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Abstract

Because both processor and interprocessor communication hardware is evolving rapidly
with only moderate improvements to file system performance in parallel systems, it is
becoming increasingly difficult to provide sufficient input/output (I/O) performance to
parallel applications. I/O hardware and file system parallelism are the key to bridging
this performance gap. Prerequisite to the development of efficient parallel file system is
detailed characterization of the I/O demands of parallel applications.

In the paper, we present a comparative study of parallel I/O access patterns, com-
monly found in I/O intensive scientific applications. The Pablo performance analysis
tool and its I/O extensions is a valuable resource in capturing and analyzing the I/O
access attributes and their interactions with extant parallel I/O systems. This analysis
is instrumental in guiding the development of new application programming interfaces
(APIs) for parallel file systems and effective file system policies that respond to complex

application I/O requirements.

1 Introduction

The broadening disparity in the performance of input/output (I/O) devices and the perfor-
mance of processors and communication links on parallel platforms is the primary obstacle
to achieving high performance in parallel application domains that require manipulation of
vast amounts of data. To improve performance, advances of /O hardware and file system
parallelism are of principal importance.

In the last few years, a wide variety of parallel I/O systems have been proposed and built[11,
12,4, 5, 20, 14, 17]. All these systems exploit parallel I/O devices (i.e., partitioning data across

*This work was supported in part by the Advanced Research Projects Agency under ARPA contracts
DABT63-94-C0049 (SIO Initiative), DAVT63-91-C-0029 and DABT63-93-C-0040, by the National Science
Foundation under grant NSF ASC 92-12369, and by the Aeronautics and Space Administration under NASA
Contracts NGT-51023 and USRA 5555-22.



disks for parallelism) and data management techniques (i.e., prefetching and write-behind) in
an attempt to deliver high I/O performance. However, the lack of characterization data of
parallel 1/O access patterns have often forced the designers of such systems to extrapolate
from measurements from uniprocessor or vector supercomputer applications. In consequence,
the high peak performance of parallel file systems cannot be effectively delivered because file
system policies are not well tuned to satisfy the I/O requirements of parallel applications.

Understanding the interactions between application 1/O request patterns and the hard-
ware and software of parallel 1/O systems is necessary for the design of more effective 1/0
management policies. The primary objectives of the Scalable I/O initiative (SIO) [22] are (a)
to assemble a suite of I/O intensive, national challenge applications, (b) to collect detailed
performance data on application characteristics and access patterns, and (c) use this informa-
tion to design and evaluate parallel file system management policies and parallel file system
application programming interfaces (APIs).

In this paper we present the I/O behavior of five representative scientific applications from
the SIO code suite. Using the Pablo performance analysis tool and its I/O extensions, we
captured and analyzed the access patterns of the SIO applications and their interaction with
the Intel’s parallel file system (PFS) [11]. This analysis proved instrumental in guiding the
development of new file system application programming interfaces (APIs) that drive adaptive
file system policies. We demonstrate why API controls for efficient data distribution, collective
[/O, and data caching are necessary to maximize /O throughput.

The remainder of this paper is organized as follows. In §2, we present related work. This is
followed in §3 by an overview of the Pablo performance environment and its I/O extensions, and
a high level description of the selected SIO applications. In §4 §5, we describe the applications’
detailed I/O access patterns. This is followed in §6 by a discussion of the proposed SIO API
and the design issues that are important for parallel I/O performance. Finally, §7 summarizes
our observations.

2 Related Work

The first I/O characterization efforts of scientific applications on vector supercomputers con-
cluded that I/O behavior is regular, recurrent, and predictable [16, 21|, characteristics that
were attributed to the iterative nature of such applications. In contrast to the results on vec-
tor systems, recent analyses on the Intel Paragon XP/S [7], the Intel iPSC/860 [13], and the
CM-5 [23], showed greater irregularity in I/O access patterns, with the majority of file request
being small but with the greatest data volume transferred by a few large requests. Subsequent
studies [19, 27] indicated that users attempt to adjust the application 1/O access patterns to
match the characteristics of the underlying parallel file system to maximize performance.

To accommodate the variability of parallel 1/O, a growing number of parallel platform
vendors provide extended sets of I/O APIs that can capture subsets of access patterns that
have been observed in the literature. Furthermore, many experimental I/O libraries focus on
specific classes of 1/O patterns and provide flexible data distribution and data management
policies. For example, Galley [18], Panda [26], PASSION [2] and Jovian [1] support external
multi-dimensional arrays, can restructure disk requests, and provide collective 1/O operations
that effectively utilize the available disk bandwidth. The desire for intuitive APIs with high ex-
pressive power has led to a host of domain specific I/O libraries that support specific problem
domains and access pattern classes. Such libraries have emerged for computational chem-



istry [8] and for out-of-core linear algebra computations [29]. Early experience with these
APIs has shown major I/O performance improvements  with high-level descriptions of I/O
request patterns, file system policies can more intelligently prefetch and cache 1/O data.
Despite the demonstrated performance rewards from use of more expressive APIs, several
studies have shown that users frequently opt to continue using UNIX I/O primitives on parallel
systems. The rationale for this lies in the desire to maximize code portability across diverse
parallel platforms and to minimize software restructuring [27]. Simply put, many scientific
application developers are unwilling to sacrifice portability for performance. Only when a
standard parallel I/O API is widely deployed, these developers will restructure their codes.

3 Experimentation Infrastructure

To sketch a global view of the variability and complexity of the observed 1/O behavior in the
SIO application suite, we selected five representative applications. To capture and analyze the
I/O access patterns of these applications, we used the Pablo performance environment and its
I/O extensions. Below, we present the Pablo environment and its I/O analysis mechanisms
followed by a brief description of the selected applications.

3.1 The Pablo Performance Environment

Pablo [24] is a portable performance environment that supports performance data capture and
analysis. The instrumentation software captures dynamic performance data via instrumented
source code that is linked with a data capture library. During program execution, the instru-
mentation code generates trace data that can be directly recorded by the data capture library
for off-line analysis, processed by one or more data analysis extensions prior to recording, or
directly processed and displayed at real-time.

The Pablo environment can be effectively used in both explicit message passing codes
and data parallel HPF programs. The graphical instrumentation interface allows users to
interactively specify either local or global instrumentation. Local instrumentation is activated
by bracketing each call of interest with trace library calls. When global instrumentation is
activated, all application calls are automatically substituted with trace library calls. The
parser then produces instrumented source code that can be compiled and linked with the data
capture library.

Via the Pablo I/O extensions, it is possible to capture traces of detailed I/O events during
the application’s lifetime. These I/O event traces include the time, duration, size, file name,
the processor identifier that initiated the I/O call, and other parameters particular to each 1/0
operation.

The Pablo environment’s off-line extraction tools provide a wealth of trace statistical in-
formation: file lifetime summaries, time window summaries, and file region summaries. File
lifetime summaries include the number and total duration of file related operations (e.g., reads,
writes, seeks, opens, closes) as well as the number of bytes accessed for each file, and the total
time each file had been open. Time window summaries contain similar data, but for a specified
window of time. File region summaries provide comprehensive information over accesses to a
file region.

Finally, using a set of data extraction tools, it is possible to visualize 1/O activity as
a function of the application elapsed time using either workstation graphics or immersive



virtual environments [25]. Collectively, the event traces, the statistical summaries, and the
visualization toolkit provide a powerful set of I/O analysis and display options.

3.2 The SIO Applications

Space precludes a complete description of the 1/O behavior of all SIO applications. In this
study, we selected a representative subset from the SIO application suite that comprises the
access pattern attributes commonly found in parallel codes.! A high level description of the
selected applications follows.

MESSKIT and NWChem The MESSKIT and the NWChem codes [10] are two distinct
Fortran implementations of the Hartree-Fock self consistent field (SCF) method that
calculates the electron density around a molecule by considering each electron in the
molecule in the collective field of the others. The calculation iterates until the field felt
by each electron is consistent with that of the other electrons. This “semi-empirical”
computational chemistry method predicts molecular structures, reaction energetics, and
other chemical properties of interest.

From an I/O perspective, both codes have three execution phases. After an initial 1/O
phase where the relative geometry of the atomic centers is read, the basis sets are com-
puted and written to disk, and atomic integrals are computed over these basis sets.
Because the integral volume grows dramatically with the basis sets, an out-of-core solu-
tion is used as the atomic integrals are too voluminous to fit in each processors memory.
Each processor writes the integral it computes to its own private file. In the final phase,
all processors repeatedly read the integral data from disk, construct the Fock matrix,
and use the SCF method until the molecular density converges to within an acceptable
threshold. At the end of computation, final results are written to disk.

Although the two applications solve essentially the same problem using the same logical
sequence of steps, there are differences between the two codes. In NWChem, the inte-
grals are written to disk in parallel with the first Fock matrix construction, procedures
that are separated in MESSKIT. Additionally, the two codes use different integral eval-
uation libraries, with different timings of the integral evaluation phase. NWChem uses
a preconditioned conjugate gradient approach to optimize the molecular orbitals, while
MESSKIT uses a procedure known as direct inversion of the iterative subspace. This
results in a different number of iterations and different number of Fock matrix construc-
tions even if both codes execute the same input. The codes use different data formats
and produce different volumes of data even for matching inputs.

QCRD This quantum chemical reaction dynamics (QCRD) application[30] is used to under-
stand the nature of elementary chemical reactions. The code is written in C and uses
the method of symmetrical hyperspherical coordinates and local hyperspherical surface
functions to solve the Schrodinger equation for the cross sections of the scattering of an
atom by a diatomic molecule. Parallelism is achieved by data decomposition, i.e., all
nodes execute the same code on different data portions of the global matrices with data
elements equally distributed among processes.

'For detailed analysis of the SIO applications access patterns see

http://www-pablo.cs.uiuc.edu/Projects/10.



Because of the selected data distribution scheme and the prohibitively large global ma-
trices to be stored in memory, an out-of-core solution is required. Due to the iterative
nature of the numerical algorithms used by QCRD, there is intensive 1/O activity on
disks. I/O demands on disk have a repetitive, cyclic pattern.

PRISM The PRISM code is a parallel implementation of a 3-D numerical simulation of the
Navier-Stokes equations written in C [9] and models high speed turbulent flow that is
periodic in one direction. Slides of the periodic domain are proportionally distributed
among processors and a combination of spectral elements and Fourier modes are used
to investigate the dynamics and transport properties of turbulent flow. The input data
provide an initial velocity field, and the solution is integrated forward in time from the
fluid’s current state to its new state, by numerically solving the equations that describe
advection and diffusion of momentum in the fluid.

From an I/O perspective, there are three distinct execution phases. After initialization
data are read from disk, the Navier-Stokes simulation integrates the status of the fluid
forward in time and history points are periodically written to disk during integration.
During the final or post processing phase, after the end of the integration, final results
are written to disk.

ESCAT The ESCAT code is a parallel implementation of the Schwinger Multichannel method
written in C, FORTRAN, and assembly language [3]. The Schwinger Multichannel
(SMC) method is an adaptation of Schwinger’s variational principle for the scattering
amplitude that makes it suitable for calculating low-energy electron-molecule collisions.
The scattering probabilities are obtained by solving linear systems whose terms must be
evaluated by numerical quadrature. Generation of the quadrature data is computation-
ally intensive, and the total quadrature data volume is highly dependent on the nature of
the problem. The quadrature data is formulated in an energy independent way, making
it possible to solve the scattering problem at many energies without quadrature data
recalculation. Because the quadrature data is too voluminous to fit in the individual
processor memory, an out of core solution is required.

From an I/O perspective there are four distinct execution phases. After initialization
data is read from the disk, all nodes participate in the calculation and storage of the
requisite quadrature data set that is energy independent. Then, the quadrature data is
read from disk and energy dependent data structures are generated and combined with
the reloaded quadrature data. Finally, the results of calculation are written to disk.

In the following sections we will present the I/O requirements of the selected applications,
concentrating on request sizes, their timings, and their temporal and spatial patterns.

4 1/0 Requirements

Our experiments were conducted on the Caltech 512-node Intel Paragon XP/S at the Cal-
tech Center for Advanced Computing Research. The system, which is configured for high-
performance 1/O research, supports multiple I/O hardware configurations. The experiments
presented in this paper were conducted using two of the possible I/O configurations: (a) 12
I/0O nodes, each controlling a relatively slow 2 GB RAID-3 disk array and (b) 64 4 GB Seagate
disks, each attached to a computation node. For all experiments, files were striped across the



disks in units of 64 KB, the default configuration for the Intel Paragon XP/S Parallel File
System (PFS).

All experiments were executed in dedicated mode, using representative application data
sets. The NWChem and MESSKIT applications used the 12 RAID-3 disk arrays, while the
QCRD, PRISM, and ESCAT used the 16 Seagate disks.? The MESSKIT, NWChem, QCRD,
PRISM, and ESCAT execution times were equal to 1,788 seconds, 5,439 seconds, 16,356 sec-
onds, 7,394 seconds and 5,803 seconds respectively.

4.1 1I/0 Overview

Table 1 summarizes the 1/O activity of the codes. MESSKIT, NWChem, and QCRD appear
significantly more intensive than PRISM and ESCAT, with a large percentage of the application
execution times is consumed in 1/O. This is despite the fact that the total count of 1/O
operations in PRISM is much larger than any other application. Intuitively, most of the
PRISM read operations are small and are efficiently satisfied from local I/O buffers.

MESSKIT and NWChem are dominated by read operations. During execution, all proces-
sors repeatedly read integrals from secondary storage to construct the Fock matrix and then
solve the SCF equations. Because this integral database is computed and written to storage
once, but then reread many times, both MESSKIT and NWChem codes are heavily read lim-
ited. Overall, the ratios of operation costs are analogous to operation counts. The remaining
of operations contribute insignificant amounts to the I/O time.

A different behavior is observed for the QCRD code: seeks are the most expensive oper-
ations and their cost dominates the execution time consumed by I/O. The large number of
seeks is a direct effect of the code’s data decomposition and storage scheme — each processor
must repeatedly seek to its designated portion of the global matrices before each access. We
demonstrate in §5 that forced serialization of seek requests due to the selected algorithmic
implementation is the reason for such behavior.

ESCAT uses a data decomposition and storage scheme for the quadrature data similar to
QCRD’s. However, the code achieves to minimize the average seek cost by avoiding the forced
serialization of seek requests. In §5 we will return to this issue.

The behavior of the PRISM code is also worth a more precise analysis. Although the code
appears heavily read bound when looking at operation counts, read operations have a limited
cost. We will show in the following sections that this is a result of read request sizes and their
access pattern.

4.2 1/0 Request Sizes

Apart from operation counts, the distribution of their sizes across the five codes is also im-
portant from a workload characterization perspective. The distribution of 1/O request sizes is
a key determinant of possible file system optimizations. For example, the overhead for small
reads can decrease by aggressive prefetching, and small writes are best served by conservative

2As we shall see, the older, slower RAID-3 disk arrays give the illusion that MESSKIT and NWChem
are more I/O intensive than QCRD, PRISM, or ESCAT. Via other experiments using different hardware
configurations, we have verified that the fraction of application execution time devoted to I/O is sensitive to

hardware configuration but that the application I/O behavior is qualitatively unchanged.



(a) MESSKIT

Operation | Operation | Percentage | I/O Time | I/O Time | Exec. Time
Count Count (seconds) | Percentage | Percentage
open 163 0.23 160.33 0.77 0.13
read 51,829 73.58 18,289.03 87.49 15.35
seek 497 0.71 1.52 0.00 0.00
write 9,163 13.00 2,085.21 9.97 1.72
close 160 0.23 9.07 0.04 0.01
flush 8,626 12.25 361.5 1.73 0.03
AllT/0 70,438 100.00 20,906.66 100.00 17.24
(b) NWChem
Operation | Operation | Percentage | I/O Time | I/O Time | Exec. Time
Count Count (seconds) | Percentage | Percentage
open 92 0.02 317.25 0.12 0.09
read 465,154 93.05 | 251,105.84 92.53 72.13
seek 2,115 0.42 36.87 0.01 0.01
write 32,398 6.48 18,746.65 6.91 5.39
close 153 0.03 1,158.43 0.43 0.33
AllT/0O 499,912 100.00 | 271,365.03 100.00 77.95
(c) QCRD
Operation | Operation | Percentage | I/O Time | I/O Time | Exec. Time
Count Count (seconds) | Percentage | Percentage
open 6,592 1.29 3,618.32 1.4 0.45
read 176,228 34.52 8,027.68 3.12 0.99
seek 258,648 50.66 | 238,770.16 92.73 29.5
write 61,904 12.13 6,148.96 2.4 0.75
close 7,168 1.4 975.17 0.35 0.08
AllT/0O 510,540 100.00 | 257,540.29 100.00 31.77
(d) PRISM
Operation | Operation | Percentage | I/O Time | I/O Time | Exec. Time
Count Count (seconds) | Percentage | Percentage
open 415 0.04 203.12 12.51 0.04
read 1,037,568 93.70 950.11 58.50 0.20
seek 704 0.06 293.17 18.05 0.06
write 68,273 6.17 42.93 2.64 0.01
close 414 0.04 134.82 8.30 0.03
AllT/0O 1,107,374 100.00 1,624.15 100.00 0.34
(e) ESCAT
Operation | Operation | Percentage | I/O Time | I/O Time | Exec. Time
Count Count (seconds) | Percentage | Percentage
open/gopen 262 0.97 357.64 13.84 0.05
read 815 3.03 56.77 2.20 0.01
seek 12,034 44.69 283.98 10.99 0.04
write 13,300 49.39 1,123.48 43.48 0.15
iomode 256 0.95 584.52 22.62 0.08
close 262 0.97 177.26 6.86 0.02
AllT/0 26,929 100.00 2,583.65 100.00 0.35

Table 1: Basic I/O summary table




write behind. Conversely, large I/O requests require different approaches like direct streaming
to/from storage devices.
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Figure 1: CDF of read/write request sizes and data transfers.

Figure 1 shows the cumulative distribution function (CDF) of the percentage of reads and
writes versus the request size for the five codes, as well as the fraction of data transferred by
each request size. PRISM and ESCAT show a distinctive variation in the application request
sizes. For PRISM, about 80 percent of read and write requests are small (less than 40 bytes),
though a few large requests (greater 150KB) constitute the majority of 1/O data volume.
For ESCAT, about 40 percent of read requests are small (less than 1000 bytes) although the
majority of data volume is transfered by a few read requests of 80,000 bytes. The small request
sizes are excellent candidates for data aggregation.

There is much less variability in the read and write request sizes of QCRD, MESSKIT,
and NWChem. For QCRD, 99 percent of requests are equal to 2,400 bytes and they transfer
almost all the data volume. Similarly to QCRD, where the majority of requests are of the
same size, about 90 percent of reads and writes in NWChem are equal to 64 KB. The smaller
request sizes in NWChem transfer insignificant portions of the application data. Similarly to



(@) MESSKIT

3000 — T T T T T m! 450 m! 1e+08 — T T T T T |
o
° 400 e
2500 - b . 9.5e+07 - b
v 350 =
- < al /o ° @
S 2000 - + read . g 300 7 N WYL g oer07 .
. ~ 7 ~ 1N
3 . O write = 250 - v AR
c Q read B
S 1500 [ b e Bg.5e+07 -
B i= 200 - 10
[} s <o c b))
& 1000 - o 1 Swor 4 & seror - .
M g A P gt P g — s - o(:; oy oS
= — pg
ool | 8_ 100 . - seror - § @(gio jewgee Eesed %éwog%s &
write o
50 - b
S ANAANAA A~
1 Il 1 1 Il | 0 1 L 1 1 1 | | 7e+07 1 1 1 1 1 1 1
0O 10 20 30 40 50 70 0O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70
Processor ID Processor ID Processor ID
(b) NWChem
70000 T T T T T T 6000 [T T T T T T T 5e+08 o5 T I— T T T
o ° o
¢ 4.8e+08 000 e
60000 —+ N 5000 al /0 B < ° <§;>%
¢ dll/o @ aseros [ 00 ¥ e° oo .
° ’ o © 0 o
50000 - + read i e % o ° o
€ o write Q4000 - - 8 4.4e+08 @ o o o o
3 B \ <,
(H40000 - , E’ read M 4.2e+08 oo % o
P £3000 - 13 o
Sa0000 = = 4e+08 - o 4
& p % .
o} 52000 - 1 2 ssewnf ° .
&20000 - 4 R S o
o . = 36er08 - .
10000 - 4 &tooor write .
3.4e+08 [ R g
0 0 1 1 1 1 L L 1 3.2e+08 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60

Processor ID Processor ID Processor ID

Figure 2: I/O times per processor for the two Hartree-Fock applications, MESSKIT and

NWChem.

NWChem, more than 90 percent of read and write requests are equal to 84,000 bytes and
transfer almost 99 percent of data.

In general, we observe that even from our small, inductive sample of five applications, there
is a great variability in request sizes, ranging from a few bytes to several megabytes. Parallel
I/O APIs that deliver high performance for a wide variety of request sizes are necessary. In
86, we will return to this issue.

4.3 Processor I/O Behavior

Finally, to complete the high level view of 1/O characteristics of the selected codes, we turn
to variations across processors. Although all five applications use the SPMD programming
model, operation counts, operation durations, and transferred volumes differ from processor
to processor.

Figures 2 and 3 show that despite the big variation in request counts across the five codes,
typically logical processor (node) 0 executes more operations and consistently transfers the
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largest data volume. This is a side effect of the developers choice to use node 0 as coordinator
of disk data transfers to disk. We will demonstrate in §5 that frequently, initialization data
are read by node 0 and then broadcasted to the remaining nodes. In the same fashion, node
0 often collects results from all nodes and funnels them to disk.

Figures 2 and 3 also illustrate that because of the data partitioning approach to realize
parallelism, there are distinct subsets of nodes that execute the same number of operations
and transfer that same data volume. Nonetheless, even among the same node subsets, there
is significant variation in the operation execution times. In the following section we will
illustrate how queuing delays contribute to operation costs, advocating the need of collective
[/O operations on subsets of processors.

5 Temporal and Spatial Access Patterns

Like request sizes, the temporal and spatial attributes of requests have profound implications
for file system policies. Most workstation file systems are optimized for sequential file access.
Burstiness and non-sequentiality necessitate new and different file system approaches (e.g.,
aggressive prefetch or write behind or skewed data storage formats). Below, we consider the
implications of these temporal and spatial patterns based on the SIO code suite.

Since §4 suggested that typically node 0’s 1/O activity is more intense than that of the rest
of the nodes, we illustrate the application temporal behavior of node 0 and of node 60, which
is representative of the remaining nodes. In the QCRD code there is no such behavior all
nodes execute the same operations and we demonstrate the activity of a representative node
only. Because space precludes a complete description of the applications’ access patterns, we
will concentrate on the temporal spacing and mutual interaction of the three basic operations:
seek, read, and write.

5.1 Sequential Access Pattern

Figure 4 illustrates the operation durations of nodes 0 and 60 of MESSKIT and NWChem as
a function of the program execution time. To increase legibility, we plot only the first 2500
seconds of NWChem'’s execution. Limiting the execution time restricts the large number of
data points and attenuates the otherwise severe overplotting that obscures the location and
distribution of less frequent 1/O operations. The remaining 1/O activity not plotted in the
graph does not convey additional information about the access pattern because of the iterative
nature of the code.

In both codes, the three execution phases are clearly distinguished in the figure. First,
node 0 loads the problem definition from the various input files, the basis files are calculated,
and the results are written to disk.

In the second phase all nodes participate in I/O: they evaluate the integrals and write them
to disk. The work is distributed across all nodes and each node accesses its private file where
the locally computed integrals are stored. Because of the choice to use a private file per node,
the code uses a sequential access pattern to write the results. Note that there is a single seek®
operation (that corresponds to the file rewind) for each node, followed by intense read activity.

3This seek operation is more clearly illustrated in Figures 4(b) and 4(d).

11
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(a) MESSKIT (node 0)

(b) MESSKIT (node 60)
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Figure 4: Operation durations for MESSKIT and NWChem. Boxes represent seeks, diamonds

represent, reads, and crosses represent writes.

Finally, in the third code phase all nodes concurrently open their private files where the
integrals are stored, and they repeatedly read integral data, construct the Fock matrix, com-
pute, synchronize, and solve the SCF equations. Node 0 periodically collects the results and
writes them to disk as indicated by the short bursty write activity in Figures 4(a) and 4(b).
Again, the read access pattern is sequential, with a single seek preceding bursts of intense read
activity on the file.

5.2

The different parallelization choices of the QCRD and ESCAT codes are clearly illustrated in
Figure 5. Instead of using a private file per node to store the data segment of the global matrix

Interleaved Access Pattern
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apportioned to each node, the developers opted to use one file per global matrix. Consequently,
an interleaved access pattern was used by each node to access its portion of the matrices, with
one seek operation preceding every read or write operation. The interleaved access pattern
used by QCRD is clearly distinguished in Figure 5(a) that illustrates a snapshot of the I/0O
activity towards the end of code execution.?
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Figure 5: Operation durations for QCRD and ESCAT. Boxes represent seeks, diamonds rep-

resent reads, and crosses represent writes.

To give a flavor of the file system responses using the interleaved access pattern, we depict
the duration of operations of all nodes in Figure 5(b) during the same time period. Because

“Because there are no significant differences in the I/O volume transfered by node 0 comparing to the rest
of nodes, we only illustrate the activity of a typical node.
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of standard UNIX file sharing semantics, seek requests are serialized when more than one
processes access the same file, and the average seek cost increases commensurately with the
number of concurrent accesses.

The design choice to use a single file and the semantics of UNIX I/O operations combine to
yield extraordinarily poor I/O performance for the QCRD code. Despite the large number of
seeks, the dominant QCRD access patterns are highly regular, and a more powerful 1/O API
would have allowed the developers to express this regular, though non-sequential pattern.

The designers of ESCAT took advantage of the available M_ASYNC file system mode to access
the files using an interleaved access pattern and managed to decrease the average seek time by
two orders of magnitude (see Figures 5(c) and 5(d)). M_ASYNC allows the file system to relax
the file pointer consistency protocol, yielding much higher performance. We will return to this
relation between API and performance in §6.

5.3 Mixed Access Patterns

Figure 6 illustrates the duration and spacing of I/O operations for the PRISM code. Because
of the developers decision to channel all write operations through node 0, the 1/O activity of
the remaining nodes is confined within the first 200 seconds of code execution.

Figure 6(a) depicts the I/O activity of node 0 for the first 1,700 seconds of application
execution time. Again, for visualization purposes, we restricted the plotting area to only a
part of the execution time. The application phases are clearly visible in the figure: in the first
200 seconds all nodes access the initialization files and in the subsequent, write intensive phase,
the simulation is carried out and results are written to disk using a sequential access pattern.

The mixed sequential and interleaved access patterns used to access the initialization files
are clearly demonstrated in Figure 6(b). During the read phase three files are accessed: the
first file contains the problem parameters and is accessed with a sequential pattern by all nodes.
The second file is a restart file that contains the initial conditions for the simulation, and each
node first reads the file header sequentially and then accesses its own portion in an interleaved
fashion. Finally, the third input file is accessed sequentially by all nodes.

6 Discussion

Characterization studies are by their nature inductive, covering a subset of the possibilities.
Although the five applications codes of this study differ dramatically in their algorithmic
approaches, they are subject to several general observations about their common I/O charac-
teristics:

e Parallel I/O is bursty, with computation intervals of little or no I/O activity interleaved
with time periods of intense, concurrent I/O operations. In such situations, I/O can
be effectively overlapped with computation via caching, prefetching, and write-behind
mechanisms.

e The size of requests can differ dramatically, even within the same application, ranging
from a few bytes to several kilobytes each. Different optimization mechanisms are re-
quired for such transfers, i.e., aggregating small requests into large data chunks in cache
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Figure 6: Operation durations for PRISM. Boxes represent seeks, diamonds represent reads,

and crosses represent writes.

before initiating a transfer or disabling all caching and bypass the cache for large re-
quest sizes. Understanding when and how to aggregate requests is essential for high
performance.

e Access patterns range from simple sequential to interleaved. Furthermore, there are
combinations of sequential and interleaved accesses even within the same file. Often, the
file header is accessed via a number of sequential operations, while the main file body is
accessed through a strided pattern since data are equally distributed among nodes. Due
to the high concurrency of such operations, efficient file pointer consistency protocols are
necessary to deliver high performance.

e Request parallelism ranges from no parallelism (i.e., all I/O is administered through a
single node) to full parallelism (i.e., all nodes concurrently send independent requests
to disks). Channeling all requests through a single node is often an alternative solution
opted by application developers when their codes experience performance bottlenecks
with concurrent accesses. However, such solutions require unnecessary synchronizations
and ineffective use of the parallel file system. Collective I/O is a desirable alternative for
high performance concurrent accesses.

e Files can be either shared across processors or can be simply private per processor.
Different file system policy optimization approaches should be used if files are shared or
private.

6.1 Current I/O APIs

One of the most striking observations of our characterization study was that despite the ex-
istence of several parallel I/O APIs and clear performance advantages, most computational
scientists eschew their use. Discussions with these researchers revealed that the restricted,
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often inefficient, but highly portable UNIX API was preferable to vendor provided, extended
I/O interfaces.

Comparisons of vendor proprietary I/0O interfaces (e.g., IBM’s PIOFS and Intel’s PFS) show
that they have few shared features, mainly due to different design philosophies. Therefore,
the design and implementation of a standard parallel I/O API that is expressive, compact,
intuitively appealing, and at the same time offers high performance [6] is one of the goals
of the SIO effort. Our I/O characterization study has been instrumental in the design and
implementation of MPI-10O [28] that is adopted by the STO community as the standard parallel
[/O interface.

6.2 Emerging I/O APIs

Even within our small application sample, the diversity of I/O request sizes and patterns sug-
gests that achieving high performance is unlikely with a single file system policy. Instead, one
needs a file system API via which users can “inform” the file system of expected access pat-
terns. Using such hints or an automatic access pattern classification scheme [15], an adaptive
file system could then choose those file policies and policy parameters best matched to the
access pattern.

For example, via user controls and hints one might advise the file system that the file
access pattern is read only, write only, mixed read/write sequential, or strided. For small, read
only requests, the file system would aggressively prefetch large blocks of data, satisfying future
requests for previously cached data. Similarly, for small strided writes, the file system might
first cache the data then write large blocks using a log-structured file model.

Similarly, with knowledge of request concurrency and real-time measurements of I/O device
performance, a flexible file system might dynamically choose the number of disks across which
data is striped and the size of the stripes. When there are few competing requests, striping
data in large blocks across all disks reduces write time by trading inter-request parallelism for
reduced intra-request latency.

Finally, with knowledge of the evolution of access patterns, a file system might choose a
file striping that optimizes globally across multiple patterns. Thus, a system could balance the
cost of efficiently writing a file against the cost of repeatedly reading the file using an access
pattern not well matched to the storage format.

All these examples share a common theme  they presume higher level knowledge of current
and future 1/O access patterns. Rather than composing complex access patterns from read,
write, and seek “atoms,” with expressive I/O APIs users can describe temporal and spatial
access patterns directly. Alternatively, file systems must glean this information automatically
(e.g., by classifying access patterns using trained neural networks or hidden Markov models).
In either case, only with such knowledge can flexible file systems maximize performance by
matching policies to access patterns.

7 Conclusions
We have presented a comparative study of parallel I/O access patterns, commonly found in

[/0O intensive scientific applications. Even with the restricted application subset that we inves-
tigated here, we demonstrated that there is much variation in temporal and spatial patterns
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across applications, with both very small and very large request sizes, sequential and inter-
leaved accesses, shared and non-shared files, and access time scales ranging from microseconds
to minutes.

We conclude that there are many opportunities for improving the performance of parallel file
system and parallel I/O standardization is an important step towards this process. The analysis
of the parallel I/O workload characteristics of the SIO suite has contributed towards this
effort. From this analysis, various design issues related to parallel I/O application programming
interfaces have emerged. An API that is compact, expressive, and provides the access pattern
information to the file system, can exploit alternative data management policies that better
match these patterns. Controls for efficient data distribution, collective I/O, and data caching
are necessary to provide high I/O throughput.
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