
Title: \Workload Characterization of Input/Output Intensive ParallelApplications"Corresponding author: Evgenia Smirniemail: esmirni@cs.wm.edutel: (757) 221-3580fax: (757) 221-1717College of William and MaryDepartment of Computer ScienceP.O. Box 8795Williamsburg, VA 23187-8795USA

0

Workload Characterization of Input/Output IntensiveParallel Applications �Evgenia Smirni Daniel A. ReedDepartment of Computer Science Department of Computer ScienceCollege of William and Mary University of IllinoisWilliamsburg, VA 23187 Urbana, Illinois 61801esmirni@cs.wm.edu reed@cs.uiuc.eduAbstractBecause both processor and interprocessor communication hardware is evolving rapidlywith only moderate improvements to �le system performance in parallel systems, it isbecoming increasingly di�cult to provide su�cient input/output (I/O) performance toparallel applications. I/O hardware and �le system parallelism are the key to bridgingthis performance gap. Prerequisite to the development of e�cient parallel �le system isdetailed characterization of the I/O demands of parallel applications.In the paper, we present a comparative study of parallel I/O access patterns, com-monly found in I/O intensive scienti�c applications. The Pablo performance analysistool and its I/O extensions is a valuable resource in capturing and analyzing the I/Oaccess attributes and their interactions with extant parallel I/O systems. This analysisis instrumental in guiding the development of new application programming interfaces(APIs) for parallel �le systems and e�ective �le system policies that respond to complexapplication I/O requirements.1 IntroductionThe broadening disparity in the performance of input/output (I/O) devices and the perfor-mance of processors and communication links on parallel platforms is the primary obstacleto achieving high performance in parallel application domains that require manipulation ofvast amounts of data. To improve performance, advances of I/O hardware and �le systemparallelism are of principal importance.In the last few years, a wide variety of parallel I/O systems have been proposed and built[11,12, 4, 5, 20, 14, 17]. All these systems exploit parallel I/O devices (i.e., partitioning data across�This work was supported in part by the Advanced Research Projects Agency under ARPA contractsDABT63-94-C0049 (SIO Initiative), DAVT63-91-C-0029 and DABT63-93-C-0040, by the National ScienceFoundation under grant NSF ASC 92-12369, and by the Aeronautics and Space Administration under NASAContracts NGT-51023 and USRA 5555-22. 1

disks for parallelism) and data management techniques (i.e., prefetching and write-behind) inan attempt to deliver high I/O performance. However, the lack of characterization data ofparallel I/O access patterns have often forced the designers of such systems to extrapolatefrom measurements from uniprocessor or vector supercomputer applications. In consequence,the high peak performance of parallel �le systems cannot be e�ectively delivered because �lesystem policies are not well tuned to satisfy the I/O requirements of parallel applications.Understanding the interactions between application I/O request patterns and the hard-ware and software of parallel I/O systems is necessary for the design of more e�ective I/Omanagement policies. The primary objectives of the Scalable I/O initiative (SIO) [22] are (a)to assemble a suite of I/O intensive, national challenge applications, (b) to collect detailedperformance data on application characteristics and access patterns, and (c) use this informa-tion to design and evaluate parallel �le system management policies and parallel �le systemapplication programming interfaces (APIs).In this paper we present the I/O behavior of �ve representative scienti�c applications fromthe SIO code suite. Using the Pablo performance analysis tool and its I/O extensions, wecaptured and analyzed the access patterns of the SIO applications and their interaction withthe Intel's parallel �le system (PFS) [11]. This analysis proved instrumental in guiding thedevelopment of new �le system application programming interfaces (APIs) that drive adaptive�le system policies. We demonstrate why API controls for e�cient data distribution, collectiveI/O, and data caching are necessary to maximize I/O throughput.The remainder of this paper is organized as follows. In x2, we present related work. This isfollowed in x3 by an overview of the Pablo performance environment and its I/O extensions, anda high level description of the selected SIO applications. In x4{x5, we describe the applications'detailed I/O access patterns. This is followed in x6 by a discussion of the proposed SIO APIand the design issues that are important for parallel I/O performance. Finally, x7 summarizesour observations.2 Related WorkThe �rst I/O characterization e�orts of scienti�c applications on vector supercomputers con-cluded that I/O behavior is regular, recurrent, and predictable [16, 21], characteristics thatwere attributed to the iterative nature of such applications. In contrast to the results on vec-tor systems, recent analyses on the Intel Paragon XP/S [7], the Intel iPSC/860 [13], and theCM-5 [23], showed greater irregularity in I/O access patterns, with the majority of �le requestbeing small but with the greatest data volume transferred by a few large requests. Subsequentstudies [19, 27] indicated that users attempt to adjust the application I/O access patterns tomatch the characteristics of the underlying parallel �le system to maximize performance.To accommodate the variability of parallel I/O, a growing number of parallel platformvendors provide extended sets of I/O APIs that can capture subsets of access patterns thathave been observed in the literature. Furthermore, many experimental I/O libraries focus onspeci�c classes of I/O patterns and provide
exible data distribution and data managementpolicies. For example, Galley [18], Panda [26], PASSION [2] and Jovian [1] support externalmulti-dimensional arrays, can restructure disk requests, and provide collective I/O operationsthat e�ectively utilize the available disk bandwidth. The desire for intuitive APIs with high ex-pressive power has led to a host of domain speci�c I/O libraries that support speci�c problemdomains and access pattern classes. Such libraries have emerged for computational chem-2

istry [8] and for out-of-core linear algebra computations [29]. Early experience with theseAPIs has shown major I/O performance improvements | with high-level descriptions of I/Orequest patterns, �le system policies can more intelligently prefetch and cache I/O data.Despite the demonstrated performance rewards from use of more expressive APIs, severalstudies have shown that users frequently opt to continue using UNIX I/O primitives on parallelsystems. The rationale for this lies in the desire to maximize code portability across diverseparallel platforms and to minimize software restructuring [27]. Simply put, many scienti�capplication developers are unwilling to sacri�ce portability for performance. Only when astandard parallel I/O API is widely deployed, these developers will restructure their codes.3 Experimentation InfrastructureTo sketch a global view of the variability and complexity of the observed I/O behavior in theSIO application suite, we selected �ve representative applications. To capture and analyze theI/O access patterns of these applications, we used the Pablo performance environment and itsI/O extensions. Below, we present the Pablo environment and its I/O analysis mechanismsfollowed by a brief description of the selected applications.3.1 The Pablo Performance EnvironmentPablo [24] is a portable performance environment that supports performance data capture andanalysis. The instrumentation software captures dynamic performance data via instrumentedsource code that is linked with a data capture library. During program execution, the instru-mentation code generates trace data that can be directly recorded by the data capture libraryfor o�-line analysis, processed by one or more data analysis extensions prior to recording, ordirectly processed and displayed at real-time.The Pablo environment can be e�ectively used in both explicit message passing codesand data parallel HPF programs. The graphical instrumentation interface allows users tointeractively specify either local or global instrumentation. Local instrumentation is activatedby bracketing each call of interest with trace library calls. When global instrumentation isactivated, all application calls are automatically substituted with trace library calls. Theparser then produces instrumented source code that can be compiled and linked with the datacapture library.Via the Pablo I/O extensions, it is possible to capture traces of detailed I/O events duringthe application's lifetime. These I/O event traces include the time, duration, size, �le name,the processor identi�er that initiated the I/O call, and other parameters particular to each I/Ooperation.The Pablo environment's o�-line extraction tools provide a wealth of trace statistical in-formation: �le lifetime summaries, time window summaries, and �le region summaries. Filelifetime summaries include the number and total duration of �le related operations (e.g., reads,writes, seeks, opens, closes) as well as the number of bytes accessed for each �le, and the totaltime each �le had been open. Time window summaries contain similar data, but for a speci�edwindow of time. File region summaries provide comprehensive information over accesses to a�le region.Finally, using a set of data extraction tools, it is possible to visualize I/O activity asa function of the application elapsed time using either workstation graphics or immersive3

virtual environments [25]. Collectively, the event traces, the statistical summaries, and thevisualization toolkit provide a powerful set of I/O analysis and display options.3.2 The SIO ApplicationsSpace precludes a complete description of the I/O behavior of all SIO applications. In thisstudy, we selected a representative subset from the SIO application suite that comprises theaccess pattern attributes commonly found in parallel codes.1 A high level description of theselected applications follows.MESSKIT and NWChem The MESSKIT and the NWChem codes [10] are two distinctFortran implementations of the Hartree-Fock self consistent �eld (SCF) method thatcalculates the electron density around a molecule by considering each electron in themolecule in the collective �eld of the others. The calculation iterates until the �eld feltby each electron is consistent with that of the other electrons. This \semi-empirical"computational chemistry method predicts molecular structures, reaction energetics, andother chemical properties of interest.From an I/O perspective, both codes have three execution phases. After an initial I/Ophase where the relative geometry of the atomic centers is read, the basis sets are com-puted and written to disk, and atomic integrals are computed over these basis sets.Because the integral volume grows dramatically with the basis sets, an out-of-core solu-tion is used as the atomic integrals are too voluminous to �t in each processors memory.Each processor writes the integral it computes to its own private �le. In the �nal phase,all processors repeatedly read the integral data from disk, construct the Fock matrix,and use the SCF method until the molecular density converges to within an acceptablethreshold. At the end of computation, �nal results are written to disk.Although the two applications solve essentially the same problem using the same logicalsequence of steps, there are di�erences between the two codes. In NWChem, the inte-grals are written to disk in parallel with the �rst Fock matrix construction, proceduresthat are separated in MESSKIT. Additionally, the two codes use di�erent integral eval-uation libraries, with di�erent timings of the integral evaluation phase. NWChem usesa preconditioned conjugate gradient approach to optimize the molecular orbitals, whileMESSKIT uses a procedure known as direct inversion of the iterative subspace. Thisresults in a di�erent number of iterations and di�erent number of Fock matrix construc-tions even if both codes execute the same input. The codes use di�erent data formatsand produce di�erent volumes of data even for matching inputs.QCRD This quantum chemical reaction dynamics (QCRD) application[30] is used to under-stand the nature of elementary chemical reactions. The code is written in C and usesthe method of symmetrical hyperspherical coordinates and local hyperspherical surfacefunctions to solve the Schr�odinger equation for the cross sections of the scattering of anatom by a diatomic molecule. Parallelism is achieved by data decomposition, i.e., allnodes execute the same code on di�erent data portions of the global matrices with dataelements equally distributed among processes.1For detailed analysis of the SIO applications access patterns seehttp://www-pablo.cs.uiuc.edu/Projects/IO. 4

Because of the selected data distribution scheme and the prohibitively large global ma-trices to be stored in memory, an out-of-core solution is required. Due to the iterativenature of the numerical algorithms used by QCRD, there is intensive I/O activity ondisks. I/O demands on disk have a repetitive, cyclic pattern.PRISM The PRISM code is a parallel implementation of a 3-D numerical simulation of theNavier-Stokes equations written in C [9] and models high speed turbulent
ow that isperiodic in one direction. Slides of the periodic domain are proportionally distributedamong processors and a combination of spectral elements and Fourier modes are usedto investigate the dynamics and transport properties of turbulent
ow. The input dataprovide an initial velocity �eld, and the solution is integrated forward in time from the
uid's current state to its new state, by numerically solving the equations that describeadvection and di�usion of momentum in the
uid.From an I/O perspective, there are three distinct execution phases. After initializationdata are read from disk, the Navier-Stokes simulation integrates the status of the
uidforward in time and history points are periodically written to disk during integration.During the �nal or post processing phase, after the end of the integration, �nal resultsare written to disk.ESCAT The ESCAT code is a parallel implementation of the Schwinger Multichannel methodwritten in C, FORTRAN, and assembly language [3]. The Schwinger Multichannel(SMC) method is an adaptation of Schwinger's variational principle for the scatteringamplitude that makes it suitable for calculating low-energy electron-molecule collisions.The scattering probabilities are obtained by solving linear systems whose terms must beevaluated by numerical quadrature. Generation of the quadrature data is computation-ally intensive, and the total quadrature data volume is highly dependent on the nature ofthe problem. The quadrature data is formulated in an energy independent way, makingit possible to solve the scattering problem at many energies without quadrature datarecalculation. Because the quadrature data is too voluminous to �t in the individualprocessor memory, an out of core solution is required.From an I/O perspective there are four distinct execution phases. After initializationdata is read from the disk, all nodes participate in the calculation and storage of therequisite quadrature data set that is energy independent. Then, the quadrature data isread from disk and energy dependent data structures are generated and combined withthe reloaded quadrature data. Finally, the results of calculation are written to disk.In the following sections we will present the I/O requirements of the selected applications,concentrating on request sizes, their timings, and their temporal and spatial patterns.4 I/O RequirementsOur experiments were conducted on the Caltech 512-node Intel Paragon XP/S at the Cal-tech Center for Advanced Computing Research. The system, which is con�gured for high-performance I/O research, supports multiple I/O hardware con�gurations. The experimentspresented in this paper were conducted using two of the possible I/O con�gurations: (a) 12I/O nodes, each controlling a relatively slow 2 GB RAID-3 disk array and (b) 64 4 GB Seagatedisks, each attached to a computation node. For all experiments, �les were striped across the5

disks in units of 64 KB, the default con�guration for the Intel Paragon XP/S Parallel FileSystem (PFS).All experiments were executed in dedicated mode, using representative application datasets. The NWChem and MESSKIT applications used the 12 RAID-3 disk arrays, while theQCRD, PRISM, and ESCAT used the 16 Seagate disks.2 The MESSKIT, NWChem, QCRD,PRISM, and ESCAT execution times were equal to 1,788 seconds, 5,439 seconds, 16,356 sec-onds, 7,394 seconds and 5,803 seconds respectively.4.1 I/O OverviewTable 1 summarizes the I/O activity of the codes. MESSKIT, NWChem, and QCRD appearsigni�cantly more intensive than PRISM and ESCAT, with a large percentage of the applicationexecution times is consumed in I/O. This is despite the fact that the total count of I/Ooperations in PRISM is much larger than any other application. Intuitively, most of thePRISM read operations are small and are e�ciently satis�ed from local I/O bu�ers.MESSKIT and NWChem are dominated by read operations. During execution, all proces-sors repeatedly read integrals from secondary storage to construct the Fock matrix and thensolve the SCF equations. Because this integral database is computed and written to storageonce, but then reread many times, both MESSKIT and NWChem codes are heavily read lim-ited. Overall, the ratios of operation costs are analogous to operation counts. The remainingof operations contribute insigni�cant amounts to the I/O time.A di�erent behavior is observed for the QCRD code: seeks are the most expensive oper-ations and their cost dominates the execution time consumed by I/O. The large number ofseeks is a direct e�ect of the code's data decomposition and storage scheme | each processormust repeatedly seek to its designated portion of the global matrices before each access. Wedemonstrate in x5 that forced serialization of seek requests due to the selected algorithmicimplementation is the reason for such behavior.ESCAT uses a data decomposition and storage scheme for the quadrature data similar toQCRD's. However, the code achieves to minimize the average seek cost by avoiding the forcedserialization of seek requests. In x5 we will return to this issue.The behavior of the PRISM code is also worth a more precise analysis. Although the codeappears heavily read bound when looking at operation counts, read operations have a limitedcost. We will show in the following sections that this is a result of read request sizes and theiraccess pattern.4.2 I/O Request SizesApart from operation counts, the distribution of their sizes across the �ve codes is also im-portant from a workload characterization perspective. The distribution of I/O request sizes isa key determinant of possible �le system optimizations. For example, the overhead for smallreads can decrease by aggressive prefetching, and small writes are best served by conservative2As we shall see, the older, slower RAID-3 disk arrays give the illusion that MESSKIT and NWChemare more I/O intensive than QCRD, PRISM, or ESCAT. Via other experiments using di�erent hardwarecon�gurations, we have veri�ed that the fraction of application execution time devoted to I/O is sensitive tohardware con�guration but that the application I/O behavior is qualitatively unchanged.6

(a) MESSKITOperation Operation Percentage I/O Time I/O Time Exec. TimeCount Count (seconds) Percentage Percentageopen 163 0.23 160.33 0.77 0.13read 51,829 73.58 18,289.03 87.49 15.35seek 497 0.71 1.52 0.00 0.00write 9,163 13.00 2,085.21 9.97 1.72close 160 0.23 9.07 0.04 0.01flush 8,626 12.25 361.5 1.73 0.03All I/O 70,438 100.00 20,906.66 100.00 17.24(b) NWChemOperation Operation Percentage I/O Time I/O Time Exec. TimeCount Count (seconds) Percentage Percentageopen 92 0.02 317.25 0.12 0.09read 465,154 93.05 251,105.84 92.53 72.13seek 2,115 0.42 36.87 0.01 0.01write 32,398 6.48 18,746.65 6.91 5.39close 153 0.03 1,158.43 0.43 0.33All I/O 499,912 100.00 271,365.03 100.00 77.95(c) QCRDOperation Operation Percentage I/O Time I/O Time Exec. TimeCount Count (seconds) Percentage Percentageopen 6,592 1.29 3,618.32 1.4 0.45read 176,228 34.52 8,027.68 3.12 0.99seek 258,648 50.66 238,770.16 92.73 29.5write 61,904 12.13 6,148.96 2.4 0.75close 7,168 1.4 975.17 0.35 0.08All I/O 510,540 100.00 257,540.29 100.00 31.77(d) PRISMOperation Operation Percentage I/O Time I/O Time Exec. TimeCount Count (seconds) Percentage Percentageopen 415 0.04 203.12 12.51 0.04read 1,037,568 93.70 950.11 58.50 0.20seek 704 0.06 293.17 18.05 0.06write 68,273 6.17 42.93 2.64 0.01close 414 0.04 134.82 8.30 0.03All I/O 1,107,374 100.00 1,624.15 100.00 0.34(e) ESCATOperation Operation Percentage I/O Time I/O Time Exec. TimeCount Count (seconds) Percentage Percentageopen/gopen 262 0.97 357.64 13.84 0.05read 815 3.03 56.77 2.20 0.01seek 12,034 44.69 283.98 10.99 0.04write 13,300 49.39 1,123.48 43.48 0.15iomode 256 0.95 584.52 22.62 0.08close 262 0.97 177.26 6.86 0.02All I/O 26,929 100.00 2,583.65 100.00 0.35Table 1: Basic I/O summary table7

write behind. Conversely, large I/O requests require di�erent approaches like direct streamingto/from storage devices.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

ESCAT

QCRD

NWChem
MESSKIT

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

QCRD

NWChem

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

NWChem

Read Size (bytes)

C
D

F
of

 R
ea

d
C

ou
nt

QCRD

ESCAT

MESSKIT

Prism

ESCAT MESSKIT

Prism

Prism

ESCAT
QCRD

NWChem
MESSKIT Prism

Read Size (bytes)

Write Size (bytes)Write Size (bytes)

C
D

F
of

 R
ea

d
D

at
a

C
D

F
of

 W
ri

te
 C

ou
nt

C
D

F
of

 W
ri

te
 D

at
a

Figure 1: CDF of read/write request sizes and data transfers.Figure 1 shows the cumulative distribution function (CDF) of the percentage of reads andwrites versus the request size for the �ve codes, as well as the fraction of data transferred byeach request size. PRISM and ESCAT show a distinctive variation in the application requestsizes. For PRISM, about 80 percent of read and write requests are small (less than 40 bytes),though a few large requests (greater 150KB) constitute the majority of I/O data volume.For ESCAT, about 40 percent of read requests are small (less than 1000 bytes) although themajority of data volume is transfered by a few read requests of 80,000 bytes. The small requestsizes are excellent candidates for data aggregation.There is much less variability in the read and write request sizes of QCRD, MESSKIT,and NWChem. For QCRD, 99 percent of requests are equal to 2,400 bytes and they transferalmost all the data volume. Similarly to QCRD, where the majority of requests are of thesame size, about 90 percent of reads and writes in NWChem are equal to 64 KB. The smallerrequest sizes in NWChem transfer insigni�cant portions of the application data. Similarly to8

all I/O

write
read

all I/O

write
read

7e+07

7.5e+07

8e+07

8.5e+07

9e+07

9.5e+07

1e+08

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

Processor IDProcessor IDProcessor ID

T
ra

ns
fe

rr
ed

 B
yt

es

O
pe

ra
tio

n
T

im
e

(s
ec

on
ds

)

O
pe

ra
tio

n
C

ou
nt

3.2e+08

3.4e+08

3.6e+08

3.8e+08

4e+08

4.2e+08

4.4e+08

4.6e+08

4.8e+08

5e+08

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70
0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70

Processor ID Processor ID Processor ID

read

write

all I/O

T
ra

ns
fe

rr
ed

 B
yt

es

O
pe

ra
tio

n
T

im
e

(s
ec

on
ds

)

O
pe

ra
tio

n
C

ou
nt

all I/O

read

write

(a) MESSKIT

(b) NWChem

Figure 2: I/O times per processor for the two Hartree-Fock applications, MESSKIT andNWChem.NWChem, more than 90 percent of read and write requests are equal to 84,000 bytes andtransfer almost 99 percent of data.In general, we observe that even from our small, inductive sample of �ve applications, thereis a great variability in request sizes, ranging from a few bytes to several megabytes. ParallelI/O APIs that deliver high performance for a wide variety of request sizes are necessary. Inx6, we will return to this issue.4.3 Processor I/O BehaviorFinally, to complete the high level view of I/O characteristics of the selected codes, we turnto variations across processors. Although all �ve applications use the SPMD programmingmodel, operation counts, operation durations, and transferred volumes di�er from processorto processor.Figures 2 and 3 show that despite the big variation in request counts across the �ve codes,typically logical processor (node) 0 executes more operations and consistently transfers the9

Processor IDProcessor ID Processor ID

O
pe

ra
tio

n
C

ou
nt

all I/O

seek

readwrite

all I/O

seek

read

write

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70
8.4e+06

8.5e+06

8.6e+06

8.7e+06

8.8e+06

8.9e+06

9e+06

9.1e+06

0 10 20 30 40 50 60 70

O
pe

ra
tio

n
T

im
e

(s
ec

on
ds

)

T
ra

ns
fe

rr
ed

 B
yt

es

(c) QCRD

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60 70

Processor ID

O
pe

ra
tio

n
C

ou
nt

All I/O
Read

Write

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Processor ID

O
pe

ra
tio

n
T

im
e

(s
ec

on
ds

)

1e+06

1e+07

1e+08

1e+09

0 10 20 30 40 50 60 70

Processor ID

all I/O
read
write

T
ra

ns
fe

rr
ed

 B
yt

es

(d) PRISM

Processor ID

100000

1e+06

1e+07

0 20 40 60 80 100 120

T
ra

ns
fe

rr
ed

 B
yt

es

10

15

20

25

0

5

0 20 40 60 80 100 120 140

seek

open

Processor ID

all I/O

write

set I/O mode

O
pe

ra
tio

n
T

im
e

(s
ec

on
ds

)

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120

Processor ID

O
pe

ra
tio

n
C

ou
nt

all I/O
write

(e) ESCAT

Figure 3: I/O times per processor for QCRD, PRISM, and ESCAT.
10

largest data volume. This is a side e�ect of the developers choice to use node 0 as coordinatorof disk data transfers to disk. We will demonstrate in x5 that frequently, initialization dataare read by node 0 and then broadcasted to the remaining nodes. In the same fashion, node0 often collects results from all nodes and funnels them to disk.Figures 2 and 3 also illustrate that because of the data partitioning approach to realizeparallelism, there are distinct subsets of nodes that execute the same number of operationsand transfer that same data volume. Nonetheless, even among the same node subsets, thereis signi�cant variation in the operation execution times. In the following section we willillustrate how queuing delays contribute to operation costs, advocating the need of collectiveI/O operations on subsets of processors.5 Temporal and Spatial Access PatternsLike request sizes, the temporal and spatial attributes of requests have profound implicationsfor �le system policies. Most workstation �le systems are optimized for sequential �le access.Burstiness and non-sequentiality necessitate new and di�erent �le system approaches (e.g.,aggressive prefetch or write behind or skewed data storage formats). Below, we consider theimplications of these temporal and spatial patterns based on the SIO code suite.Since x4 suggested that typically node 0's I/O activity is more intense than that of the restof the nodes, we illustrate the application temporal behavior of node 0 and of node 60, whichis representative of the remaining nodes. In the QCRD code there is no such behavior { allnodes execute the same operations and we demonstrate the activity of a representative nodeonly. Because space precludes a complete description of the applications' access patterns, wewill concentrate on the temporal spacing and mutual interaction of the three basic operations:seek, read, and write.5.1 Sequential Access PatternFigure 4 illustrates the operation durations of nodes 0 and 60 of MESSKIT and NWChem asa function of the program execution time. To increase legibility, we plot only the �rst 2500seconds of NWChem's execution. Limiting the execution time restricts the large number ofdata points and attenuates the otherwise severe overplotting that obscures the location anddistribution of less frequent I/O operations. The remaining I/O activity not plotted in thegraph does not convey additional information about the access pattern because of the iterativenature of the code.In both codes, the three execution phases are clearly distinguished in the �gure. First,node 0 loads the problem de�nition from the various input �les, the basis �les are calculated,and the results are written to disk.In the second phase all nodes participate in I/O: they evaluate the integrals and write themto disk. The work is distributed across all nodes and each node accesses its private �le wherethe locally computed integrals are stored. Because of the choice to use a private �le per node,the code uses a sequential access pattern to write the results. Note that there is a single seek3operation (that corresponds to the �le rewind) for each node, followed by intense read activity.3This seek operation is more clearly illustrated in Figures 4(b) and 4(d).11

(a) MESSKIT (node 0) (b) MESSKIT (node 60)

0
1e-05

0.0001

0.001

0.01

0.1

1

10

200 400 600 800 1000 1200 1400 1600 1800

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

) write phase
read/write read/write

0.0001

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600 1800

write phase
read phase

sequential accesses

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

(c) NWChem (node 0) (d) NWChem (node 60)
1

0.1

0
1e-05

0.0001

0.001

0.01

10

500 1000 1500 2000 2500

R
ea

d write

write

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

100 read phase

0.1

1

1e-05

0.0001

0.001

0.01

10

100

0 500 1000 1500 2000 2500

Phase
Read PhaseWrite

sequential accesses

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

Figure 4: Operation durations for MESSKIT and NWChem. Boxes represent seeks, diamondsrepresent reads, and crosses represent writes.Finally, in the third code phase all nodes concurrently open their private �les where theintegrals are stored, and they repeatedly read integral data, construct the Fock matrix, com-pute, synchronize, and solve the SCF equations. Node 0 periodically collects the results andwrites them to disk as indicated by the short bursty write activity in Figures 4(a) and 4(b).Again, the read access pattern is sequential, with a single seek preceding bursts of intense readactivity on the �le.5.2 Interleaved Access PatternThe di�erent parallelization choices of the QCRD and ESCAT codes are clearly illustrated inFigure 5. Instead of using a private �le per node to store the data segment of the global matrix12

apportioned to each node, the developers opted to use one �le per global matrix. Consequently,an interleaved access pattern was used by each node to access its portion of the matrices, withone seek operation preceding every read or write operation. The interleaved access patternused by QCRD is clearly distinguished in Figure 5(a) that illustrates a snapshot of the I/Oactivity towards the end of code execution.4

0.0001

0.001

0.01

0.1

1

10

11760 11770 11780 11790 11800 11810

Execution Times

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

(a) QCRD (typical node)

0.001

0.01

0.1

1

11760 11770 11780 11790 11800 11810

writes
reads

0.0001

10

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

header reads
seeks

(b) QCRD (all nodes)

1e-05

0.0001

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

) read write

(c) ESCAT (node 0)

1e-05

0.0001

0.001

0.01

0.1

0 1000 2000 3000 4000 5000 6000

(d) ESCAT (all nodes)

1

10

Execution Time

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

seeks

writes

Figure 5: Operation durations for QCRD and ESCAT. Boxes represent seeks, diamonds rep-resent reads, and crosses represent writes.To give a
avor of the �le system responses using the interleaved access pattern, we depictthe duration of operations of all nodes in Figure 5(b) during the same time period. Because4Because there are no signi�cant di�erences in the I/O volume transfered by node 0 comparing to the restof nodes, we only illustrate the activity of a typical node.13

of standard UNIX �le sharing semantics, seek requests are serialized when more than oneprocesses access the same �le, and the average seek cost increases commensurately with thenumber of concurrent accesses.The design choice to use a single �le and the semantics of UNIX I/O operations combine toyield extraordinarily poor I/O performance for the QCRD code. Despite the large number ofseeks, the dominant QCRD access patterns are highly regular, and a more powerful I/O APIwould have allowed the developers to express this regular, though non-sequential pattern.The designers of ESCAT took advantage of the available M ASYNC �le system mode to accessthe �les using an interleaved access pattern and managed to decrease the average seek time bytwo orders of magnitude (see Figures 5(c) and 5(d)). M ASYNC allows the �le system to relaxthe �le pointer consistency protocol, yielding much higher performance. We will return to thisrelation between API and performance in x6.5.3 Mixed Access PatternsFigure 6 illustrates the duration and spacing of I/O operations for the PRISM code. Becauseof the developers decision to channel all write operations through node 0, the I/O activity ofthe remaining nodes is con�ned within the �rst 200 seconds of code execution.Figure 6(a) depicts the I/O activity of node 0 for the �rst 1,700 seconds of applicationexecution time. Again, for visualization purposes, we restricted the plotting area to only apart of the execution time. The application phases are clearly visible in the �gure: in the �rst200 seconds all nodes access the initialization �les and in the subsequent, write intensive phase,the simulation is carried out and results are written to disk using a sequential access pattern.The mixed sequential and interleaved access patterns used to access the initialization �lesare clearly demonstrated in Figure 6(b). During the read phase three �les are accessed: the�rst �le contains the problem parameters and is accessed with a sequential pattern by all nodes.The second �le is a restart �le that contains the initial conditions for the simulation, and eachnode �rst reads the �le header sequentially and then accesses its own portion in an interleavedfashion. Finally, the third input �le is accessed sequentially by all nodes.6 DiscussionCharacterization studies are by their nature inductive, covering a subset of the possibilities.Although the �ve applications codes of this study di�er dramatically in their algorithmicapproaches, they are subject to several general observations about their common I/O charac-teristics:� Parallel I/O is bursty, with computation intervals of little or no I/O activity interleavedwith time periods of intense, concurrent I/O operations. In such situations, I/O canbe e�ectively overlapped with computation via caching, prefetching, and write-behindmechanisms.� The size of requests can di�er dramatically, even within the same application, rangingfrom a few bytes to several kilobytes each. Di�erent optimization mechanisms are re-quired for such transfers, i.e., aggregating small requests into large data chunks in cache14

Execution Time

1e-05

0.0001

0.001

0.01

0.1

0 200 400 600 800 1000 1200 1400 1600

checkpoint

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

) 1

10

write phase
read

(a) PRISM (node 0)

Execution Time

1e-05

0.001

0 50 100 150

O
pe

ra
tio

n
D

ur
at

io
n

(s
ec

on
ds

)

sequential reads

0.0001

0.01

0.1

1

10

200

interleaved
reads

sequential reads

(b) PRISM (node 60)

Figure 6: Operation durations for PRISM. Boxes represent seeks, diamonds represent reads,and crosses represent writes.before initiating a transfer or disabling all caching and bypass the cache for large re-quest sizes. Understanding when and how to aggregate requests is essential for highperformance.� Access patterns range from simple sequential to interleaved. Furthermore, there arecombinations of sequential and interleaved accesses even within the same �le. Often, the�le header is accessed via a number of sequential operations, while the main �le body isaccessed through a strided pattern since data are equally distributed among nodes. Dueto the high concurrency of such operations, e�cient �le pointer consistency protocols arenecessary to deliver high performance.� Request parallelism ranges from no parallelism (i.e., all I/O is administered through asingle node) to full parallelism (i.e., all nodes concurrently send independent requeststo disks). Channeling all requests through a single node is often an alternative solutionopted by application developers when their codes experience performance bottleneckswith concurrent accesses. However, such solutions require unnecessary synchronizationsand ine�ective use of the parallel �le system. Collective I/O is a desirable alternative forhigh performance concurrent accesses.� Files can be either shared across processors or can be simply private per processor.Di�erent �le system policy optimization approaches should be used if �les are shared orprivate.6.1 Current I/O APIsOne of the most striking observations of our characterization study was that despite the ex-istence of several parallel I/O APIs and clear performance advantages, most computationalscientists eschew their use. Discussions with these researchers revealed that the restricted,15

often ine�cient, but highly portable UNIX API was preferable to vendor provided, extendedI/O interfaces.Comparisons of vendor proprietary I/O interfaces (e.g., IBM's PIOFS and Intel's PFS) showthat they have few shared features, mainly due to di�erent design philosophies. Therefore,the design and implementation of a standard parallel I/O API that is expressive, compact,intuitively appealing, and at the same time o�ers high performance [6] is one of the goalsof the SIO e�ort. Our I/O characterization study has been instrumental in the design andimplementation of MPI-IO [28] that is adopted by the SIO community as the standard parallelI/O interface.6.2 Emerging I/O APIsEven within our small application sample, the diversity of I/O request sizes and patterns sug-gests that achieving high performance is unlikely with a single �le system policy. Instead, oneneeds a �le system API via which users can \inform" the �le system of expected access pat-terns. Using such hints or an automatic access pattern classi�cation scheme [15], an adaptive�le system could then choose those �le policies and policy parameters best matched to theaccess pattern.For example, via user controls and hints one might advise the �le system that the �leaccess pattern is read only, write only, mixed read/write sequential, or strided. For small, readonly requests, the �le system would aggressively prefetch large blocks of data, satisfying futurerequests for previously cached data. Similarly, for small strided writes, the �le system might�rst cache the data then write large blocks using a log-structured �le model.Similarly, with knowledge of request concurrency and real-time measurements of I/O deviceperformance, a
exible �le system might dynamically choose the number of disks across whichdata is striped and the size of the stripes. When there are few competing requests, stripingdata in large blocks across all disks reduces write time by trading inter-request parallelism forreduced intra-request latency.Finally, with knowledge of the evolution of access patterns, a �le system might choose a�le striping that optimizes globally across multiple patterns. Thus, a system could balance thecost of e�ciently writing a �le against the cost of repeatedly reading the �le using an accesspattern not well matched to the storage format.All these examples share a common theme| they presume higher level knowledge of currentand future I/O access patterns. Rather than composing complex access patterns from read,write, and seek \atoms," with expressive I/O APIs users can describe temporal and spatialaccess patterns directly. Alternatively, �le systems must glean this information automatically(e.g., by classifying access patterns using trained neural networks or hidden Markov models).In either case, only with such knowledge can
exible �le systems maximize performance bymatching policies to access patterns.7 ConclusionsWe have presented a comparative study of parallel I/O access patterns, commonly found inI/O intensive scienti�c applications. Even with the restricted application subset that we inves-tigated here, we demonstrated that there is much variation in temporal and spatial patterns16

across applications, with both very small and very large request sizes, sequential and inter-leaved accesses, shared and non-shared �les, and access time scales ranging from microsecondsto minutes.We conclude that there are many opportunities for improving the performance of parallel �lesystem and parallel I/O standardization is an important step towards this process. The analysisof the parallel I/O workload characteristics of the SIO suite has contributed towards thise�ort. From this analysis, various design issues related to parallel I/O application programminginterfaces have emerged. An API that is compact, expressive, and provides the access patterninformation to the �le system, can exploit alternative data management policies that bettermatch these patterns. Controls for e�cient data distribution, collective I/O, and data cachingare necessary to provide high I/O throughput.AcknowledgmentsThe MESSKIT and NWChem codes was provided by Rick Kendall David Bernholdt of thePaci�c Northwest Laboratory. The PRISM code was obtained from Ron Henderson and DanMeiron of Caltech. The QCRD code was provided by Mark Wu and Aaron Kuppermann atCaltech. The ESCAT code was provided by Vincent McKoy and Carl Winstead at Caltech.Phyllis Crandall, Ruth Aydt, and Sharon Burnett contributed to application instrumentation.All data presented here were obtained from code executions on the Intel Paragon XP/S at theCaltech Center for Advanced Computing Research.References[1] Bennett, R., Bryant, K., Sussman, A., Das, R., and Saltz, J. Jovian: A frameworkfor optimizing parallel I/O. In Proceedings of the Scalable Parallel Libraries Conference(October 1994), IEEE Computer Society Press, pp. 10{20.[2] Bordawekar, R., Thakur, R., and Choudhary, A. E�cient compilation of out-of-core dataparallel programs. Tech. Rep. SCCS-622, NPAC, April 1994.[3] C., W., H., P., and V., M. Parallel computation of electron-molecule collisions. IEEEComputational Science and Engineering (1995), 34{42.[4] Corbett, P. F., Baylor, S. J., and Feitelson, D. G. Overview of the Vesta parallel �lesystem. In IPPS '93 Workshop on Input/Output in Parallel Computer Systems (1993),pp. 1{16.[5] Corbett, P. F., Feitelson, D. G., Prost, J.-P., and Baylor, S. J. Parallel access to �les inthe Vesta �le system. In Proceedings of Supercomputing '93 (1993), pp. 472{481.[6] Corbett, P. F., Prost, J.-P., Demetriou, C., Gibson, G., Riedel, E., Zelenka, J., Chen,Y., Felten, E., Li, K., Hartman, J., Peterson, L., Bershad, B., Wolman, A., and Aydt, R.Proposal for a common parallel �le system programming interface version 1.0, September1996.[7] Crandall, P., Aydt, R. A., Chien, A. A., and Reed, D. A. Input/Output characterizationof scalable parallel applications. In Proceedings of Supercomputing 1995 (1996), pp. CD{ROM. 17

[8] Foster, I., and Nieplocha, J. ChemIO: High-performance I/O for computational chemistryapplications. WWW http://www.mcs.anl.gov/chemio/, February 1996.[9] Henderson, R. D., and Karniadakis, G. E. Unstructured spectral element methods orsimulation of turbulent
ows. Journal of Computational Physics 122(2) (1995), 191{217.[10] High Performance Computational Chemistry Group, Paci�c Northwest National Labo-ratory. NWChem, A Computational Chemistry Package for Parallel Computers, Version1.1. Richland, Washington, 99352, USA, 1995.[11] Intel Corporation. Paragon System User's Guide. Intel SSD, Beaverton, OR, 1995.[12] King, S. M. Installing, Managing, and Using the IBM AIX Parallel I/O File System.Information Development Department, IBM Kingston, New York, 1994.[13] Kotz, D., and Nieuwejaar, N. Dynamic �le-access characteristics of a production parallelscienti�c workload. In Proceedings of Supercomputing '94 (November 1994), pp. 640{649.[14] LoVerso, S. J., Isman, M., Nanopoulos, A., Nesheim, W., Milne, E. D., and Wheeler,R. sfs: A parallel �le system for the CM-5. In Proceedings of the 1993 Summer USENIXConference (1993), pp. 291{305.[15] Madhyastha, T., and Reed, D. A. Intelligent, adaptive �le system policy selection. InProceedings of Frontiers'96 (1996).[16] Miller, E. L., and Katz, R. H. Input/Output behavior of supercomputer applications. InProceedings of Supercomputing '91 (November 1991), pp. 567{576.[17] Moyer, S. A., and Sunderam, V. S. PIOUS: a scalable parallel I/O system for distributedcomputing environments. In Proceedings of the Scalable High-Performance ComputingConference (1994), pp. 71{78.[18] Nieuwejaar, N., and Kotz, D. The Galley parallel �le system. In Proceedings of the 10thACM International Conference on Supercomputing (May 1996). To appear.[19] Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C. S., and Best, M. File-access char-acteristics of parallel scienti�c workloads. Tech. Rep. PCS-TR95-263, Dept. of ComputerScience, Dartmouth College, August 1995. To appear in IEEE TPDS.[20] Nitzberg, B. Performance of the iPSC/860 Concurrent File System. Tech. Rep. RND-92-020, NAS Systems Division, NASA Ames, December 1992.[21] Pasquale, B. K., and Polyzos, G. C. Dynamic I/O characterization of I/O intensivescienti�c applications. In Proceedings of Supercomputing '94 (November 1994), pp. 660{669.[22] Poole, J. T. Scalable I/O Initiative. California Institute of Technology, Available athttp://www.ccsf.caltech.edu/SIO/, 1996.[23] Purakayastha, A., Ellis, C. S., Kotz, D., Nieuwejaar, N., and Best, M. Characterizingparallel �le-access patterns on a large-scale multiprocessor. In Proceedings of the NinthInternational Parallel Processing Symposium (April 1995), pp. 165{172.18

[24] Reed, D. A., Aydt, R. A., Noe, R. J., Roth, P. C., Shields, K. A., Schwartz, B. W., andTavera, L. F. Scalable performance analysis: The Pablo performance analysis environ-ment. In Proceedings of the Scalable Parallel Libraries Conference, A. Skjellum, Ed. IEEEComputer Society, 1993, pp. 104{113.[25] Reed, D. A., Elford, C. L., Madhyastha, T., Scullin, W. H., Aydt, R. A., and Smirni, E.I/O, performance analysis, and performance data immersion. In Proceedings of MASCOTS'96 (Feb. 1996), pp. 1{12.[26] Seamons, K. E., Chen, Y., Jones, P., Jozwiak, J., and Winslett, M. Server-directedcollective I/O in Panda. In Proceedings of Supercomputing '95 (December 1995).[27] Smirni, E., Aydt, R. A., Chien, A. A., and Reed, D. A. I/O requirements of scienti�capplications: An evolutionary view. In High Performance Distributed Computing (1996),pp. 49{59.[28] The MPI-IO Committee. MPI-IO: a parallel �le I/O interface for MPI, April 1996.Version 0.5.[29] Toledo, S., and Gustavson, F. G. The design and implementation of SOLAR, a portablelibrary for scalable out-of-core linear algebra computations. In Fourth Workshop on In-put/Output in Parallel and Distributed Systems (Philadelphia, May 1996), pp. 28{40.[30] Wu, Y.-S. M., Cuccaro, S. A., Hipes, P. G., and Kuppermann, A. Quantum chemicalreaction dynamics on a highly parallel supercomputer. Theoretica Chimica Acta 79 (1991),225{239.

19

