
A Constraint-Based Approach toDiagnosing Software Problems in ComputerNetworksDaniel Sabin, Mihaela Sabin, Robert D. Russell and Eugene C. FreuderDepartment of Computer Science, University of New Hampshire, Durham, NH 03824USAAbstract. Distributed software problems can be particularly mystify-ing to diagnose, for both system users and system administrators. Model-based diagnosis methods that have been more commonly applied to phys-ical systems can be brought to bear on such software systems. A proto-type system has been developed for diagnosing problems in software thatcontrols computer networks. Our approach divides this software into itsnatural hierarchy of layers, subdividing each layer into three separatelymodeled components: the interface to the layer above on the same ma-chine, the protocol to the same layer on a remote machine, and the con-�guration. For each component knowledge is naturally represented in theform of constraints. User interaction modeling is accomplished throughthe introduction of constraints representing user assumptions, the �nite-state machine speci�cation of a protocol is translated to a standard CSPrepresentation and con�guration tasks are modeled as dynamic CSPs.Diagnosis is viewed as a partial constraint satisfaction problem (PCSP).A PCSP algorithm has been adapted for use as a diagnostic engine. Thispaper presents a case study illustrating the diagnosis of some problemsinvolving the widely used FTP and DNS network software.1 IntroductionOne of the fundamental problems confronting users and managers of computernetworks today is the diagnosis of problems arising within the network itself.The symptoms produced by such problems are often ba�ing since they are sounpredictable and so unrelated to the task for which the network is being used.Furthermore, the error messages from the system are usually so general andvague that little can be gleaned from them as to the exact cause of (and hencethe �x to) the problem. Diagnosing under these circumstances is currently moreart than science [14]. The situation has been summarized in a cartoon thatpictures a visitor to a computing site staring at a swami sitting cross-legged inthe corner, and receiving the explanation: \That's our network guru".Techniques for model-based diagnosis have been used successfully in the di-agnosis of physical systems [10]. We have applied and extended this approachto computer network software. We consider this software to be constructed ina hierarchy of layers fashion as described in the ISO OSI Reference Model [12].

We subdivide each layer into three separately modeled components: the inter-face to the layer above on the same machine (or to the user, in the case of theapplication layer), the protocol to the same layer on a remote machine, and thecon�guration. This decomposition is developed further in the paper.Our approach considers diagnosis as a dynamic partial constraint satisfactionproblem. Activity constraints are used to interface the model with the \realworld" of the network, allowing the model to dynamically obtain data fromthe network and to use that data to change the problem as the search for asolution progresses. The partial solutions discovered by our system constitutethe diagnosis.The next section concentrates on individual components, presenting exam-ples of problems from widely used File Transfer Protocol (FTP) and DomainName Service (DNS) software. Sect. 3 presents the theoretical background forour approach. Sect. 4 gives some details on how problems are represented in oursystem, presents the actual dynamic partial constraint satisfaction algorithmand shows how one of the sample problems, previously presented in Sect. 2, isactually diagnosed by this algorithm.This work concentrates on modeling the network infrastructure itself. Webelieve it gives us a solid foundation for understanding basic problems thatoccur at all levels in information networks, and that the techniques we havedeveloped are applicable at higher levels as well.2 FTP Case StudyThe application protocol chosen for exempli�cation is FTP, described in RFC959 [19]. It provides interactive �le transfer and relies on Transmission ControlProtocol (TCP) { a transport protocol in the TCP/IP hierarchy of protocols [4].We decompose the problem domain into three components, each of whichwill be modeled separately, as shown in Fig. 1.
ProtocolConfiguration

User InteractionFig. 1. Problem domain decomposition1. The User Interaction component deals with commands given by the humanuser and the expectations that the user has about the system response tothese commands.2. The Protocol component is really the network software, and will later befurther decomposed into layers corresponding to the actual implementationof the network software. For now it represents simply all active software.

3. The Con�guration component represents all passive information about thenetwork and the computing environment, such as machine names and ad-dresses, routes, connectivity, etc. This information parameterizes the soft-ware in the protocol component.The complete FTP service is structured in two distinct processes, plus therules and formats, namely the protocol, for information exchange between them.These processes, a client (local) FTP program and a server (remote) FTP dae-mon, cooperate to accomplish the �le transfer function. The client initiates theconnection and forwards user commands to the remote server. The server, inresponse to the received commands, sends replies whose general format is acompletion code (including any error code), followed by a textual description ofthe action taken. A user interface resides on the local machine through whichthe user requests the transfer of �les to and from the remote machine. In oursimple examples only two of the basic operations are used:put local �le name remote �le nameget remote �le name local �le nameAs a result, a local (remote) �le is copied to (from) the remote (local) machine.But in order to be able to communicate with the server, the client has toestablish a connection with it �rst. Therefore, the client needs to know theserver's IP address. Since people prefer names, while computers prefer numbers,programs that interface with users have to map names to numbers, and viceversa. Programs that utilize networking need to map between the names usedby people to refer to host computers and the IP addresses (numbers) used tocommunicate over the network. The Domain Name Service (DNS) [18] consistsof a method for constructing names of host computers in a hierarchical mannerand a way to resolve these names in a distributed fashion. The Berkeley InternetName Domain (BIND) is a set of procedures used to map DNS names to IP ad-dresses and vice versa [1] [11]. It consists of a number of server daemons runningat various locations in the Internet, each with the responsibility of resolving asubset of the names. On OSF/1 [5] a name is resolved as follows:1. The �le /etc/svc.conf is consulted to see what services are available and inwhat order they are to be used. Possibilities are local and bind. Each servicein the list is attempted in turn until either the name is resolved or the listis exhausted, in which case the resolution fails.2. The local service is provided by consulting the �le /etc/hostswhich containsa table of known names and IP addresses. Resolution consists of searchingfor the name in the table and it fails if the name is not there.3. The bind service is provided by contacting a server daemon called named. Ifthe con�guration �le /etc/resolv.conf is present, it is consulted to �nd anordered list of the IP addresses of server daemons to contact. Each daemonin turn is contacted until one of them responds. Resolution fails if none of theservers responds, or if the �rst one that does respond is not able to resolvethe name into an IP address. If the /etc/resolv.conf �le is not present,

an attempt is made to contact a server daemon running on the local host.In this case, resolution fails if there is no such server, or if that server is notable to resolve the name into an IP address.In the examples shown we have run the FTP program on two di�erent ma-chines whose operating systems are ULTRIX (a version of UNIX) and VMS.Their �lesystems di�er in the way �les are represented and named.According to our framework for network diagnosis we can group the FTPproblems we encountered into three categories: user interaction, protocol andcon�guration problems. For each category we discuss some interesting examplesfor which we give the diagnosis solution produced by the diagnosis tool. The ex-amples we will present are actual cases we have run and diagnosed. The format ofeach example explains the FTP command and its execution context, formulatesthe problem encountered and prints out the message produced by the diagnosisprogram.To understand why the problems of the �rst two categories occurred, wemention briey the VMS conventions in naming �les, which are more restrictivethan those for the UNIX �lesystem. The name format requires three di�erent�elds for name, extension and version number. Only alphanumeric characters areallowed (plus the $ character) to specify the name �eld. The �le extensions areprede�ned to indicate the type of the �le. Other special characters are reservedfor wildcards or delimiters in the �le name syntax. Thus, names such as \@@"or \!!" are not accepted in the VMS �lesystem. Choosing reserved characters toname �les usually produces messages such as: \�le speci�cation syntax error",\invalid wildcard operation" or \not a plain �le", which are self explanatory.However, there are cases in which the FTP server responses are rather crypticor the transfer results are totally unexpected. We will explore these cases andexplain both the FTP execution context and its e�ects.2.1 Sample User Interaction ProblemsThe di�erences between the �lesystems of the local and remote machine cancause surprising name mapping for the �les transfered. Newly created �le nameson the remote machine are generated when the �le speci�cation is illegal. This isalso a case of name mapping when the �lesystems do not have the same namingconventions. An example is shown in Fig. 2.There are cases in which the �les get partially changed without violating nam-ing rules. Even if the sequence of user commands shows no error, as presented inFig. 3, examining the text �les or running the executable �les shows strange re-sults. This may happen when the type of the transfer (ASCII or binary) does notmatch the type of the �le transfered. For the ASCII type, conversion to a stan-dard text �le representation on the network is necessary to allow communicationbetween di�erent �lesystems. The UNIX system considers the newline characteras text line delimiter, while VMS uses a line length count. Thus, for the ASCIItype of transfer, the sending and receiving sites perform the necessary transfor-mations between the standard representation and their internal representation

FTP Error Message:

FTP Context:

FTP Command: put @@ @@

*** Remote file name has the form "$?$?.;?"

- Local FTP running on UNIX, remote FTP running on VMS

- Local file "@@" exists, but is not a valid file name for VMS

The transfer takes place, but the remote name is changed to "AA.;1"Problem:

Diagnosis: Fig. 2. Invalid remote �le name speci�cationof �les. It is the user's responsibility to correlate the data representation usedand the transformation function performed during the transfer.
FTP Error Message:

FTP Context:

Problem:

Diagnosis:

FTP Command: put alpha alpha

*** Change type to ASCII and redo the transfer

- Local FTP running on UNIX, remote FTP running on VMS

- Local file "alpha" exists on UNIX, and is an ASCII file

- The transfer type is "binary"

The content of the transfered file is not modified, since the conversion to the

standard representation does not apply when "binary" transfer is used. As a

result, <EOL> is not recognized on VMS and lines are incorrectly displayedFig. 3. Incorrect transfer type speci�cation2.2 Sample Protocol ProblemSometimes illegal parameters in user transfer commands are discarded by theFTP client and the FTP server receives incompletely speci�ed requests. Thereceived error message has no useful meaning for the user, as shown in Fig. 4.It is interesting to notice how the protocol knowledge helps isolate a problemtriggered at the user level. In this sense, a further exploration of the underlyingprotocols could extend the problem domain we address.2.3 Sample DNS Con�guration ProblemWe assume that all the basic con�guration tasks, such as installing TCP/IPin the kernel and con�guring the network interfaces and routing, have been

FTP Error Message:

FTP Context:

Problem:

Diagnosis:

RETR: command not understood

get !! !!FTP Command:

- Local FTP running on VMS, remote FTP running on UNIX

The server returns an error message which is not understood by the user.

- File "!!" exists on the remote machine, but is not a valid VMS file name

*** FTP client implementation error --
RETR request with no argument

*** Invalid VMS file name "!!"

The lower level command RETR used for implementing the user GET

command requires a nonempty argument. Due to an implementation error,

the client sends to the server a RETR request with an empty argument. Fig. 4. Protocol implementation errorperformed correctly and we look only at various con�gurations required by thename service.All the problems in this category follow the same simple scenario: the usertries to connect to a remote host whose name is the parameter of the ftp com-mand and the connection is refused. In all cases the remote system gives thesame error message: unknown host. However, the underlying con�gurations canbe vastly di�erent. For each of these erroneous con�gurations our diagnosticianprogram �gures out what the problem is and provides more useful messages, asshown in the example in Fig. 5.One type of con�guration problem is caused by incompletely specifying thehost tablewhen only local resolution is used. If the <remote-host> name given bythe ftp command is missing from the etc/hosts �le, then this host is unknown.This diagnosis is shown in Fig. 5.
name is not in - <remote-host>

- Local resolution only indicated in /etc/svc.confConfiguration:

/etc/hosts

/etc/hosts.

Diagnosis: *** Local resolution failed.

No <remote-host> inFig. 5. Local resolution with incompletely speci�ed host table3 BackgroundModel-based diagnosis techniques compare observations of the behavior of a sys-

tem being diagnosed to predictions based upon a model of the system in orderto diagnose faults [10]. The fundamental presumption behind model-based di-agnosis is that, assuming the model is correct, all the inconsistencies betweenobservation and prediction arise from faults in the system. Given a model de-scription and a set of observations, the diagnosis task is to �nd a set of faultsthat will explain the observations. Minimal diagnoses postulate sets of faultycomponents that are minimal in the sense that no proper subset provides anexplanation.3.1 Model-based Diagnosis as Partial Constraint SatisfactionConstraint satisfaction is a powerful and extensively used arti�cial intelligenceparadigm [7]. A constraint satisfaction problem (CSP) involves a set of problemvariables, a set of values for each variable and set of constraints specifying whichcombinations of values are consistent. A solution to a CSP speci�es a value foreach variable such that all the constraints are satis�ed.If we assign costs to the values we can look for a solution with optimal cost.Model-based diagnosis can be viewed as a constraint optimization problem byassociating system components with constraints that reect their behavior, com-ponent inputs and outputs with problem variables, and introducing assumptionvariables associated with the system components, where a value of 0 for an as-sumption variable reects normal behavior and a value of 1 abnormal behavior[6]. Observations force assignment of some of the problem variables. The task of�nding a minimal diagnosis corresponds to �nding an optimal solution of sucha CSP.We use a re�nement of this approach based on the notion of a partial con-straint satisfaction problem (PCSP) [8]. PCSPs were introduced for applicationsthat settle for partial solutions that leave some of the constraints unsatis�ed, e.g.because the problems are overconstrained or because complete solutions requiretoo much time to compute.We have found that PCSPs provide an elegant approach to viewing diagnosisin CSP terms. Regarding components as constraints, and faulty components asfailed constraints, minimal diagnoses naturally correspond to PCSP solutionsthat leave minimal sets of constraints unsatis�ed. These sets are minimal in thatthere is no solution which leaves only a proper subset unsatis�ed. Bakker et al.[2] have taken the opposite approach, applying model-based diagnosis methodsto partial constraint satisfaction.Combinations of branch and bound and CSP techniques have been used inalgorithms that search for a solution that leaves a minimal number of constraintsunsatis�ed [8]. We have adapted one of these algorithms to search for solutionswith minimal sets of unsatis�ed constraints. One of the advantages of viewingdiagnosis as a PCSP is that it permits us to bring our experience with PCSPalgorithms to bear on diagnosis.

3.2 Modeling Con�guration as Dynamic Constraint SatisfactionFor synthesis tasks such as con�guration and model composition, the constraintproblem is of a more dynamic nature [15] [16] [17]. Any of the elements of the CSPmight change during the search process. Mittal and Falkenhainer introduced thenotion of a dynamic constraint satisfaction problem (DCSP) by adding a newtype of constraint, called an activity constraint , on the variables considered ineach solution. Activity constraints, expressed in terms of consistent assignmentof values to some already instantiated set of variables, specify which variables andconstraints should be added to or removed from the current CSP. The problemthus changes as search progresses.The main advantage of this extension to the standard CSP is that inferencescan now be made about variable activity, based on the conditions under whichvariables become active, avoiding irrelevant work during search.The de�nitions of a dynamic constraint satisfaction problem and activityconstraints, as stated in [15], are the following:Given{ A set of variables V representing all variables that may potentially becomeactive and appear in a solution.{ A non-empty initial set of active variables VI = fv1; : : : ; vkg, which is asubset of V .{ A set of discrete, �nite domainsD1; : : : ; Dk, with each domainDi represent-ing the set of possible values for variable vi 2 V .{ A set of compatibility constraints CC on subsets of V limiting the valuesthey may take on. These correspond to the standard set of CSP constraints.In addition, if any of the variables involved in the constraint are not active,the constraint is trivially satis�ed.{ A set of activity constraints CA on subsets of V specifying constraints be-tween the activity and possible values of problem variables. There are fourtypes of activity constraints, which can be divided into two groups:1. require variable and require not , which establish the activity (inactivity)of a variable based on an assignment of values to a set of already activevariables. A require-variable constraint is logically equivalent to:active(V1) ^ : : :^ active(Vj) ^ P (v1; : : : ; vj) ! active(Vk), where P is apredicate, vi is the current value assigned to variable Vi; 8i; 1 � i � jand Vk 62 fV1; : : : ; Vjg.2. always require variable and always require not , which establish the ac-tivity (inactivity) of a variable based on the activity of other variables,independent of their current value. An always require variable constraintis logically equivalent to:active(V1) ^ : : :^ active(Vj)! active(Vk), where Vk 62 fV1; : : : ; Vjg.Find{ All solutions, where a solution is an assignment A which meets two criteria:

1. The variables and assignments in A satisfy CC [CA.2. No subset of A is a solution.4 Representation and ReasoningWe model each of the components of Fig. 1 { user interaction, protocol, con�gu-ration { as a separate PCSP knowledge base. Protocol diagnosis has been studiedpreviously as a constraint satisfaction problem [3] [9] [20]. We apply a similarapproach here to the FTP protocol. We demonstrate here that user interactiondiagnosis can also be modeled as a constraint satisfaction problem, in particularby introducing constraints that reect user assumptions. Finally, extending therepresentation used by [17], we are able to treat diagnosis of con�guration tasksas a PCSP as well.These three components are naturally modeled separately. They utilize dif-ferent mechanisms to instantiate the general CSP paradigm, e.g. an intermediate�nite state machine model for protocols. Applying the diagnostic engine succes-sively to the three separate domains, until a diagnosis is found, may reduce thecombinatorial complexity the engine faces. On the other hand, it is already clearthat there are interesting interactions between these components, which mayultimately require a more sophisticated control architecture.There was also a knowledge engineering, knowledge acquisition e�ort in devel-oping the user interaction model. Considerable time was spent exploring di�erenttypes of interaction that can occur, and discovering di�erent types of problemsthat can arise.4.1 User InteractionThe FTP commands specify the parameters for the data connection (data port,transfer mode, representation type, structure, etc) and the nature of the �lesystem operation (store, retrieve, append, delete, etc).Each time the user gives a command, the current state of the FTP client canbe represented as a PCSP problem. The set of variables includes the transferparameters: mode, structure, type, the local and remote operating systems:client, server, the �le system operation, command, and the �le pathname,path. In addition, there are some other variables which have no direct correspon-dent among the entities that characterize the state of the client. They representinstead, either the user's perception of the result of the operation, or, to someextent, the state of the user's mind at that moment. The variable outcome rep-resents the outcome of an FTP operation. Since the value of this variable cannotbe determined at the time of the transfer, the user is responsible for supplyinga value (\success", or, if something went wrong, his perception of \wrong", e.g.\ascii �le incorrectly transferred"). Clearly, the motivation for introducing thisvariable in the PCSP is that it allows us to embody faulty behaviors in themodel.

A \fault" at this level typically means a mismatch between the status ofthe real world and the user's mental representation of it. For example, datarepresentations are handled in FTP by a user specifying a representation type,described in our model by the variable type. When the user is specifying a valuefor the type variable, he is in fact just making an assumption about the actualtype of the �le, represented by the value of the variable actual-type. User'sassumptions are modeled in a natural way with constraints. In this particularcase, there is an equality constraint between variables type and actual-type.This di�erence in semantics implies that all such PCSPs will have two setsof constraints:1. constraints that will be part of all the PCSPs, representing the functionalspeci�cation model of FTP (accounting for both correct and incorrect be-havior);2. constraints that change from problem to problem:(a) constraints modeling user's assumptions about the real world;(b) some FTP commands translate to unary constraints, forcing value as-signments for the corresponding variables (e.g. the FTP command getrestricts the domain of the variable command to a single value, namelyget).4.2 ProtocolProtocol speci�cations are typically represented in the form of �nite automata,often referred to as �nite-state machines (FSMs). Since simple FSMs have limitedexpressive power in representing such notions as timers, logical conditions, etc.,a more powerful formalism is needed, and thus extended �nite automata havebeen used for protocol testing and speci�cation analysis or diagnosis [13] [21].The idea of using model-based techniques to diagnose communication pro-tocols based on extended �nite automata is not new. To our knowledge, atleast three protocol diagnosis systems have been proposed [3] [9] [20]. All theseapproaches attempt to diagnose protocols by analyzing conicts between obser-vations and the protocol model. This implies that observations must somehowbe associated with the model.The representation approach we are using is similar to the one used by Riesein [20]. The FTP protocol speci�cation as an extended �nite transducer is trans-lated into a standard CSP form.Where Riese is using a specialized algorithm for solving the diagnosis prob-lem, he calls it HMDP, we are using a variant of a standard PCSP algorithm toproduce the set of minimal diagnoses.We make the same assumptions as Riese does, that the external observerresides outside of the node on which the system under diagnosis is implemented,and that the observer can time-stamp messages when they are observed.In addition to the time stamp of the message, an observation also containsthe type of the message (stor, retr, etc.), the corresponding arguments, if any,and the direction of the message, relative to the client (send or receive).

Each observation has a CSP variable associated with it. Considering the ordergiven by the time stamps, let OBS =< o1; : : : ; on > be a sequence of observationsand let vi be the variable associated with observation oi. The domain of valuesof such a variable is simply the set of all valid state transitions described bythe extended �nite transducer. Thus, to solve the CSP we have to assign onestate transition of the protocol machine to each variable corresponding to anobservation, subject to two kinds of constraints:1. unary constraints, which check whether the value ti assigned to some variablevi has the same message type, direction and number and type of argumentsas the associated observation oi;2. binary constraints, which relate a variable vi to its neighbors vi�1 and vi+1by checking whether the pairs of corresponding values ti, ti�1 and ti, ti+1respectively, are part of a sequence of transitions allowed by the protocol ma-chine. Due to transitivity, if all the binary constraints are satis�ed, a solutionto the problemwill represent a complete transition sequence explainingOBS .When the FTP implementation is faulty, conicts between observations andthe FTP model will result in partial satisfaction of the constraints, and the diag-nosis algorithm applied to this PCSP will produce the set of minimal diagnosisin terms of errors at the level of the protocol commands (e.g. incorrect/missingarguments) and/or sets of faulty state transitions.4.3 Con�gurationWe use the same approach as [15], but extend the de�nition of DCSP to thatof dynamic partial constraint satisfaction problem (DPCSP), by relaxing two ofthe requirements in the previously presented DCSP de�nition.First, we do not restrict the domains of values for variables to be prede�ned�nite sets of values. In some cases domains are still �nite sets of values, knownfrom the beginning, but this is not always true. Due to the nature of our appli-cation, the values some variables may take are known only during the search,when these variables become active.Second, since we are trying to solve a diagnosis problem which might haveno complete solution, the (partial) solution we accept may violate some of theconstraints, but we are still looking for an optimal solution, according to somecriterion (e.g. minimal number of violated constraints).Studying name service con�guration and modeling it using the DCSP for-malism, we found out that quite a simple language is su�cient for specifyingthe associated dynamic constraint satisfaction problem. Since a DCSP has fourbasic components, a program in this language will naturally have four sections:1. a section de�ning the set of variables and corresponding domains of values,2. a section specifying the set of activity constraints,3. a section specifying the set of compatibility constraints, and4. a section specifying the initial set of active variables.

Variable Speci�cation Figure 6 presents the variable de�nition section for asimpli�ed model of the name service.// Variablesvar remote-host ask prompt-user("Remote host name:")var ping-path def "/sbin/ping"var services-�le def "/etc/svc.conf"var resolve-�le def "/etc/resolv.conf"var hosts-�le def "/etc/hosts"var ping-response ask ping($remote-host)var resolution-type ask resolve-service($services-�le, "hosts")var hosts ask resolve-host($hosts-�le)var local-server def "/etc/named.pid"var servers ask resolve-name-server($resolve-�le)var domain ask resolve-domain($resolve-�le), local-host())Fig. 6. Variables de�nition sectionIn order to specify a CSP using the speci�cation language, all variables haveto be declared using a var statement. Each variable is completely speci�ed bythe value of two attributes: name and domain of possible values.When the domains are known ahead of time, we simply need a way to directlyexpress them as sets of values. But since the domains of values are not prede�ned�nite sets of values for all variables, we also need a way of specifying a procedureby which a domain will be obtained when the variable becomes active duringsearch. Accordingly, the language o�ers two built-in mechanisms for specifyingthe domain of values for a variable:a) The user can supply a default , or prede�ned, domain as a set of values byusing the def slot of the var statement.b) In case the domain of a variable is not known at speci�cation time, the usermust supply, as the value of the ask slot, the call to a function which, whenexecuted, will return the set of values in the domain. Function executionwill be triggered by the activation of the variable. The function may takeas arguments either constants (e.g. string, number) or the current value ofvariables which, at the time of the call, are already active. The current valueof a variable is selected by the expression $variable, where variable is thename of the variable.Modeling the name service con�guration, we have to provide several user-de�ned functions which inspect con�guration �les, invoke UNIX system calls orprompt the user in order to get the asked values for the current variable. Theprompt-user function takes one parameter, the message to be displayed. All thefunctions that examine con�guration �les need at least one parameter, indicatingthe name of the �le where the possible values might be found. Some of them

require a second parameter, usually a string constant, to localize the line in the�le where the information is stored.Constraints Speci�cation Activity and compatibility constraints are speci-�ed in the form of boolean expressions over variables and their possible values.The language provides the standard logical and relational operators, enhanced,for increased exibility, with set-based operators (e.g. test for set membership,set inclusion, etc.). The operands can be constants, the current value of ac-tive variables, selected using the $variable expression, built{in and user{writtenfunctions, taking as arguments any of the above.As an example, Fig. 7 presents the activity and compatibility constraints inthe name service con�guration model. The keywords start, arv, rv stand forinitial set of active variables (start), always require variable (arv) and requirevariable (rv). When specifying a compatibility constraint, the user must alsosupply a formatted output statement which, in case the constraint fails, will beprinted as the diagnostic message.// Initial Set of Active Variablesstart remote-host// Activity Constraintsarv remote-host) (ping-path ping-response)rv $ping-response = "unknown") (services-�le resolution-type)rv $resolution-type = "local") (hosts-�le hosts)rv $resolution-type = "bind") (resolve-�le servers domain))rv $servers = nil) local-server// Compatibility Constraintscon $remote-host in $hosts*** Local resolution failed. No $remote-host in $hosts-�le."con $local-server != nil*** Local resolution failed. No $remote-host in $hosts-�le."con $servers = nil or bind-resolve($remote-host $servers $domain)*** bind resolution failed."Fig. 7. Activity and compatibility constraints de�nition section

4.4 Algorithm DescriptionFigure 8 provides a basic branch and bound algorithm for solving dynamic par-tial constraint satisfaction problems. It is a re�nement of a partial constraintsatisfaction algorithm presented in [8].bound ffconjcon is a compatibility constraint ggalgorithm branch&bound (distance, search-path, variables, values)if (variables = ;) thenif (distance = ;) thenreturn truefor each element D 2 bound doif (distance � D) thenbound bound nfDg2bound bound [f distance greturn false2if (values = ;) thenreturn falsecrrt-variable �rst variable in variablescrrt-value �rst value in valuesnew-distance distancesubsumed falsefor each constraint C involving crrt-variable and variables in search-pathuntil (subsumed = true) doif (C fails) thennew-distance new-distance [fCgif (9 D 2 bound such that D � new-distance) thensubsumed true2if (subsumed = false) thenrequired-variables run-arv(crrt-var) [run-rv(crrt-var, crrt-val)new-variables variables nf crrt-variable g[required-variablesif (branch&bound(new-distance,search-path [h crrt-variable, crrt-value i,new-variables, domain of �rst variable in new-variables))thenreturn true2return branch&bound(distance, search-path, variables, values nf crrt-value g)2 Fig. 8. Dynamic partial constraint satisfaction algorithmBranch and bound operates in a similar fashion to backtracking in a contextwhere we are seeking all solutions that violate minimal, under set inclusion, setsof constraints. The algorithm basically keeps track of the best solutions found sofar and abandons a line of search when it becomes clear that the current partial

solution cannot lead to a better solution. In fact, the notion of failure duringsearch is the main di�erence between CSP and PCSP. A CSP search path failsas soon as a single inconsistency is encountered. A PCSP search path will failonly when enough inconsistencies accumulate to reach a cuto� bound.The bound in our context is a set containing the sets of constraints left un-satis�ed by the best solutions found so far. If at any time during the search theset of constraints violated by the current partial solution, which we call the dis-tance, becomes a superset of any element in the bound, the current search pathis abandoned.Once the search path is complete, i.e. all variables have been assigned a value,if its distance is a subset of any element in the bound, then that element willbe replaced by the distance. In other words, the partial solution we found isbetter than a previous solution in the sense that it violates only a subset of theconstraints violated by the previous solution.The search process stops when either a complete solution, one that satis�esall the constraints, is found, or when we exhausted all the values for all thevariables. Finding a complete solution is equivalent, from the diagnostic point ofview, to �nding that the con�guration under diagnosis is correct, i.e. it presentsno \faults". In the second case, the bound represents exactly the set of minimaldiagnoses, that is, the set of minimal sets of constraints, one for every \best"partial solution found.For the sake of simplicity in presentation, the algorithm in Fig. 8 does not inany way use the partial solution it �nds (search-path). In fact, each element inthe bound is not only a set of constraints, but a pair: set of constraints and thecorresponding partial solution.When we presented the language, we said that the de�nition of each con-straint includes an output statement, which represents the text of the diagnosticmessage, in case the constraint is violated. When the algorithm stops, each ele-ment in the bound represents a possible minimal diagnosis for the con�gurationbeing tested. Therefore, one diagnostic message will consists of all the stringsincluded in the de�nitions of the constraints in one such element.The algorithm can also produce, if requested by the user, an explanationfor each diagnosis, by printing the values assigned to each variable in the corre-sponding search path.4.5 Sample TraceWe show in Fig. 9 a trace of our algorithm solving the problem presented inFig. 5. Initially, only variable remote-host is active. Since it has an ask functionof type prompt-user, the user will be asked to provide the name of the remotehost. Let's say the user typed in xx.xx.xx. Due to the arv constraint, variablesping-path and ping-response become active (step 1). Using function ping, thevalue of ping-response is set to \unknown". One of the rv constraints is satis�ednow and variables services-�le and resolution-type are activated (step 2). Usingfunction resolve-service, the algorithm decides that the value of resolution-type is \local". A new rv constraint is satis�ed. Accordingly, variables hosts-�le

zz.zz.zz

STEP 1

STEP 2

STEP 3

remote-host

xx.xx.xx

yy.yy.yy

unknown

/etc/hosts

RV

RV

CON

ARV

ARV

remote-host
ARV

ARV

ping-path

ping-response

xx.xx.xx

ping-path

/sbin/ping

unknown
ARV

ARV
remote-host

xx.xx.xx

services-file

resolution-type

services-file

resolution-type

local

/etc/svc.conf

RV

RV

RV

RV

ping-path

ping-response

/sbin/ping

remote-host

ping-response

hosts

hosts-file Fig. 9. Example trace for the problem presented in Fig. 2and hosts become active (step 3). Variable hosts is initialized to the list ofhost names read from the etc/hosts �le. Since all the variables involved in thecompatibility constraint among remote-host , hosts and resolution-type have beeninstantiated, the constraint becomes active and the check fails. Because thereare no other values to try, the current assignment represents the only solutionof this DPCSP. So, the algorithm stops with the value of bound being a set withone element, the set containing only one constraint, the one that just failed.The diagnostic message is thus the string produced by the associated outputstatement:*** Local resolution failed.No XX.XX.XX in /etc/hosts.which is the current diagnosis for this problem.5 ConclusionThe prototype system we developed for diagnosing software problems in com-puter networks uses model-based diagnosis techniques. Given a model descriptionof the software system, and a set of observations describing faulty behavior whenthe service is provided, the diagnosis task �nds the set of errors that explain the

observations and gives precise diagnosis messages. We use a PCSP approachto view the model-based diagnosis in CSP terms, where the interacting com-ponents that de�ne the service are the constraints. Since we solve a diagnosisproblem which might have no complete solution, we need to accept partial solu-tions which violate some of the constraints. Thus, minimal diagnoses corresponddirectly to PCSP solutions that leave minimal sets of constraints unsatis�ed.The dynamic nature of a con�guration task is described in terms of DPCSP:at any given point in the search process con�guration components are addedor removed dynamically from the current problem. This enables our system toobtain current information directly from the network by applying user-writtenfunctions supplied with the model. Data thus obtained is used to guide the searchby determining which components to activate. We showed the e�ectiveness ofour prototype system on several sample problems for which more meaningfuldiagnosis messages have been produced.We consider two ways in which our system could be extended, to diagnoseboth widely used Internet high-level services, such as NFS, NIS, etc., and lower-level protocols in the protocol hierarchy. To achieve the second goal, the mech-anism used in our system is powerful enough to allow on-line diagnosis of lowerlevel protocols. In our initial exploration of con�guration problems we choseBIND because it is high in the protocol hierarchy, at the application level, andthere are already useful tools, such as \ping" and \nslookup", that can be cou-pled directly into our system to provide dynamic information. However, we needto extend the problem domain to involve the entire protocol stack to detecterrors that might propagate up the stack. These errors may a�ect the systemperformance or, even if an error at one level is handled properly by the protocolat a higher level, it might signal future errors. For on-line diagnosis we needto be able to run our system in a monitoring mode, whereby normal situationsare checked in order to detect faults before they propagate. For this, we needto develop appropriate data gathering tools that �lter the huge amount of dataexchanged by lower-level services.AcknowledgmentsThis material is based on work supported by Digital Equipment Corporation,and by the National Science Foundation under Grant No. IRI-9207633.References1. Albitz, P. and Liu, C., DNS and BIND, O'Reilly & Associates, Inc., Sebastopol,CA, 1994.2. Bakker, R.R., Dikker, F., Tempelman, F. and Wognum, P.M., Diagnosing andsolving over-determined constraint satisfaction problems, Proceedings of the 13thInternational Joint Conference on Arti�cial Intelligence, 1, 276{281, 1993.3. Bouloutas, A.T., Modeling Fault Management in Communication Networks, PhDThesis, Columbia University, 1990.

4. Comer, D.E., Internetworkingwith TCP/IP , vol. 1, Prentice Hall, Inc., EnglewoodsCli�s, NJ, 1991.5. DEC OSF/1, Con�guring Your Network Software, Digital Equipment Corporation,1993.6. El Fattah, Y. and Dechter, R., Empirical Evaluation of Diagnosis as Optimizationin Constraint Networks, Working Papers of The Third International Workshop onPrinciples of Diagnosis (DX-92), (1992).7. Freuder, E.C. and Mackworth, A.K., Special Volume, Constraint-Based Reasoning,Arti�cial Intelligence, 58, 1992.8. Freuder, E.C. and Wallace, R.J., Partial Constraint Satisfaction, Arti�cial Intelli-gence, 58, 21{71, 1992.9. Ghedamsi, A., von Bochmann, G. and Dssouli, R., Diagnosing multiple faultsin �nite state machines, Technical Report, Dept. d'IRO, Universite de Montreal,Canada, January 1993.10. Hamscher, W., Console, L. and de Kleer, J., editors, Readings in Model-based Di-agnosis, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1992.11. Hunt, C., TCP/IP Network Administration, O'Reilly & Associates, Inc., Se-bastopol, CA, 1994.12. ISO, ISO Open Systems Interconnection - Basic Reference Model, Second Edition,ISO/TC 97/SC 16(ISO CD 7498-1), 1992.13. Lin, Y.J. and Wuu, G., A constraint approach for temporal intervals in the analysisof timed transitions, Protocol Speci�cation, Testing and Veri�cation,XI, 215{230,1991.14. Miller, M.A., Troubleshooting TCP/IP , M&T Books, 1993.15. Mittal, S. and Falkenhainer, B., Dynamic Constraint Satisfaction Problems, Pro-ceedings of the Eighth National Conference on Arti�cial Intelligence (AAAI-90),25-32, 1990.16. Mittal, S., Reasoning about Resource Constraints in Con�guration Tasks, SSLTechnical Report, XEROX Park , 1990.17. Mittal, S. and Frayman, F., Towards a Generic Model of Con�guration Tasks, Pro-ceedings of the Eleventh International Joint Conference on Arti�cial Intelligence,2, 1395{1401, 1989.18. Mockapetris, P., Domain Names - Concepts and Facilities, Request For Comments1034 , 1987.19. Postel, J., File Transfer Protocol, Request For Comments 959 , ISI, October 1985.20. Riese, M., Model-based Diagnosis of Communication Protocols, PhD Thesis, SwissFederal Institute of Technology, Lausanne, 1993.21. Wang, C.J. and Liu, M.T., A test suite generation method for extended �nite statemachines using axiomatic semantics approach, Protocol Speci�cation, Testing andVeri�cation,XII, 29{43, 1992.This article was processed using the LaTEX macro package with LLNCS style

