , Zero �synS N ,P �synS Int, N �synS Int. Then S� = fZero, hP;Ni, P , N , Intg. Now,hP;Ni �synS� N , since N�synS N . Analogously, hP;Ni �synS� P . Furthermore,Zero �synS� hP;Ni, since Zero�synS P and Zero�synS N . Finally, N �synS� Intand P �synS� Int hold as before. Remark that interpreting hP;Ni intuitively asintersection of P and N results in the same subsort relation.

IntN PZero IntN PZerohP;NiIn what follows, we assume (�;P) to be a �xed speci�cation leading to anextended sort set S� with a subsort relation �synS� .4 Decorated Terms, Rewriting and PresentationsSemantic sorts lead to di�culties when parsing terms. Clearly, as long as thereis no decision procedure for typing in some presentation P, we need to restrictthe sorts of terms to those which are currently proved. Hence, we extend theterm structure with typing information in each node.Terms and Substitutions. Let X� be a S�-sorted variable set and V a setof set-variables disjoint from X�. A decorated term is either a decorated vari-able x:fhAig, where (x :: A) 2 X�, or of the form f(t1:S1 ; : : : ; tn:Sn):S , wheret1:S1 ; : : : ; tn:Sn are decorated terms, f 2 F with arity(f) = n. Subsets S; Si ofS�, for i 2 [1::n], are called decorations. tnd stands for t:S without decorations.A decorated term t:S is said valid in a presentation P if all its subterms u:Usatisfy 8h: : : ; A; : : :i 2 U , P ` (�(und) : A) for all T (�;X)-instances � of und.Td(S�;F ;X�) or just Td is the set of decorated (�;X�)-terms, VTd the set ofvalid terms in Td. t:#; represents t with empty decorations everywhere, except atpositions with variables, where x:S becomes x:fsort(x)g. Syntactic equality overdecorated terms is denoted by =d.To get decidable notions of matching and uni�cation, we need to expressSI on decorated terms as a property on their decorations only. Obviously, wehave to avoid arbitrary decorations, since they can be interpreted incorrectly asmembership formulas. Hence, it only makes sense to de�ne SI on valid terms.Furthermore, a decidable test of SI can only be assured on subsets of VTd.Therefore, we need a property for arbitrary subsets T of VTd. So, a speci�cation(�;P) is T -SI, if: 8t:T 2 T : (9C 2 S; 8A 2 T : C �synS� A):This means that we have added a sort hSi with S = min(fB j h: : : ; B; : : :i 2Tg) to S� w.r.t. S, i.e. intuitively for the intersection of all sorts from S occurringin the decoration T . Hence, every term in T is covered by some unique, minimal

sort, just as this is the case with regularity. The di�erence is that SI is de�nedafter an extension of the sort structure and furthermore SI is relative to a set ofvalid decorated terms. Remark that the extension of the sort structure dependsonly on the subsort relation �synS and not on membership formulas, which are apriori undecidable.Decorated substitutions are a subset of P-conform substitutions. We restrictthe used membership theory once more to the information already existing inthe term nodes, modulo a SI closure that computes minimal sorts and performstransitive closure on them w.r.t. �synS� . The SI closure bS of S is de�ned as:bS = fD 2 S� j 9hT1i; : : : ; hTni 2 S : hmin([i2[1::n]Ti)i �synS� DgExample 2. Let S = fA;B;C;Dg with D�synS B;D�synS C and therefore S� =fA;B;C;D; hB;Cig with D �synS� hB;Ci, hB;Ci �synS� B and hB;Ci �synS� C.A B ChB;CiDLet now S1 = fAg, S2 = fDg, S3 = fB;Cg and S4 = fA;B;Cg be subsetsof S�. Then cS1 = fAg, cS2 = fB;C;D; hB;Cig, cS3 = fB;C; hB;Cig and cS4 =fA;B;C; hB;Cig.S �� S0 abbreviates bS � bS0, S � S0 means S �� S0 and S0 �� S. The SI closure ct:Sof t:S is obtained by recursively applying b: to its decorations. ct:S = dt0:S0 is writ-ten t:S �=d t0:S0 and means syntactic equality up to the SI closure of decorationsat each node.A decorated substitution � is a mapping from decorated variables in X� tovalid decorated terms, such that if �(x:S) =d t:T with t:T 6=d x:S and (x :: A) 2P, then A 2 bT . Remark that A � S, since x is a decorated variable. We represent� by its graph Si2[1::n]fxi:Si 7! ti:Tig and Dom(�) = fxi j i 2 [1::n]g.Decorated term subsumption, matching and uni�cation can be de�ned as forclassical terms [JK91], using decorated substitutions and terms instead of theclassical ones together with �=d as term equality. The exact de�nitions can befound in [HKK94b] together with a matching and uni�cation algorithm.Rewriting. A decorated equality is a pair of decorated terms, denoted by(p:S = q:S0), p:S ; q:S0 2 Td. A decorated rewrite rule is an ordered pair of deco-rated terms, written (p:S ! q:S0), s.t. p:S ; q:S0 2 Td and Var(p:S) � Var(q:S0).Applying equalities and decorated rewrite rules on valid terms is de�ned ana-logously to undecorated equalities and rewrite rules (as e.g. in [DJ90]), except

that the equality symbol (=) and substitutions have to be replaced by decoratedequality modulo SI (�=d) and decorated substitutions.A decorated one-step equality application in E is written t:S ��!;�;�E t0:S0 ,where � 2 E, ! 2 Occ(t:S) and � is a decorated substitution. Decorated rewritingis analogously denoted by t:S �!;�;�R t0:S0 , where � 2 R and !; � are as before.If the used rule/equality, substitution or occurrence is not needed in the currentcontext, we may simply omit it in our notation.Example 3. Let top(push(x:fNatg; z:fStg):fNeStg):fNatg ! x:fNatg be a decoratedrewrite rule in R. Then top(push(0:fNatg; nil:fStg):;):; cannot be rewritten, buttop(push(0:fNatg; nil:fStg):fNeStg):fNatg�R 0:fNatg.Another kind of rules is introduced, whose purpose is to increase decorations.Let s be in V. A decoration rewrite rule is of the form (l:s ! l:s[Sl if Sl ��/ s),where l:; 2 Td and Sl � S�.The valid decorated term t:T rewrites in D to t0:T 0 , written t:T �!;�;�D t0:T 0 ,if � = (l:s ! l:s[Sl if Sl ��/ s) 2 D, t:T j! =d u:U , � is a decorated match from l:Uto u:U , Sl ��/ U and t0:T 0 =d t:T [�(l:U):U[Sl]!.Decorated and decoration rewriting are stable by context and substitution.Furthermore, they preserve validity of terms. To prove termination, the classicalnotion of reduction ordering can easily be extended on decorated terms (see[HKK94b] for details). A decorated or decoration rewrite step is denoted by�R[D , an application of�D or��E is denoted by��D[E . A star over arelation denotes its re�exive and transitive closure.Example 4. Let (0:s ! 0:s[fNatg if fNatg ��/ s) be a decoration rewrite rule.Then 0:fIntg�D 0:fNat;Intg. Remark that fNat; Intg � fNatg ifNat �synS� Int.Decorated Presentations. In order to replace `-derivations in the G-algebradeduction system [Még90] by��D;E;R-steps, we have to extract a set of deco-rated equalities EP and a set of decoration rules DP from P. Therefore, we takefor each subterm u of a term appearing in a formula in P a decoration rewriterule ((u:#;):s ! (u:#;):s[f
g if f
g ��/ s). For all (u : A) in P, s.t. u 62 X , weadd ((u:#;):s ! (u:#;):s[fAg if fAg ��/ s). The resulting set of decoration rewriterules is called DP . Analogously, EP is de�ned as the set of decorated equalities(p:#; = q:#;), for each equality (p = q) in P. Now, we can state:Theorem1. [HKK94b] Let t; t0 be two terms, P be a �-presentation. Let A bea sort and U be a set of sorts. Then:(P ` t = t0) , 9t0; A s:t: t:#; ���DP[EP t0:fAg[U ���DP[EP t0:#;:(P ` t : A) , 9t0; A0 �synS� A s:t: t:#; ���DP[EP t0:fA0g[U :(P ` EX t) , 9t0 s:t: t:#; ���DP[EP t0:fAg[U :5 CompletionIn order to further motivate the need for SI, let us brie�y recall the completionprocess in which it appears as an essential requirement. A completion proce-dure is described in [HKK94a] by a set OSC of rules that transforms triples

P = (D;E;R), called decorated presentations, starting from P0 = (DP ; EP; ;).D1; E1; R1 denote the sets of persisting rules and equalities in a derivationusing OSC. The purpose of completion is to generate a resulting decorated pre-sentation, given by (D1; E1; R1) where E1 = ;, that satis�es the followingproperties for D1 [R1:� Church-Rosser property:P ` (t = t0), 9t00; A; S : t:#; ��R1[D1 t00:fAg[S ��R1[D1 t0:#;,� Type completeness:P ` (t : A) , 9t0; S; A0 �synS� A : t:#; ��R1[D1 t0:fA0g[S ,� Existential completeness:P ` (EX t) , 9t0; A; S : t:#; ��R1[D1 t0:fAg[S ,The completion procedure essentially computes critical pairs between thetwo kinds of decoration/decorated rewrite rules, in order to handle critical in-teractions between membership formulas and rewrite rules in a convenient way.Simpli�cation of critical pairs and inter-reduction of rules using decoration anddecorated rules are allowed as in usual completion. The di�erence relies in theorientation process that always produces rewrite rules that increase the sort in-formation at the replacement position, but in addition may introduce new mem-bership formulas via decoration rewrite rules. The two orientation rules are givenin Figure 1 and use an ordering >d on decorated terms de�ned in [HKK94b].1. Orient_SDD;E [fp:S = q:S0g;RD;E;R [fp:S ! q:S0g if p:S >d q:S0 and S �� S02. Orient_NSD D;E [fp:S = q:S0g;RD [f(q:s ! q:s[SnS0 if S n S0 ��/ s)g; E; R [fp:S ! q:S[S0gif p:S >d q:S[S0 and S ��/ S0and if q 2 X� with q :: A then fAg � S [S0Fig. 1. Orientation rules for decorated equations.Assuming a sort inheriting initial presentation, the main result for the com-pletion process is stated in the next theorem.Theorem2. [HKK94b] Let P be SI and P1 = (D1; E1; R1) obtained withOSC from (DP ; EP ; ;) s.t. E1 = ; and all critical pairs of D1 [R1 have beencomputed. Then D1 [R1 is terminating, Church-Rosser, type complete andexistentially complete on VTd.In the orientation rules given in Figure 1, decorated equations of the form(p:S = x:S0) s.t. S[S0 6� sort(x) are not oriented, and thus the condition E1 = ;

of Theorem 2 may not be ful�lled. We add a failure rule detecting this case:Detect SubsortD;E [fp:S[fBg = (x :: A):S0g; R?;?;? if x 2 X� and x :: A 2 P and not A �synS� BWith this additional failure rule, we can improve Theorem 2 with anotherresult more precisely stated in [HKK94a]: starting from a sort inheriting pre-sentation, when completion succeeds (i.e. terminates after computing all thecritical pairs and without any application of the Detect Subsort rule), then�synS = �semS . When Detect Subsort is applicable, then �synS 6= �semS . Thismeans in particular that the uni�cation algorithm used in the completion doesnot always compute a complete set of uni�ers in the initial presentation. How-ever when Detect Subsort applies, it provides us with the information thatP ` (x : B). Adding this term declaration to the presentation yields a conserva-tive extension of the initial presentation P. Consequently, the completion can berestarted, but now using more information, since �synS has then been increased.6 Testing Sort InheritanceSince all results of the last section depend on the sort inheritance of P, weare now left with the problem of designing a test for this undecidable property.We propose in this section a test that is applied in three kinds of completionprocesses according to the form of term declarations. In all three cases, thecompletion process including the test allows checking sort inheritance of theinitial presentation.The test for detecting non sort inheritance is realized by the Detect NonSIrule given below. Detect NonSID [i2[0::n] f(pi:s ! pi:s[Si if Si ��/ s)g; E;R?;?;? if (9 ; 8i 2 [1::n]; (p0:;) �=d (pi :;))and (9S � Si2[0::n] Si; @C �synS� S)Clearly, if Detect NonSI applies, then P is not SI. If P1 = (?;?;?), thenwe can add ((p:;)nd : C), since this is a conservative extension of the initialpresentation P. As in the case of Detect Subsort, the completion can then berestarted.Moreover, this test characterises SI on the set of decorated terms called D-typable, i.e. reachable with D from terms with empty decorations, providedcon�uence of D:

Proposition3. In a decorated presentation P = (D;E;R), let us consider theset TD = ft j 9t0 2 Td:#; : t0 ���D tg. Let us assume that D is con�uent onTD. Then, the Detect NonSI-rule succeeds on D i� P is not TD-SI.The main di�culty is to extend this result from TD to the set of all validdecorated terms. This extension relies on the following facts.(1) The proof of Theorem 1 reveals that for each G-algebra proof, there is aproof using ���DP[EP , s.t. all decorated terms t:S in the latter have a typingproof (t:S):#; ���DP t:S .(2) If we check that the set of all typable terms does not contain any counter-example for SI, then the uni�cation algorithm computes all critical pairs neededfor peak reduction.(3) Typability can be preserved until P1, if proof reductions and completionstrategies are adapted to the form of term declarations.The main problems are hence �rst to �nd a proof transformation that pre-serves typability of terms and second to ensure that the set of typable terms ateach step of the completion does not contain a counter-example for SI.Under these conditions, if completion does not fail, P is SI: indeed if t:S is acounter-example for SI of P, there must exist (cf. Theorem 1) a proof	 : (t:#; ���P0 t1:S1 ���P0 t:#; ���P0 : : : ���P0 tn:Sn ���P0 t:#;)such that S � [i2[1::n]Si. By proof reduction, we get a rewrite proof:	 0 : (t:#; ��D1[R1 t0:S0) with [i2[1::n]Si � S0 and t0:S0 is also a counterexam-ple for SI. Since typability is preserved, t0:S0 has yet a typing proof using D1(t0:#; ���D1 t0:S0), so Detect NonSI must apply to D1.6.1 Flat and Linear Term DeclarationsLet us call SSC the set of completion rules OSC with the two additional failurerules Detect Subsort and Detect NonSI.The case of �at and linear term declarations is the most simple one. Wecan even postpone the relatively expensive application of the Detect nonSIrule to the �nal decorated presentation, provided we ensure that if we simplifydecoration rewrite rules with decorated rewrite rules, then the latter are deco-ration preserving, i.e. of the form � : l:S ! r:S . In this case, we call also thecompletion derivation decoration preserving.Theorem4. [HKK94b] Let P1 6= (?;?;?) be obtained with SSC from(DP ; EP; ;). Let us assume furthermore that all terms in D1 are �at and linear,E1 = ;, all critical pairs of D1 [R1 have been computed and the completionderivation is decoration preserving. Then the initial presentation P is SI on VTdand D1 [R1 is Church-Rosser, type and existentially complete.Intuitively, if all terms in D1 are �at and linear and P1 6= (?;?;?), therewrite proofs with D1 [R1 and all terms in proofs in intermediate decoratedpresentation Pk only contain D1-typable terms, so TD1-SI is equivalent to VTd-SI. Therefore, it is su�cient to test SI on D1.

6.2 Shallow Term DeclarationsA similar result to Theorem 4 for �at, possibly non-linear term declarations canbe proved. It covers the class of presentations with shallow term declarations(t : A), where all x 2 Var(t) occur either at the top or at depth one in t.These presentations can be conservatively transformed into presentations with�at, possibly non-linear term declarations.Dropping the linearity condition forces us to simultaneously reduce identicalsubterms at the same depth, and to prohibit decoration rewrite rule simpli�ca-tion with decorated rewrite rules. Let t:S ; t0:S0 2 Td(S�;F ;X�), � 2 R and kbe a natural number. Then t:S layer rewrites to t0:S0 , written t:S ���;�;kR t0:S0 ,if there exists a maximal set O of positions ! in t s.t.8! 2 O, j!j = k and tconcurrently rewrites at positions in O with the same rule � and substitution �.Example 5. Let � = (opp(opp(x:fNatg):fIntg):fIntg ! x:fNatg) 2 R be a deco-rated rewrite rule. Consider the decorated following terms:t1 = (opp(opp(0:fNatg):fIntg):fIntg � opp(opp(0:fNatg):fIntg):fIntg):fIntgt2 = (opp(opp(s(0:fNatg):fNatg):fIntg):fIntg � opp(opp(0:fNatg):fIntg):fIntg):fIntgt3 = (opp(opp(0:fNatg):fIntg):fIntg � s(opp(opp(0:fNatg):fIntg):fIntg):fIntg):fIntgLet � = fx:fNatg 7! 0:fNatgg. Thent1 ���;�;1R (0:fNatg � 0:fNatg):fIntgt2 ���;�;1R (opp(opp(s(0:fNatg):fNatg):fIntg):fIntg � 0:fNatg):fIntgt3 ���;�;1R (0:fNatg � s(opp(opp(0:fNatg):fIntg):fIntg):fIntg):fIntgRemark that in t2, the left subterm of � does not match � and in t3, there aretwo identical redexes, but at di�erent depth.Let us call LSC the set of completion rules similar to SSC, except that layerrewriting is used instead of standard decorated rewriting de�ned in section 4,which also changes the de�nition of critical pairs (see [HKK94b]), now calledlayer critical pairs.Theorem5. [HKK94b] Let P1 6= (?;?;?) be obtained with LSC from(DP ; EP; ;). Let us assume furthermore that E1 = ;, all layer critical pairsof D1 [R1 have been computed, and all terms in all generated decoration rulesare �at. Then the initial presentation P is SI on VTd and D1 [R1 is Church-Rosser, type and existentially complete.Once more, one can prove that it is su�cient to test SI in D1. The follow-ing example illustrates the use of this proposition and provides a comparisonwith [Wer93]. Remark that ��R and�R coincide here, whenever ��R is used.

Example 6. P = fx :: N , y :: Z, z :: Z, x : Z, 0 : N , suc(x) : N , opp(y) : Z,sq(y) : N , sqrt(x) : N , jyj : N , y � z : Z, jxj = x, sq(y) = y � y, opp(y) � opp(y) =y � yg The initial decoration rules are:0:s ! 0:s[fNg if fNg ��/ ssuc(x:fNg):s ! suc(x:fNg):s[fNg if fNg ��/ s0opp(y:fZg):s ! opp(y:fZg):s[fZg if fZg ��/ ssq(y:fZg):s ! sq(y:fZg):s[fNg if fNg ��/ ssqrt(x:fNg):s ! sqrt(x:fNg):s[fNg if fNg ��/ sjy:fZgj:s ! jy:fZgj:s[fNg if fNg ��/ s(y:fZg � z:fZg):s ! (y:fZg � z:fZg):s[fZg if fZg ��/ sThe initial decorated equalities: jx:fNgj:; = x:fNgsq(y:fZg):; = (y:fZg � y:fZg):;(opp(y:fZg):; � opp(y:fZg):;):; = (y:fZg � y:fZg):;After simpli�cation with decoration rewrite rules, we get:jx:fNgj:fNg = x:fNgsq(y:fZg):fNg = (y:fZg � y:fZg):fZg(opp(y:fZg):fZg � opp(y:fZg):fZg):fZg = (y:fZg � y:fZg):fZgNow, decorating and orienting the equalities yields:jx:fNgj:fNg ! x:fNgsq(y:fZg):fNg ! (y:fZg � y:fZg):fN;Zg(y:fZg � y:fZg):s ! (y:fZg � y:fZg):s[fNg if fNg ��/ s(opp(y:fZg):fZg � opp(y:fZg):fZg):fZg ! (y:fZg � y:fZg):fN;ZgThis is already the �nal presentation, since no more completion rule is applicable.The equality sqrt(sq(y)) = sqrt(sq(opp(y))) can be proved as follows:sqrt(sq(y)):#; #D[R =d sqrt((y:fZg � y:fZg):fN;Zg):fNg=d sqrt(sq(opp(y))):#; #D[R.6.3 Arbitrary Term DeclarationsFurther extension for non-linear arbitrary term declarations needs a di�erentproof reduction [HKK94b] and a rewrite relation in which all identical redexes arereduced simultaneously. A decorated term t:S rewrites in a maximally subtermsharing way into t0:S0 using a decorated rewrite rule � : l:Sl ! r:Sr and adecorated substitution � if there exists a maximal set of positions O = f! 2Occ(t:S) j t:S j! �=d �(l:Sl)g s.t. t concurrently rewrites at all positions in O. Thisis written t:S ���;�R t0:S0 . Clearly, this changes once again the de�nition of criticalpairs.

Example 7. Consider once more �; t1; t2; t3 and � from example 5. Thent1���;�R (0:fNatg � 0:fNatg):fIntgt2���;�R (opp(opp(s(0:fNatg):fNatg):fIntg):fIntg � 0:fNatg):fIntgt3���;�R (0:fNatg � s(0:fNatg):fIntg):fIntgRemark that in t2, again the left subterm of � does not match �, but in t3, thetwo identical redexes are reduced simultaneously this time.The set of completion rules called MSSC is obtained from SSC by drop-ping any simpli�cation by decorated rewrite rules and using adequate criticalpairs, calledMSS-critical pairs. The completion rules have to be applied with astrategy that essentially gives a higher priority to computation of critical pairsbetween decoration rewrite rules (see [HKK94b]).Theorem6. Let P1 6= (?;?;?) be obtained withMSSC from (DP ; EP; ;) s.t.the strategy restrictions are ful�lled. Let us assume furthermore that E1 = ; andall MSS-critical pairs of D1 [R1 have been computed. Then the initial pre-sentation P is SI on VTd and D1 [R1 is Church-Rosser, type and existentiallycomplete.Remark that under the conditions of this theorem, P is SI and hence fullOSC from [HKK94a] can be applied to continue completion, i.e. essentially inter-reduce the rules in D1 [R1. Note that every ���;�;kR and���;�R step can bereplaced by a sequence of��;�;!R steps, i.e. all proofs using the former relationscan be transformed into ones using��;�;!R only.In order to illustrate the di�culties arising with non-�at, non-linear termdeclarations, consider the following example:Example 8. Let nil ! List and cons : NatList ! List be the usual operatordeclarations for lists of natural numbers. Now, if we want to distinguish lists,where two identical numbers follow each other (let us call them ML, for multi-lists), we need to say something like, cons(x; cons(x; l)) :ML, where x is of sortNat and l of sort List.Remark that ML should now be declared as subsort of List, i.e.ML�synS List. The non-linear, non-�at term declaration becomes in the deco-rated term framework the following self-overlapping decoration rewrite rule �:cons(x:fNatg; cons(x:fNatg; l:fListg):fListg):s! cons(x:fNatg; cons(x:fNatg; l:fListg):fListg):s[fMLg if fMLg ��/ sNow, overlapping � at position 2 with itself or the result of the overlap canbe repeated ad in�nitum, resulting in a non-terminating completion of the setof decoration rewrite rules. Hence, the SI test is not complete either, since wecannot guarantee con�uence. This situation may be encountered with practicallyrelevant examples � for instance multisets realized as ordered lists.

The way out of this dilemma seems to be the use of more sophisticateddecoration rewrite rules, like the following �0:cons(x:fNatg; cons(x:fNatg; l:fListg):fMLg):s! cons(x:fNatg; cons(x:fNatg; l:fListg):fMLg):s[fMLg if fMLg ��/ sRemark that the only di�erence to � consists in the decoration at position 2,which became ML instead of List. Using � and �0 does not prevent � frombeing self-overlapping but makes the result of the overlap being subsumed by�0. Hence, the completion of � and �0 only terminates.�0 does not correspond to any formula in G-algebra. However, allowingfor conditional rules for membership formulas, similar to the sort constraintsin [GJM85], gives an extension of G-algebra where �0 is translated into the fol-lowing formula: cons(x; cons(x; l)) :ML if cons(x; l) :MLWe extended G-algebras lately to an equational Horn clause logics, calledGn-logics [HKM94], where sets of nesting depth up to n can be speci�ed. Sets ofdepth 1 correspond with sorts. Gn-logics share the useful properties of existenceof a sound and complete deduction system and initial models with G-algebras.We hope to extend the results given in this paper to a fragment of Gn-logicscovering the problems illustrated by the last example.7 Related Work and ConclusionCompletion procedures for order-sorted algebraic speci�cations have alreadybeen proposed, but either fail by non-sort decreasingness or do not han-dle term declarations and semantic sorts. The completion using �syntacticsorts� [GKK90] is subsumed by our completion, i.e. for every completion in thatframework, we can do a similar one using our decorated completion.The tree automata approach of [Com92] produces rewrite rule schemas usingsecond order variables instead of critical pairs between decoration rewrite rulesand decorated rewrite rules. In [HKK94b], we give an example for a speci�cation,that can be completed in a �nite number of steps using our approach, but whichdoes not terminate with the approach described in [Com92].Another related approach is the signature extension method [CH91], whichintroduces new function symbols in order to solve the problem of equalities thatcannot be oriented into sort-decreasing rules. However, this technique does notseem to be well-adapted to functional programming, since evaluation may resultin a term involving a new function symbol that has no interpretation in theinitial speci�cation.The T -contact method ([Wer93]) uses variable overlaps in order to cope withnon-sort-decreasing rules. This results in a high number of new equations andmay cause the completion to diverge.

The works of L. With (see [Wit92]) or Watson and Dick [WD89]) are veryclose to our approach, but do not really contain solutions concerning the un-decidability problems for uni�cation. More detailed comparisons with all theseapproaches can be found in [HKK94b]. We currently investigate relations withuni�ed algebras [Mos89] or many-sorted algebras with semantic sorts and sortoperations [Mei92].To summarize, the main contribution of this paper relies in the elaborationof a test for sort inheritance in presentations with term declarations. Even whenterm declarations are not explicitely used in speci�cations, they may occur as aconsequence of equality orientation when the semantic sort approach is adopted(see Example 6) and it is thus crucial to handle them in completion.Decorations have been successfully used to formalize typing and to computewith semantic sorts. While keeping the interesting notion of sorts as constraints,they provide an adequate tool for testing sort inheritance.Acknowledgements: We thank Uwe Waldmann and Andreas Werner for their com-ments on earlier drafts of this work. This work is partially supported by the EspritBasic Research working group 6112, COMPASS.References[CH91] H. Chen and J. Hsiang. Order-sorted equational speci�cation and com-pletion. Technical report, State University of New York at Stony Brook,November 1991.[Com92] H. Comon. Completion of rewrite systems with membership constraints. InW. Kuich, editor, Proceedings of ICALP 92, volume 623 of Lecture Notesin Computer Science. Springer-Verlag, 1992.[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen,editor, Handbook of Theoretical Computer Science, chapter 6, pages 244�320. Elsevier Science Publishers B. V. (North-Holland), 1990.[GJM85] J. A. Goguen, J.-P. Jouannaud, and J. Meseguer. Operational semanticsfor order-sorted algebra. In W. Brauer, editor, Proceeding of the 12th Inter-national Colloquium on Automata, Languages and Programming, Nafplion(Greece), volume 194 of Lecture Notes in Computer Science, pages 221�231.Springer-Verlag, 1985.[GKK90] I. Gnaedig, C. Kirchner, and H. Kirchner. Equational completion in order-sorted algebras. Theoretical Computer Science, 72:169�202, 1990.[GM92] J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduc-tion for multiple inheritance, overloading, exceptions and partial operations.Theoretical Computer Science, 2(105):217�273, 1992.[HKK94a] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-typed compu-tations for order-sorted equational presentations �extended abstract�. InS. Abiteboul and E. Shamir, editors, Proc. 21st International Colloquiumon Automata, Languages, and Programming, volume 820 of Lecture Notesin Computer Science, pages 450�461. Springer-Verlag, 1994.[HKK94b] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-typed com-putations for order-sorted equational presentations. research report 2208,INRIA, Inria Lorraine, March 1994. 114 p., also as CRIN report 93-R-309.

[HKM94] C. Hintermeier, H. Kirchner, and P. Mosses. Rn- and Gn-logics. Technicalreport, Centre de Recherche en Informatique de Nancy, 1994.[JK91] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:a rule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin, editors,Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages257�321. The MIT press, Cambridge (MA, USA), 1991.[Még90] A. Mégrelis. Algèbre galactique � Un procédé de calcul formel, relatif auxsemi-fonctions, à l'inclusion et à l'égalité. Thèse de Doctorat d'Université,Université de Nancy 1, 1990.[Mei92] K. Meinke. Algebraic semantics of rewriting terms and types. InM. Rusinowitch and J. Rémy, editors, Proceedings 3rd International Work-shop on Conditional Term Rewriting Systems, Pont-à-Mousson (France),volume 656 of Lecture Notes in Computer Science, pages 1�20. Springer-Verlag, 1992.[Mos89] P. D. Mosses. Uni�ed algebras and institutions. In Proceedings 4th IEEESymposium on Logic in Computer Science, Paci�c Grove, pages 304�312,1989.[Obe62] A. Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Math.Annalen, 145(1):297�333, 1962.[Sco77] D. Scott. Identity and existence in intuitionistic logic. In M. P. Fourmanand C. J. Mulvey, editors, Applications of Sheaves, volume 753 of LectureNotes in Mathematics, pages 660�696. Springer-Verlag, 1977.[Smo89] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types.PhD thesis, FB Informatik, Universität Kaiserslautern, Germany, 1989.[SNGM89] G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order-sorted equa-tional computation. In H. Aït-Kaci and M. Nivat, editors, Resolution ofEquations in Algebraic Structures, Volume 2: Rewriting Techniques, pages297�367. Academic Press, 1989.[SS87] M. Schmidt-Schauÿ. Computational Aspects of an Order-Sorted Logic withTerm Declarations. PhD thesis, Universität Kaiserslautern (Germany),1987.[Wal92] U. Waldmann. Semantics of order-sorted speci�cations. Theoretical Com-puter Science, 94(1):1�33, 1992.[WD89] P. Watson and J. Dick. Least sorts in order-sorted term rewriting. Techni-cal report, Royal Holloway and Bedford New College, University of London,1989.[Wer93] A. Werner. A semantic approach to order-sorted rewriting. In C. Kirchner,editor, Proceedings 5th Conference on Rewriting Techniques and Applica-tions, Montreal (Canada), volume 690 of Lecture Notes in Computer Sci-ence, pages 47�61. Springer-Verlag, 1993.[Wit92] L. With. Completeness and con�uence of order-sorted term rewriting.In M. Rusinowitch and J.-L. Rémy, editors, Proceedings 3rd Interna-tional Workshop on Conditional Term Rewriting Systems, Pont-à-Mousson(France), number 656 in Lecture Notes in Computer Science, pages 393�407.Springer-Verlag, July 1992.This article was processed using the LATEX macro package with LLNCS style

