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Abstract:
Many geometric problems like generalized Voronoi diagrams,

medial axis computations and boundary evaluation involve com-
putation and manipulation of non-linear algebraic primitives like
curves and surfaces. The algorithms designed for these problems
make decisions based on signs of geometric predicates or on the
roots of polynomials characterizing the problem. The reliability of
the algorithm depends on the accurate evaluation of these signs and
roots. In this paper, we present a naive precision-driven compu-
tational model to perform these computations reliably and demon-
strate its effectiveness on a certain class of problems like sign of
determinants with rational entries, boundary evaluation and curve
arrangements. We also present a novel algorithm to compute all the
roots of a univariate polynomial to any desired accuracy. The com-
putational model along with the underlying number representation,
precision-driven arithmetic and all the algorithms are implemented
as part of a stand-alone software library, PRECISE.

1. INTRODUCTION
Many geometric algorithms make decisions based on signs of

geometric predicates. In most cases, these predicates correspond to
algebraic functions of input parameters. The reliability of the algo-
rithm depends on the accurate evaluation of the signs of the pred-
icates. A common example is classifying the location of a point
with regard to some other geometric object, which could be a line,
plane, circle, sphere, or even a closed region bounded by piecewise
algebraic curves or surfaces.

Conceptually, the simplest solution to the problem of determin-
ing accurate geometric predicates involves the use of exact arith-
metic. Such arithmetic is based on arbitrary precision representa-
tion of intermediate and final expressions, with arithmetic imple-
mented in software. Direct use of these algorithms can be quite
slow and hence many techniques have been proposed to improve
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their speed. One approach involves explicitly keeping track of er-
ror in the expression evaluation [26, 42, 3]. Alternatively, others
have developed improved algorithms for arbitrary precision arith-
metic [38, 22, 7, 36, 4]. Finally, it is possible to use filters that
exploit features of the predicates or make assumptions on the max-
imum precision needed to evaluate a predicate [20, 38, 43]. These
algorithms have been successfully used for computing convex hulls
and Voronoi diagrams of point sets and Boolean combinations of
polyhedral primitives.

Many geometric applications involve computation and manipu-
lation of non-linear algebraic primitives. These include generalized
Voronoi diagrams and medial axis computation, bisector surfaces,
boundary evaluation of algebraic primitives and Minkowski sums
of polyhedra. In such cases, the basic primitives like points, curves
and surfaces are represented using algebraic numbers and polyno-
mial equations. Techniques for exact representation of these primi-
tives have been proposed [11, 28, 15]. The number of bits required
for an exact representation can grow significantly with the alge-
braic degree1. Given an accurate representation of the primitives,
the underlying computations that have to be performed in these ap-
plications are:

� Isolating and evaluating the roots of a polynomial system.

� Accurately evaluating the sign of an algebraic expression,
such as a matrix determinant.

One of the commonly used approaches for root isolation is based
on multi-variate Sturm sequences [35, 27, 28, 15]. However, these
techniques tend to be slow because of coefficient growth when
computations involving moderate degree algebraic primitives are
performed. Another approach is to approximate the roots of the
system using numerical iterative techniques. These approaches can
suffer from convergence problems due to ill-conditioning or clus-
tering of roots, and they may not provide sufficient accuracy in any
event.

Recently, research has focused on precision-driven computation
[32, 9, 10, 25, 31], where exact computation is performed on ex-
pressions involving rational operations, kth root operation and com-
parisons by maintaining directed acyclic graphs of expressions, or
expression dags (leda real [10] and Expr [25]). However, when the
desired computation cannot be conveniently expressed in closed
form, it is not clear how this approach can be applied. For instance,
1The worst case bounds are exponential in the algebraic degree
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the closed form expression of a matrix determinant quickly be-
comes prohibitively complex as the degree of the matrix increases.
As another example, polynomial root finding is often best performed
by iterative algorithms for which it is impossible to construct an ex-
pression dag in advance. We are interested in problems that fall into
this category. We believe that the right approach for these compu-
tations is to determine precision by iterative revision. In essence,
our approach is one of trial and error: We perform a calculation
at a specified precision, keeping track of the loss of accuracy by a
kind of interval arithmetic. If the accuracy of the result is insuffi-
cient, we increase the precision of our representation and redo the
calculation.

1.1 Main Results
In this paper, we present representations and algorithms that can

reliably perform computations not given in closed form, returning
results to an accuracy chosen in advance. We demonstrate its effec-
tiveness on a variety of problems including determinant sign eval-
uation, curve arrangements, boundary evaluation, curve arrange-
ments, and medial axis computation. We also present a novel al-
gorithm to compute all the roots of a univariate polynomial to any
desired precision.

Our number type (real) is based on extended precision float-
ing point, but it also maintains an explicit error interval of fixed
length. Efficient algorithms for all the basic arithmetic operations,
kth root operator and transcendental functions are performed on
top of the above number representation. The underlying number
representation, precision-driven arithmetic, and all the algorithms
are implemented as part of a stand-alone software library, PRE-
CISE. PRECISE is available for non-commercial use at http:
//www.research.att.com/˜krishnas/PRECISE.

As compared to many earlier algorithms, our approach provides
the following benefits:

� Arbitrary size of input primitives: We make no assump-
tions about the size of input primitives and their bit-lengths.

� Arbitrary size of geometric predicates: We make no as-
sumptions on the size of geometric predicates and algebraic
expressions.

� Coupled representation: Our numeric representation in-
cludes arbitrary precision plus an error term. As a result,
we can also represent inputs with errors.

� Iterative precision determination: The computational frame-
work determines precision by successive refinement, allow-
ing us to reliably perform computations where explicit ex-
pression dags are not realizable.

� Efficiency: Our implementations work well in practice. Us-
ing PRECISE, we were able to compute the exact bound-
ary representation of the intersection of two tori, which ulti-
mately entailed isolating the roots of a degree-88 polynomial
with coefficients of more than 4900 bits. In general, as com-
pared to techniques using exact rational arithmetic through-
out, we obtain between 1-2 orders of magnitude speedup in
isolating roots of moderate degree with moderate bit lengths.

Organization: The rest of the paper is organized in the follow-
ing manner. We give an overview of the algebraic queries in Sec-
tion 2. We describe our numeric representation in Section 3 and
show it can be used for efficiently and accurately computing the
sign of all algebraic predicates. We present a novel root finding al-
gorithm in Section 4 that can compute all the roots of a (possibly

ill-conditioned) univariate polynomial up to any desired precision.
We compare our techniques with other approaches in Section 5.
In Section 6, we highlight PRECISE’s performance on accurate
computation of curve arrangements (Section 6.2.1) and boundary
evaluation of low degree solids (Section 6.2.2). We conclude in
Section 7.

2. BACKGROUND
A number of geometric algorithms depend on the evaluation of

a few algebraic predicates. This has been well established through
the work of Fortune and Van Wyk [20], Yap [42], Shewchuk [38],
Burnikel et. al. [9, 10], and Devillers [16]. Many non-linear ge-
ometric problems such as boundary evaluation of boolean combi-
nation of curved solids, medial axis computation of polyhedra and
algebraic curve arrangements, these predicates are, or depend on,
the signs of univariate polynomials and determinants. The numeric
entries of these expressions are often obtained as a result of per-
forming symbolic elimination algorithms such as resultants. The
bit sizes of these entries grow quickly as a function of the degrees
and typically cannot be represented using 64-bit fixed precision
arithmetic.

An example of how these geometric predicates arise can be seen
by considering the boundary evaluation problem [27]. In this prob-
lem, one must evaluate the intersection between two parametric
patches. The intersection curve can be expressed in the domain
of one patch as the zero set of a bivariate polynomial. Finding
points on the intersection curve (such as local maxima and minima)
may involve finding the intersections of two such curves. There are
multiple ways of finding the intersections of the curves, but one
of the effective methods involves performing resultant calculations
and then analyzing the roots of a series of univariate polynomials
[28]. The accurate computation of the resultant and the roots of the
resulting univariate polynomials are the dominant time consuming
steps in the entire boundary generation process.

One commonly used algorithm for exact univariate real root find-
ing is based on evaluating the signs of polynomials in a Sturm se-
quence [35], which is related to the polynomial remainder sequence
that arises in GCD computations. Constructing the sequence in-
volves generating polynomials that have high bit length coefficients,
while evaluating the sequence involves finding the sign of these
polynomials (i.e. computing algebraic predicates). The performance
of the boundary evaluation algorithm (in terms of efficiency and ac-
curacy) is strongly influenced by the performance of the algorithms
for representing and computing the algebraic predicates.

3. NUMBER REPRESENTATION IN
PRECISE

For the kind of geometric problems we are interested in, we
would like a number system for reals that can:

� Handle all kinds of inputs (integer, rational, real) whose bit
sizes are not bounded

� Provide adaptive precision arithmetic

� Guarantee the number of significant digits after a sequence
of operations

� Perform reliably when computation cannot be represented in
the form of a closed expression or when it is iterative

� Handle input data with error and provide mechanisms to spec-
ify the error.
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This section gives some details about the number system we have
designed and implemented in the PRECISE library, which has the
properties above. Our approach is based on interval arithmetic us-
ing an extended precision floating-point data type. Because our
floating point numbers can be arbitrarily long, we represent the in-
terval not as a pair of floating point numbers, but as a pair (x; �),
where x is an arbitrary-precision floating point number indicating
the center of the interval, and � is a fixed precision number indicat-
ing the width. As a further (and significant) economy, the length
of x is reduced whenever the interval becomes wide enough (as in-
dicated by �) to render meaningless the last machine word in the
representation of x. Details are given in the following sections.

3.1 Floating Point Representation
Each floating point number (termed real in PRECISE) consists

of a (mantissa; exponent) pair, (m;e). For reasons described at the
end of Section 3.2, we use a decimal system to represent our reals
as opposed to a binary representation. Each number is represented
conceptually as (sign):d1d2 � � � dn�Be, where the decimal digits
di form the mantissa, B is the base, and e is the exponent. For stor-
age optimization, we actually use a larger value for the exponent
base than 10, choosing the largest power of ten whose square will
fit in a word of memory. For example, if a memory word is 32 bits
long, B = 104. The extra space in a machine word is used in the
multiplication algorithm. Thus, our new representation takes the
form (sign):m1m2 � � �mn�Be, where each mi fits in one mem-
ory word. A floating-point number now requires a variable amount
of memory, n units for the mantissa elements and one for the expo-
nent, and some additional space to record the sign and the mantissa
length. The leading mantissa element must be a nonzero block. The
constant 0 can be identified by a zero value for the mantissa length,
and no exponent or mantissa units need to be allocated.

Algorithms to perform the basic four arithmetic operations on
such representations are described in Brent [6] and Knuth [29].
For each of these operations one may specify an upper bound on
the number of result mantissa elements. Such a bound is clearly
needed for the division operation, which can possibly result in a
nonterminating result mantissa. Even though the other operations
can be performed without this bound, a complicated sequence of
these operations can quickly lead to very long mantissas and in-
creasing operation costs. We overcome this problem in our sys-
tem by maintaining a global variable called precision which can be
changed at any time during the program. Whenever the value of
precision is changed, all the new computations result in mantissas
not exceeding this length.

3.2 Error Maintenance
In addition to the above representation, we also associate an error

term � with each floating point number. A number now has the
representation

(sign):m1m2 � � � (mn � �)�Be:

The error term � holds as many decimal digits as one mantissa el-
ement and matches the last element mn in its significance. By
adding or subtracting � from the last element in the mantissa we
generate the endpoints of the interval in which the number must lie.
When there is no error, � = 0. When an arithmetic operation is per-
formed on two exact numbers, the result is initially computed ex-
actly, and then truncated if necessary to the number of digits given
by precision. If no truncation occurs, � is still 0. Otherwise � be-
comes 1, indicating that there is now a maximum error of one unit
in the last mantissa decimal place.

Arithmetic operations on operands which are possibly both in-

exact (having a positive error) amount to interval arithmetic opera-
tions, and the rules governing these operations are well known [33,
34]. We initially compute the error and the mantissa of the result. If
the error is now too large to fit in single memory word, the mantissa
is shortened and � becomes the maximum error in the last element
of the new mantissa. Thus, as significance is lost, the lengths of
the numbers represented is reduced. Consequently, the later oper-
ations, which are dependent on mantissa length, execute faster. If,
at the end of the computation, the numerical significance is insuf-
ficient, the variable precision is increased, increasing the number
of digits with which to start, and the entire computation is repeated
(iterative revision).

There is another advantage of this interval-based representation.
Most of the applications which require complicated numerical com-
putations get their input through measured or derived data. The
inputs often have errors associated with them. Adaptive precision
computation libraries which do not represent errors are forced to
assume that the input data are exact and proceed with the calcula-
tions. However, our system handles not only computational errors
but representational errors also.

The advantage of the decimal system over binary lies mainly in
the conversion of constants like 0.1 (here it is assumed that most
input is given to us in a decimal notation) to the mantissa-exponent
format. Only a few mantissa elements are required, and the conver-
sion needs to be done only once. If the binary system were used,
computation would be required for conversion to binary, with the
number of mantissa elements equal to precision, which means the
conversion has to be repeated for every increase in the precision
parameter.

3.3 Sign Evaluation
In this section, we will briefly describe the technique we use to

compute the signs of algebraic expressions using the numeric rep-
resentation described above. In this representation, the sign of an
expression is known when the expression evaluates to an interval
not containing zero. In this section, we restrict our attention to ra-
tional expressions involving real numbers, which we shall call the
inputs of the algebraic expression. We will assume that we can ar-
bitrarily improve the precision with which the inputs are evaluated.
For example, consider a polynomial expression with rational coef-
ficients. To improve the precision of the evaluated expression at
some rational point, we can evaluate these inputs (the coefficients
and the point) to any precision we want.

Before we give our algorithm, we will state (without proof) a
useful result we have obtained on the precision required to evaluate
the rational number exactly in reduced form. Let r be a floating
point approximation with the continued fraction expansion ff0; f1;
� � � ; fng. The expansion is necessarily finite because r is rational.
Consider the recurrence relations pk = fkpk�1 + pk�2 and qk =
fkqk�1+qk�2; k = 0; 1; � � �n (p�2 = q�1 = 0, p�1 = q�2 = 1).

LEMMA 1. Let r be a floating point approximation to the ra-
tional number p=q < 1 such that jr � p=qj � �, jqj � B and
� < 1

2B2 . Let m be the largest index such that qm � B. Then
p = pm and q = qm.

The above lemma states that if we compute our rational approxi-
mation with enough precision, we can actually recover the rational
number in reduced form. If only the sign needs to be computed,
it is a trivial observation that � < 1

2B
will suffice. In most of the

expressions we evaluate, such as signs of determinants and signs
of polynomials evaluated at specific values, it is easy to obtain the
bound B specified in the lemma, e.g. via Hadamard’s bound. This
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result shows that our sign evaluation method will terminate with a
correct answer.

Instead of performing all our computations at the level deter-
mined by the above lemma, we have adopted an optimistic strategy
to evaluate the signs. We initially determine all the inputs of the
expression at a small, implementation-specified precision and try
to evaluate the sign. If the sign can be recovered, we are done.
Otherwise, we iteratively increase the precision by a constant mul-
tiplicative factor and redo the entire computation as before until the
sign can be determined unambiguously. If the actual result is zero,
the error in the result will eventually fall below the � (as specified
in the above lemma) limit and we can stop the algorithm. It must
be observed that this strategy works only under the assumption that
the error in the inputs of the expressions can be refined arbitrarily.
If not, the algorithm will try to determine the sign with the given
precision of inputs, but it cannot guarantee an answer in all cases.
We do not have any tight bounds on the precision required to reli-
ably compute the signs of algebraic numbers.

4. UNIVARIATE ROOT FINDING WITH
GUARANTEED ERROR BOUNDS

In this section, we present a root finding algorithm based on
our representation. It computes all the roots of a polynomial and
guarantees the number of significant digits in each root. The al-
gorithm can handle ill-conditioned polynomials whose roots are
usually clustered together. We use an iterative scheme that starts
with an initial approximation of all the roots, refines them and up-
dates the error bound. The basis for our algorithm is the Durand-
Kerner method [18, 17]. We will present some new results based
on Rouche’s theorem to obtain good initial approximations for the
roots.

4.1 Basic Notation and Algorithm Overview
We begin by describing the Durand-Kerner method briefly. Con-

sider a monic polynomial f(x) given by

f(x) = xn + an�1x
n�1 + � � �+ a1x+ a0

=

nY
i=1

(x� ri)
(1)

The Durand-Kerner method is an iterative root-finding method
analogous to Newton’s method. Instead of beginning with a single
estimate, it begins with a vector of estimates (x(0)1 ; : : : ; x

(0)
n ) and

applies the following recursion:

x
(k+1)
i = x

(k)
i � f(x

(k)
i )Q

j 6=i(x
(k)
i � x

(k)
j )

(2)

There are a number of variants of this method proposed. There
is an improved scheme given by Ehrlich [19] as follows:

x
(k+1)
i = x

(k)
i � 1

f 0(x
(k)
i

)

f(x
(k)
i

)
��j 6=i

1

(x
(k)
i

�x
(k)
j

)

(3)

This is the basis of the Durand-Kerner scheme for simultane-
ous polynomial root evaluation. The convergence behavior of this
method has been well studied [2]. Alefeld and Herzberger [2]
showed that the iteration scheme (eq. (2)) exhibits local quadratic
convergence. We show that the improved iteration scheme (eq. (3))

exhibits local cubic convergence under certain conditions [30]. Lit-
tle is known about the global convergence of this method. It has
been shown that the Durand-Kerner scheme is globally convergent
outside a set of measure zero for quadratic and cubic polynomials
[21]. Numerical experiments, however, show that even for polyno-
mials with multiple roots the method converges for almost all initial
values. The conjecture for global convergence [21] is still unsolved.
Our algorithm uses the Durand-Kerner approach as follows.

1. Choose initial approximations x(0)i , i = 1; � � �n.

2. Execute one iteration of the Durand-Kerner scheme for all i.

3. If new iterates do not improve the previous ones, compute
error bounds on the approximations.

4. If error bounds are not satisfactory, increase computation
precision and goto step 1.

5. Report computed root approximations, their multiplicities and
halt.

4.2 Choice of Initial Approximations
One of the critical steps for this iteration scheme to work is the

choice of the initial approximations to the roots of the original poly-
nomial. In this section, we will state the basic results which deter-
mine our choice of initial approximations. The proofs are omitted
here for the sake of brevity. We refer the reader to [30] for complete
details.

We now state Rouche’s theorem [37, 24] from classical complex
analysis. This forms the basis of our results.

THEOREM 1. If P (x) and Q(x) are analytic interior to a sim-
ple closed Jordan curve C, continuous and non-vanishing on C,
and jP (x)j < jQ(x)j; x 2 C, then the function F (x) = P (x) +
Q(x) have the same number of zeros (counted with multiplicities)
interior to C as Q(x).

We now recall a fundamental result of Cauchy [12].

THEOREM 2. All the zeros of the polynomial f(x) = anx
n +

an�1x
n�1 + � � � + a1x+ a0, lie in the circle jxj � r, where r is

the (only) positive real root of the equation

�janjxn + jan�1jxn�1 + � � � + ja1jx+ ja0j

We are now ready to state our result, which is a generalization of
Cauchy’s theorem.

THEOREM 3. Given a polynomial f(x) = anx
n+an�1x

n�1+
� � �+akxk+� � �+a1x+a0, if the associated polynomial fk(x); k 6=
0; n,

janjxn + � � �+ jak+1jxk+1�jakjxk + � � � + ja0j
has two positive real roots rk and Rk , rk < Rk , then f(x) has
exactly k zeros inside or on the circle jxj � rk, and no zeros in the
annulus rk < jxj < Rk.

Cauchy’s theorem appeared in 1829. Given that the generaliza-
tion of his theorem is not too difficult, we would not be surprised if
our generalization has been proven before. However, we have not
been able to find any reference to this theorem in the literature.

THEOREM 4. Let the associated polynomial fk(x); k 6= 0; n of
the original polynomial f(x) be defined as above. Then fk(x) can
have either zero or two positive real roots.
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The basic use of the above theorems is to provide insight into
the positions where roots could occur. Most of the previous root
finding schemes use Cauchy’s theorem to generate the bound on all
the roots and then try to converge to the roots. The problem with
this method is that if the roots of the polynomial are clustered with
very large variation in the size of these roots (as is often the case
with ill-conditioned polynomials), the iteration scheme will either
fail or converge very slowly.

So, using theorem 3, let the values of k for which fk(x) has
2 positive real roots be k1 < k2 < � � � < km�1. It is easy to
show that f0(x) and fn(x) each have exactly one positive real root.
Adding 0 and n to each end of the above list gives us the sequence
0 = k0 < k1 < k2 < � � � < km�1 < km = n. Let us call this list
k list. For these indices, let the corresponding roots Rk0 < rk1 <
Rk1 < rk2 < Rk2 < � � � < rkm�1 < Rkm�1 < rkm (termed
k root list. Also, from theorem 3, we know that there are exactly
(ki+1 � ki) roots in the annulus Rki < jxj < rki+1 , 0 � i �
(m� 1). We now give the placement of the initial approximations
in our algorithm.

x
(0)
kj+l

= rkj+1e
i

�
2�l

(kj+1�kj )
+�

�
; 0 � j < m; 1 � l � (kj+1 � kj)

where i =
p�1 and � is an arbitrary angle chosen so as to avoid

symmetry in the arrangement of estimated roots. In simple terms,
we are just placing each set of (ki+1 � ki) approximations uni-
formly on a circle with a random initial offset. The above formula
is very similar to the original form it appeared in Aberth’s [1] pa-
per, except that he had the placement for all the n roots in a single
large circle.

We observe that since rk and Rk need to be evaluated only for
initial root placement, it is sufficient to compute them approxi-
mately. We refer to them as r0k and R0

k respectively. We now de-
scribe a very efficient method to evaluate r0k and R0

k . We start
with the method for estimating r0n (root of fn(x)). We know that
fn(0) > 0 and fn(1) < 0. Our method starts by finding a small
positive value � such that fn(�) > 0. We double � repeatedly until
the function value becomes negative. It is possible to do some finer
iterations between the last two � values to generate a more precise
upper bound for r0n. A similar strategy can be applied to find R0

0

(except that we approach the root from the opposite side). In order
to obtain r0k and R0

k, we observe that fk(x) < 0, rk � jxj < Rk.
That is,

jakjxk >
X
i6=k

jaijxi

>
X
i<k

jaijxi
(4)

Also,

jakjxk >
X
i6=k

jaijxi

>
X
i>k

jaijxi

jakj >
n�kX
i=1

jai+kjxi

(5)

Equation 4 is used to evaluate r0k using the method described
above for finding r0n. Equation 5 is used to evaluate R0

k using the
method for R0

0. We perform this computation for k = 1; 2; � � � ; n.

If the computed bounds r0k and R0
k are such that r0k > R0

k, we
ignore this value of k from the sequence. This placement algorithm
works very well on polynomials which exhibit root clustering and
clusters which are far apart in the complex plane.

We shall briefly show the benefit of the above result with a simple
numerical example. Consider the polynomial

f(x) = x3 � 72:1 � x2 + 148:1 � x� 77

whose roots are (1.0,1.1,70.0). By applying Cauchy’s theorem, we
find that the size of all the roots is bounded by 74.11. Applying
our result to the above polynomial gives us a k list f0; 2; 3g with
the corresponding k root list f0:43; 2:56; 69:97; 74:11g. This says
that there are two roots whose size lies in the interval [0:43; 2:56]
and one root in [69:97; 74:11], which is correct. By placing the
initial approximations in the appropriate circles, the convergence is
improved substantially.

4.3 Algorithm with Multiprecision Arithmetic
Now that all the initial approximations are found, we are ready

to perform each step of the iteration. As consecutive iterates are
found, we need to compute the absolute error in each approxima-
tion. For this, we make use of a result from Smith [40].

THEOREM 5. Let x(k)1 ; x
(k)
2 ; � � � ; x(k)n be distinct and let �j =

f(x
(k)
j )=g0(x

(k)
j ) for j = 1; � � � ; n (g(x) =

Qn
i=1(x � x

(k)
i )).

Define

�i : jx� x
(k)
i j � nj�ij; i = 1; � � � ; n

Then the union of the circles �i contains all the roots of f(x). Any
connected component of this consisting of m circles contains ex-
actly m roots of f(x).

We use the above result to compute the absolute error in each
iterate. The root finding algorithm proceeds in the following steps:

� If all the circles are isolated, we have achieved root isolation
and if the radius of these circles is smaller than the precision
limit, we are done.

� However, if there are clustered roots, it is possible that some
of the circles are connected. In this case we compute the
worst case error �i = max(jx(k)i � x

(k)
j j + nj�j j), where

j ranges over the set of indices for which x
(k)
j is part of the

same connected component as x(k)i .

– If �i is smaller than the precision desired, we report a
multiple root.

– Otherwise, we redistribute these approximations on a
single circle with center at the centroid of the iterates
and radius equal to maxi(�i + nj�ij), where i belongs
to the iterate indices of the same connected component
of the circles. The redistribution places the approxima-
tions uniformly by angle as before. Only the approxi-
mations in these clusters are refined in future steps. We
found that this method accelerates the convergence pro-
cess in case there is a higher multiplicity root near our
iterates.

We perform all the computations using PRECISE reals. Since all
the results of our computations have guaranteed error bounds, we
are assured of root separation if the circles determined by the error
bounds are not connected.
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4.4 Performance on Test Polynomials
In order to observe the performance of our algorithm, we used a

well established benchmark of polynomials collected by the PoSSo
(Polynomial System Solving) project in Europe (http://www-sop.
inria.fr/saga/POL). Each of these polynomial classes are
known to give problems (due to poor conditioning or root cluster-
ing) to other root finding algorithms. We ran these test cases on two
other established root finding software systems—Maple (from Uni-
versity of Waterloo) and MuPAD (from University of Paderborn).
We first list each of the polynomial classes.

� Poly1: �n
i=0

xi

i!
; n = 50. The roots of this polynomial are

located on a curve.

� Poly2: (x � 3c2)2 + icx7; 0 < c � 1; c = 10�20 . Degree
7 polynomial , real and imaginary parts of the coefficients
are rational. The polynomial has two simple complex roots
with extremely small real separation (113 common digits)
and imaginary parts close to zero (order of 10�149). The
remaining roots are well separated.

� Poly3: (c2x2�3)2+ c2x9; c = 1020 . Degree 9 polynomial,
integer coefficients. The polynomial has two extremely close
real roots (70 common digits) plus a complex pair with ex-
tremely small imaginary part (less than 10�90). The remain-
ing roots are well separated. The condition number of the
above clustered roots is greater than 1040 .

� Poly4: x20 + cx14 + x5 + 1, where c is a number with a
fairly large modulus. In our case, we set c = 1012 . The main
problems with this polynomial is that the intermediate values
are likely to cause overflow if multiprecision representation
is not possible.

� Poly5:
Qn

i=1(x� i); n = 40. This is the classic Wilkinson
polynomial of degree 40. Here the coefficients are very large
and the conditioning of the roots is very high (ranging from
102 to 1014 for n = 20).

� Poly6: (0:01x10 +(x� 10)2)
Q20

i=1(x� i). This is a modi-
fied case of the Wilkinson polynomial with both conditioning
problems and root clustering.

� Poly7:
Q20

i=1(x � i)(x � 20)2 . This polynomial has the
ill-conditioning problems of the Wilkinson polynomial along
with root multiplicities.

� Poly8: x14 + 2cx11 + c2x8 + 4x7 � 4cx4 + 4, c = 1024 .
This is a case where of the 14 roots, 8 roots are clustered
with moduli around 10�6 and 6 roots clustered with mod-
uli around 108 . This is a good case for our result on initial
choice of approximation.

� Poly9: xn � a; n = 50; a = 1. Sparse polynomial. The
polynomial has roots uniformly distributed along a circle, for
a=1 they are the n-th roots of the unity. Even though the roots
come close together as n grows, they are numerically well
conditioned. Their condition number is at most 2=n.

Figure 1 tabulates the running time of our algorithm compared
to that of Maple and MuPAD on each of the above cases. Since
Maple and MuPAD do not have the facility of guaranteeing the
number of significant digits of their output, we ran their software
with the same number of digits of precision as the maximum used
by PRECISE for that polynomial. All the times are in seconds and
measured on an SGI Origin 400 MHz R12000 processor running

Case Root Precision MuPAD Maple PRECISE

Poly1 10 78.77 4.79 13.17
Poly2 120 5.15 41.54 13.06
Poly3 80 3.32 8.539 6.32
Poly4 30 4.569 0.792 0.82
Poly5 30 32.21 36.31 5.67
Poly6 30 14.01 34.31 0.65
Poly7 30 6.517 13.53 1.23
Poly8 30 12.21 18.717 5.26
Poly9 30 71.215 1.26 1.44

Table 1: Univariate root finding algorithm applied to nine poly-
nomials from the PoSSo benchmark suite. The second column
indicates the number of significant digits of the roots PRECISE
was asked to compute. The last three columns indicate run-
ning time taken by Maple, MuPAD and PRECISE. Times are
in seconds and measured on an SGI Origin 400 MHz R12000
processor running Irix6.5.

Irix6.5. We are not aware of the algorithm that is implemented
for polynomial root solving in Maple and MuPAD. It can be ob-
served that PRECISE performs very competitively with the other
two software even though it performs extra work to guarantee sig-
nificant digits. We were recently informed by one of the reviewer’s
of the existence of another algorithm and implementation for uni-
variate root solving based on Aberth’s method [1] called MPSolve
provided by Bini et. al. [5]. While we were not able to test its
performance on our machines, the timings provided in their paper
seem to be an order of magnitude faster than our algorithm.

4.5 Computing Real Roots of a Polynomial
The previous section described our general algorithm for com-

puting all the roots of a polynomial and all the arithmetic is done
in complex space. However, in most geometric applications we
are interested only in the real roots. Bairstow’s method [41] is a
well-known algorithm in numerical analysis to compute the real
roots using only real arithmetic. The main idea of this method is
that instead of trying to factor out linear factors of a polynomial
with real coefficients, it factors out quadratic factors. The coeffi-
cients of these factors are always real since the roots occur in con-
jugate pairs. Thus Bairstow’s method avoids complex arithmetic
altogether.

Consider a polynomial with real coefficients f(x) as in equa-
tion 1. Let (A;B) and (A1; B1) be the coefficients of the linear
remainder such that

f(x) = f1(x)(x
2 � rx� q) +Ax+B

f1(x) = f2(x)(x
2 � rx� q) +A1x+B1

Then Bairstow’s method [41] simply iterates to compute refine-
ments on the coefficients of the quadratic factor (r; q).

�
rk+1

qk+1

�
=

�
rk

qk

�
�
�

A1r
k +B1 A1

A1q
k B1

��1 �
A
B

�

Essentially, we have extended this sequential version of Bairstow’s
method to one which iterates over all the (ri; qi) pairs simultane-
ously based on an observation in the paper by Handscomb [23].
Details of this extension are omitted in this paper. Our implemen-
tation of this algorithm under PRECISE is about 20% faster than
the previous algorithm for most of the polynomials we tested.
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Figure 1: Determinant sign speedup. The speedup factor for
PRECISE, for various matrices. The horizontal axis gives the
order of the matrix, while the vertical axis gives the speedup
factor in comparison to an exact modular arithmetic algorithm.
The set of matrices includes randomly generated matrices and
others arising in geometric problems. The matrices are all non-
singular.

5. ALGORITHM COMPARISON
In this section, we compare our algorithm with other algorithms

for efficient and accurate computations. The underlying numerical
representation is based on automatic forward error propagation. As
such it is closely related to three approaches: interval arithmetic,
expression tree methods, and expression compilers.

Interval arithmetic can be directly applied as a filter for any ex-
pression. The LEDA floatf type is an example [32]. PRECISE
extends this idea by supporting a repetition of the calculation at
higher precision. The advantage of higher precision is that PRE-
CISE can accept input of any precision and evaluate predicates ex-
actly.

Expression tree methods, such as those implemented in LEDA’s
real data type [32] and the CORE library’s Expr data type [25],
are a further generalization. In this model, associated to each quan-
tity is not only an error bound but an explicit formula for recom-
puting the quantity at a higher precision. The formula is in the
form of a tree or directed acyclic graph. These methods also al-
lows for precision-driven computation: the propagation of desired
error bounds from the top of the tree to the leaves [43]. This avoids
recomputing the expression at an intermediate precision that turns
out to be insufficient. Expression tree methods appear to be practi-
cal only for small- to moderate-length expressions. They have yet
to be applied to the problem of the sign of a large determinant, and
are clearly impractical for iterative algorithms like Durand-Kerner
for computing roots of high degree polynomial systems.

Expression compilers, like LN [20], cut down on the run-time
overhead of expression tree methods by deriving error bounds from
the structure of the expression before its variables are specialized.
They likewise have limited application to large problems, high-
precision inputs, and iterative algorithms.

Many more authors have focused on the problem of the sign of
the determinant of a small matrix [13, 8, 20, 38, 3]. Little of that
recent work applies to computing determinants of large matrices.
Some of these approaches also limit the input precision, which is
difficult in the context of dealing with arbitrary degree algebraic
numbers. The modular-arithmetic approach used in LiDIA [22]
and extended by [7] applies to matrices with integer entries only.

Within this context, the iterative reconstruction algorithms are in-
teresting in that their running times are determined by the mag-
nitude of the determinant, which is not necessarily related to the
precision required by a forward-error-based approximate method.
The floating-point filter for sign-of-determinant based on the SVD,
presented in [28], works well for large matrices, and correctly com-
putes the sign of a well-conditioned matrix. The SVD filter is dis-
tinguished from other floating-point filters in that it is based on
backward error analysis rather than forward.

6. PERFORMANCE AND APPLICATIONS
In this section, we highlight PRECISE’s performance when ap-

plied to the evaluation of determinant signs, arrangements of curves,
boundary representations, and medial axes. All times presented are
in CPU seconds on a 300 MHz R12000 MIPS processor.

6.1 Determinant Sign
The PRECISE library has been applied to computing the sign of

the determinant of large rational matrices. The algorithm used is
Gaussian elimination with partial pivoting using the real arithmetic
of PRECISE with progressively higher precision.

When applied to nonsingular matrices, we have found that this
method is faster than exact methods that use modular arithmetic,
as shown in Figure 1. Culver [14] proposes a filter for comput-
ing exact determinant signs. Using singular value decomposition
(SVD), it is possible to estimate whether a matrix is singular, and
even to determine the sign of the determinant directly if the ma-
trix is well conditioned. If it is ill-conditioned but is likely to be
singular, modular arithmetic is used. If it is ill-conditioned and un-
likely to be singular, the PRECISE determinant sign computation
is performed.

6.2 The MAPC Library
The MAPC library [28] provides facilities for exact manipula-

tion of algebraic points and curves. The PRECISE library has been
incorporated into MAPC as a filter to accelerate the exact compu-
tation. A primitive operation for MAPC is the determination of
PERM(f; x), the number of sign permanencies in the Sturm se-
quence of f evaluated at x. Up to a sign factor, the Sturm sequence
of a polynomial f is the remainder sequence that arises in comput-
ing the GCD of a f and its first derivative. To compute the number
of permanencies at a point x, one evaluates each polynomial of
the sequence at x and counts the number of times the sign remains
same between one polynomial and the next. The computation of
permanencies is useful because PERM(f; x2)� PERM(f; x1)
yields the number of distinct real roots of f between x1 and x2.
The MAPC library has used exact arithmetic capabilities based on
LiDIA [22] to accurately compute the Sturm sequences. How-
ever, for high degree polynomials, exact computation of Sturm se-
quences can be prohibitively slow because of the very large growth
in the bit lengths of the coefficients. In the worst case, the bit length
can double with every numeric division, and the number of accu-
mulated divisions in a Sturm sequence computation can be of order
n2 in the degree of the original polynomial. Some solid modeling
computations can require a Sturm sequence computation for poly-
nomials of degree > 80.

To resolve this problem, we compute the Sturm sequence and
permanencies using PRECISE’s naive precision-driven computa-
tional model. Since we are only interested in the sign of the polyno-
mials, the computation usually has enough precision to determine
the signs exactly. Occasionally, it can happen that the result has
an interval containing zero. When this occurs, the calculation of
the Sturm sequence and the number of permanencies is repeated at
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Case 1 2 3 4

Number of Curves 3 3 6 7
Coefficient Bit size 25 22 25 62
Number of Faces 9 11 31 63
Total time without PRECISE 5.2 9.0 62.8 122.8
Total time with PRECISE 1.8 4.0 11.0 9.3
Time computing resultant 1.2 3.1 8.1 4.5
Time generating Sturm sequence 3.6 5.8 54.2 117.1
without PRECISE
Time counting permanencies 0.06 0.03 0.03 0.09
without PRECISE
Time generating Sturm sequence 0.3 0.3 1.1 2.1
in PRECISE
Time counting permanencies 0.1 0.2 0.9 1.2
in PRECISE

Table 2: The table shows the maximum bit length needed to ex-
press the coefficients of the curves shown in Figure 2, the num-
ber of faces generated by the arrangement, the time taken using
the original (exact rational based) code, and the time taken us-
ing PRECISE. The curves have maximum degree 4. Times are
in seconds on a 300 MHz R12000 MIPS processor.

a higher precision. After a fixed number of attempts at increasing
precision, a call is made to the routine using exact rationals. Cur-
rently this is done if the value cannot be distinguished from zero
with 40 decimal digits of precision. In practice this occurs very
rarely. Thus the PRECISE computation serves as a filter.

6.2.1 Curve Arrangements
We have also applied PRECISE to compute an arrangement of

curves. Given a number of algebraic curves in a plane, the goal
of the curve arrangement algorithm is to compute the subregions
(called the “faces”) of the overall region which are connected with-
out any curve passing through them. Each face is defined by piece-
wise algebraic curves that enclose its boundary. All points in one
face will have the same sign with respect to all of the given polyno-
mials. The output of the curve arrangement algorithm is the explicit
topological description of each cell.

Table 2 shows a comparison of the time taken for some arrange-
ment computations for curves shown in Figure 2 with MAPC im-
plementation [28] and the new PRECISE library for Sturm sequence
computations. It is clear from these examples that PRECISE can
provide significant speedups for such algebraic computations.

6.2.2 Boundary Generation
A motivating application for the MAPC library is the boundary

evaluation of (low degree) algebraic solids. MAPC is a core library
in the ESOLID system [27] performing such boundary evaluations.
In general, the problem of determining a boundary representation
for a CSG model is a challenging one that raises problems of ro-
bustness. These problems are exacerbated when the CSG primi-
tives have curved boundaries. To alleviate the robustness problems,
the ESOLID system performs performs all geometric tests exactly,
using layered filters to make the exact computation more efficient.

We have tested ESOLID on portions of a real-world model, the
Bradley Fighting Vehicle provided courtesy of the Army Research
Laboratory. Some example output B-reps are shown in Figure 3,
with comparative timings given in Table 3.

Table 3 shows the performance improvement when PRECISE is
applied to the test examples. PRECISE affects the performance of
only the Sturm sequence portion of ESOLID. As seen in the ta-

Figure 2: Arrangement of planar algebraic curves. The fig-
ures show the curves which partition the region into faces. The
application finds all subregions, the segments of curves bound-
ing each subregion, and the connectivity between subregions.
Cases 1 and 2 are on the top row, 3 and 4 on the bottom.

ble, PRECISE can dramatically lower the running time of the most
Sturm sequence intensive examples. In the M16 example (Fig-
ure 3(c)) the Sturm code is made almost two orders of magnitude
faster. This makes the overall computation more than an order of
magnitude faster. PRECISE incurs a certain amount of overhead,
which is the reason that several of the low-Sturm time examples
actually become slower when run with PRECISE.

6.3 Medial Axis Computation
Computing the medial axis of a polyhedron is a challenging prob-

lem because it inherently requires analysis of intersecting curved
surfaces. Culver et al. [15] have implemented an exact algorithm
for medial axis evaluation that relies both on the MAPC library and
on the sign of determinant filter described in Section 6.1, both of
which incorporate PRECISE. The program has been used to com-
pute the medial axis of complicated polyhedra with as many as 250
faces [14]. An example of the output is given in Figure 4.

7. CONCLUSIONS
We have designed and implemented PRECISE, a floating point

number type that maintains an error bound and can operate to ar-
bitrary precision. We have demonstrated its utility in the following
settings:

� Polynomial root solving: We have presented a new poly-
nomial root-finding algorithm using number representation
in PRECISE. It computes all the roots with guarantees on
the number of significant digits in each root. The algorithm
can handle ill-conditioned polynomials which are tradition-
ally known to cause problems for most polynomial solvers.
The efficiency of the method also compares favorably with
some of the most widely used solvers like Maple.

� Exact geometric computation. We have also used PRE-
CISE as part of a multistage filter to accelerate exact geomet-
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Figure 3: BRL-CAD examples.

without PRECISE with PRECISE
Example Total Sturm Total Sturm
Number Time Time Time Time

a 10.23 0.51 10.95 1.62
b 12.57 0.24 12.69 1.44
c 633.42 597.33 42.99 6.93
d 132.48 4.95 137.64 11.55
e 250.74 190.62 73.86 15.36
f 26.37 1.29 28.14 3.63
g 63.15 8.34 61.26 6.36
h 213.72 116.88 105.99 9.90
i 58.92 3.15 63.48 8.55
j 54.78 2.07 58.44 6.66

Table 3: Timings for the example from Figure 3, with and with-
out the incorporation of the PRECISE library. PRECISE is
used to improve the efficiency of Sturm sequence calculations.
The total time and the time spent in Sturm computations is
shown.

Figure 4: The “iron maiden pizza box” and a schematic of its
medial axis. The top and bottom of the box are removed to
show the spikes inside. This computation took 23 minutes.

ric calculations. Using PRECISE, we have seen a speedup of
as much as an order of magnitude in computing curve ar-
rangements and in boundary evaluation, as compared to the
exact computation without the PRECISE-based filter. There
is, however, a cost in the form of a slowdown when low-
degree polynomials are involved.

Arbitrary precision interval arithmetic is a useful computational
framework when high precision is needed in the result, and meth-
ods for determining the needed initial precision are unavailable. In
such cases, the precision can be determined by iterative revision.
These problems arise in practice, and we have applied the PRE-
CISE library to their solution. In the future, we hope to investigate
other areas where PRECISE can be applied.
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