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Abstract. Recently, several “divisible” untraceable off-line electronic
cash schemes have been presented [8, 11, 19, 20]. This paper presents
the first practical “divisible” untraceable! off-line cash scheme that is
“single-term”? in which every procedure can be executed in the order of
log N, where N is the precision of divisibility, i.e., A" = (the total coin
value)/(minimum divisible unit value). Therefore, our “divisible” off-line
cash scheme is more efficient and practical than the previous schemes.
For example, when NV = 27 (e.g., the total value is about $ 1000, and the
minimum divisible unit is 1 cent), our scheme requires only about 1 Kbyte
of data be transfered from a customer to a shop for one payment and
about 20 modular exponentiations for one payment, while all previous
divisible cash schemes require more than several Kbytes of transfered
data and more than 200 modular exponentiations for one payment.

In addition, we prove the security of the proposed cash scheme under
some cryptographic assumptions. Our scheme is the first “practical di-
visible” untraceable off-line cash scheme whose cryptographic security
assumptions are theoretically clarified.

1 Introduction

Recently, much research has been performed in the area of off-line electronic
currency [2, 5, 8, 9, 11, 12, 13, 16, 18, 19, 20, 25]. Protocols have been proposed
enabling consumers to withdraw “electronic coins” from a bank, and later spend
these coins at a shop in an “off-line” manner. Here, off-line refers to the property
that communication with a bank or authorized center is unnecessary during
the payment protocol. In addition, electronic coins should be anonymous, i.e.,
“untraceable”.

A “divisible” coin worth some amount of money, say $x, is a coin that can
be spent many times as long as the sum total of all its the transactions does
not exceed $x. This property, divisibility, is very useful and convenient for a

! Note that coins divided from the same coin can be linked each other in the proposed
scheme, although they are anonymous, i.e., “untraceable” from the customer’s iden-
tity. In other words, the unlinkability among divided coins is not satisfied, although
the untraceability is satisfied.

2 In the first generation of the practical off-line cash schemes [5, 16, 18, 19, 20], the
cut-and-choose method is used, in which cash consists of many terms of the same
form (e.g., 40 terms). A “single-term” cash scheme [2, 11, 12] means a practical cash
scheme in which the cut-and-choose method is not used and cash consists of a single
term. The basic idea of “single-term” is from [13}, but the technique to realize the
“single-term” property is specific to each scheme [2, 11, 12].
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customer. If a coin is not divisible, the customer must withdraw a coin whenever
he spends it, or withdraw many coins of various values and store them in his
electronic wallet (e.g., smart card). Since real cash does not satisfy this property,
we must use many various bills and coins in daily life. On the other hand, prepaid
cards® satisfy this property, and this is the major merit of such cards over real
cash. Therefore, in practice, the divisibility is a very important requirement for
electronic cash systems.

So far, several “divisible” untraceable off-line electronic cash schemes have
been presented [8, 11, 19, 20]. The scheme in [8] is far from practical, since
their scheme utilizes a non-interactive zero-knowledge proof for a general NP
predicate. Pailles’ divisible coin construction [20] is also inefficient. The size of
data transfered from a customer to a shop during payment is linear in A where N
is the divisibility precision, i.e., N’ = (the total coin value)/(minimum divisible
unit value). A system in which a coin worth $5367 consists of 5367 81 coins is a
rather unwieldy and inefficient divisible cash system. [19] has also shortcomings
in efficiency: their scheme utilizes a cut-and-choose method, a paid/deposited
coin consists of many terms (e.g., 40 terms), and hence, the resulting complexities
(the transfered data size and computation amount for a payment) can be quite
large.

[11] partially solved the efficiency problems by constructing the first “single-
term” divisible cash scheme. The cut-and-choose method is not used, so the
transfered data size of [L1] is less than that of [19]. However, the major short-
coming of [11] is that the required computation amount for a payment is of the
order of the divisibility precision, A'. Hence, the amount of computation required
for a payment in [11] is almost as large as that of [19]. Another shortcoming of
[11] is that the size of the divisible coin depends on the selection of routes in
the binary tree. If the selection of routes is almost optimal, the transfered data
can be much smaller than that of [19]. However, if no such selection exists (such
<[:a,s]es often occur), the transfered data size becomes almost as large as that of

19].

This paper presents a divisible untraceable off-line electronic cash scheme
which solves these shortcomings, and is much more efficient than all previous
schemes. Our scheme is the first practical “single-term divisible” cash scheme
in which every procedure can be executed in the order of log N, and every
transfered data sizes are of the order of log N'. Therefore, the amount of the
required computation and communication for a payment is, with our scheme,
much less than those of the previous schemes.

For example, when N = 2'7 (e.g., the total value is about $ 1000, and the
minimum divisible unit is 1 cent), our scheme requires only about 1 Kbyte of data
be transfered from a customer to a shop for one payment and about 20 modular
exponentiations (for a customer and a shop respectively) for one payment. All
previous practical divisible cash schemes require more than several Kbytes of
transfered data and more than 200 modular exponentiations for one payment. *

3 Prepaid cards such as telephone cards are a kind of electronic cash, but their security
heavily depends on physical tricks. Here, electronic cash means a cash system whose
security depends only on mathematical techniques. In this sense, electronic cash can
be considered to be an ideal version of prepaid cards and so is suitable for smart
cards.

* Note that the evaluation here is based on the degree of security of factoring a 512 bit
composite (and a 512 bit modulus discrete logarithm). For example, if the modulus
size is 1024 bits, then the data sizes of the cash schemes should be twice. On the other
hand, the number of the modular exponentiations can only depend on an arbitrary
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The withdrawal procedure of our scheme is very efficient; it requires around
0.1 Kbyte of data be exchanged between a customer to a bank for one withdrawal
and just one modular exponentiation (for a customer and a bank respectively)
for one withdrawal, regardless of the total value and the divisibility precision.
Moreover, the amount of data (electronic license and coin) stored in an electronic
wallet (e.g., a smart card) is around 0.2 Kbytes. All previous practical divisible
cash schemes require more than several Kbytes be stored in a wallet.

In addition, we prove that the proposed cash scheme satisfies four security
requirements (no forging, no tracing, no overspending and no swindling) under
some assumptions. Our scheme is the first “practical divisible” untraceable cash
scheme whose cryptographic security assumptions, which are relatively primitive,
are theoretically clarified. Even from a practical viewpoint, such a security proof
is very important especially for a complicated cryptographic protocol, which
consists of many primitive protocols. Although it is unclear whether these four
security requirements are sufficient, our security proof guarantees that if there
exists an attack on our scheme, then it should reside outside these four security
requirements, unless our security assumptions are broken.

Note that the unlinkability among coins divided from the same coin cannot
be satisfied in the proposed scheme as well as the previous practical divisible
untraceable off-line cash schemes, although these divided coins are anonymous,
Le., “untraceable”. In addition, since the procedure for interrupting the linking
chain among the withdrawn coins (i.e., the opening protocol) is less efficient than
the other procedures of our scheme, the procedure cannot be executed so often.

2 Number Theoretic Conventions

Since our scheme is constructed using some number theoretic techniques devel-
oped by [19], this paper follows the notations and propositions of the number
theoretic techniques in [19]. However, Lemma 1 and Lemma 2 are new in this
paper (A similar technique is used in [3]). They constitute a new technique to
prevent a customer from double-spending a coin (or a node of a tree).

Lemmal. Let N = PQ be the Williams integer, and t be an integer which is
greater than 1. Then, for any ¢ € QRN, and for any e € Zy:, there exists a

unique solution y such that yzt =22z mod N and y € QRN
Lemma2. Let N = PQ be the Williams integer, and t be an integer which is
greater than 1 and t = O(|N|). Then, there ezits a deterministic poly-time (i.e.,

O(IN1?)) algorithm to factor N, given N, t, z € QRy, e € Zat, €3 € Zye,
(e1 # €2), y1, and yo such that

y,?' =2%zmod N and

¥ € QRN (i=1,2).

security parameter and N practically, although, ‘theoretically, it also depends on
the modulus size. In our evaluation, this security parameter, the probability that a

dish400nest Customer is accepted in the payment protocol, is supposed to be at most
1/2%,

Copyright (c) 1998, Springer-Verlag



441

3 Binary Tree Approach

We will adopt the binary tree approach as do all previous divisible cash schemes
(8, 11, 19, 20]. Each coin of worth w = 2! is associated with a tree of (1 +1)
levels and w leaves.

Each node of the tree represents a certain denomination. The root node, no,
is assigned a monetary value of w, and the value of all other nodes, n;,..;, i
found by halving the value of the node’s parent, nj,...;,_, (j1 = 0, ji € {0,1} for
i=2,...,0).

No
$w —_—
$w/2 for each node ——+ Moo no1
$w/4 for each node ——
1000 Tgo1 no10 No11

With this tree, we will show that for a single coin of worth w, it will be
possible for a consumer to engage in several transactions, such that the sum
total of the amounts of each transaction is less than or equal to w.

Divisibility can be implemented under the following two rules:

1. (Route node rule:) When a node is used, all descendant nodes and all
ancestor nodes of this node cannot be used.
2. (Same node rule:) No node can be used more than once.

Preserving both rules implies that the set of past transactions involving the
coin is legitimate and vice versa. Spending more than $w, the value of a coin,
will result in violation of at least one of these rules.

Moreover, in our concrete cash scheme, which will be shown in the following
sections, two values are used for each node in the tree (I" value and A value);
I" values are used to realize the route node rule, and A values to realize the
same node rule. [,...;, and A;,..;, denote I’ value and A value for node nj,..;
respectively. In addition, £2 values are introduced to calculate I' values.

4 Bit Commitment Schemes

A bit commitment scheme is used in the opening stage of the proposed scheme,
in place of the cut-and-choose method of the previous schemes [19, 20]. That
is, the commitment scheme plays an essential role in realizing the “single-term”
property of the proposed cash scheme.
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One type of commitment scheme was used in the gradually releasing proto-
col [7]. Our paper, however, uses another type of commitment scheme, since the
commitment scheme in [7] is not appropriate in our scheme. The new commit-
ment scheme is based on the discrete logarithm problem 5, while the scheme in

[7] is based on the factoring problem. However, almost all techniques developed
in [7] can be used with slight modification in our scheme.

4.1 Bit Commitments

Assume that B sets up the commitment scheme and U commits to a number.
Finally U proves to B that a value is correctly generated without revealing
committed information, by using some protocols to be described later.

To set up the commitment scheme, B generates prime P satisfying P — 1 =
2-Prime (Prime is a prime number), G and g whose orders in the multiplicative
group Z3 are Prime. B sends P, G and g. U checks whether Prime = (P-1)/2
is a prime by a probabilistic primality (or composite) test, and whether the orders
of G and g are Prime by checking that they are not 1 and GPrime = 1 (mod P)
and gP"™¢ =1 (mod P).

U can commit to any integer s € Zp,im. by choosing R uniformly at random
in Zppim. and computing the commitment

BCy(R,s) = G®¢* mod P.

This is called a base-g commitment. A commitment is opened by revealing R
and s.

4.2 Protocols of Checking the Contents of Bit Commitments

This subsection introduces some useful protocols in which U can prove to B in
a zero-knowledge manner that a committed value is in an interval, and that two
committed values are equivalent.

Let the interval be I = [a,b] (= {zle < 2 < b}),e = b—a,and I+ e =
[a—eb+e).

Protocol: CHECK COMMITMENT
Common input: z and (P, G, g, ). .
What to prove: U knows (R, s) such that z = BCy(R,s)and se I+e.
Execute the following & times:

1. U chooses t; uniformly in [0,€], and sets ¢, = t; — e. U sends to B the
unordered pair of commitments 7; = BCy(S1,t1), T = BCy(S2,t2).
2. B selects a bit 8 € {0,1} and sends.it to U.
3. U sends to B one of the following:
ag if B is 0, opening of both T} and T
Eb if B is 1, opening of z - T; mod N (i € {1,2}), such that s +1; € I.
4. B checks the correctness of U’s messages.

Protocol: COMPARE COMMITMENTS

Common input: z, 2’ and (P, G, g, I).

What to prove: U knows (R, R/, 5) such that ¢ = BC,(R, 5),z' = BCy(R',s)
ands€lte.

Execute the following k times:

® The underlying technique has been well known (e.g., [6, 21}).
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1. U chooses ¢, uniformly in [0,¢], and sets t; = {; — e. U sends to B the
unordered pair of commitments (T}, T!), (T2, T}), where each component of
the pair is ordered and (T}, T}) = (BC,(S;, t:), BCh(S], ti)).

2. B selects a bit 3 € {0,1} and sends it to U.

3. U sends to B one of the following:

(a) if B is 0, opening of both (71,T]) and (73, Té)

(b) if B is 1, opening of z - Ty mod N and z' - T; mod N (i € {1,2}), such

that s +t; € 1.
4. B checks the correctness of U’s messages.

Protocol: CHECK MOD-MULT
Common input: z, y, z, n and (P, G, g, I = [n,2n]). (|(P-1)/2| > 2|n|+6)
What to prove: U knows (R, R, R”,s,t,a) such that z = BC,(R,s),y=
BC,(R',t), = BC4(R",a),a =st (mod n), and 5,t,a € [0,3n)(= I £ n).

1. U uses the CHECK COMMITMENT protocol with I = [n, 2n] to prove that
U knows how to open z to reveal a value in [0, 3n] (= I £ n).

2. U sends v = BC.(R",t) = BC,(R" + tR,st), and uses the COMPARE
COMMITMENTS protocol with I to prove that U knows how to open y =
BC,(R,t) and v = BC;(R"\1).

3. U sends u = BC,(R",d), where d is defined by st = a + dn, o = st
(mod n), and s,t,a € I.

4. U uses the CHECK COMMITMENT protocol with [n — 1,4n — 1] to prove
that U knows how to open u to reveal a value in [-2n — 1,7Tn — 1] (=
[n —1,4n — 1] & 3n). U uses the CHECK COMMITMENT protocol with I
to prove that U knows how to open z to reveal a value in [ + n.

5. U opens (as a base-g commitment) the product zu™v™! mod P to reveal a 0
(i.e., reveals R* such that BC,(R*,0) = zu"v~! mod P).

5 Efficient Divisible Cash Scheme

This section outlines the various protocols in our divisible electronic cash scheme.

As in [18, 19], the electronic cash in our proposed scheme consists of an
electronic license and electronic coins.

The electronic license is issued by the bank to a customer during an “opening
protocol”. This protocol is done once per customer, typically when a customer
opens an account. If, however, a customer prefers to change the license at some
later time, or desires several licenses, this protocol is run again for each addi-
tional license. As mentioned in [18], the frequency of license changes should be
determined after considering the trade-offs between the degree of unlinkability
and efficiency desired®.

5.1 The Opening Protocol

As a result of the one-time opening protocol, customer U obtains an electronic
license (N, Ly = (N +a1)/X mod ny, Ly = (N +a3)'/¥ mod nj). This basically
grants U permission to use the electronic cash of bank B. Here, (n1, K) and

8 Even if a customer does not change the license at all, the customer’s privacy (no

traceability) is mathematically preserved as shown in Theorem 4. Then, anonymous
purchase histories with the same license are linkable.
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(n2, K) are B’s RSA public keys and (a1,a3) is also B’s public key. They are
common to many (or all) customers. (a;,n;, K) (i = 1,2) are used to check
the validity of U’s license, (N, Ly, L3), in the payment and deposit protocols.
N and (L;, Ly) are kept secret from B in this opening protocol, to keep the
untraceability.

Roughly, in this protocol, U secretly Eenerates N, which is the composite
of two primes P and Q, and gives z = g" modP and y = ¢° mod P to B as
U’s identity, where P and g are B’s public key, which can be common for many
customers. Then, U asks B to sign N in a blind manner (through the RSA blind
signature), after U proves B that N is honestly generated (in the relation with
« and y) in a zero-knowledge manner. So, finally U gets B’s RSA signature,
(L1, Ly), for N, while B has no information on N and (L1, Ls).

The opening protocol is as follows:

1. Bank B chooses the parameters of the bit commitment scheme, P, G and g,
and sends them to Customer U. B also sends RSA public-keys, (n1, K) and
(n2, K), and public key (ai,az), as the public keys of B’s biind signatures.
Here, K is the form of 27 +1 (J: integer). For simplicity of explanation here,
for i = 1,2, we assume that n; = piqg; (p;,¢q:: prime) and (p; — 1)/2 and
(gi —1)/2 are primes. (When n; is a more general form, a slight modification
is required for the value of K such that, for example, K must be prime.) We
also assume |n1| = |ny| and |a;] < |n;]/2. W.l.o.g, we assume n; < n,.

2. Customer U checks whether Prime = (P —1)/2 is a prime, and whether the
orders of G and g are Prime. U also checks whether |(P —1)/2| > 2|n;| +6.
U generates two primes P and Q, and random numbers, r; € Z,; (1 = 1,2).
Here, |P| < K and |Q| < K, and (1/4)ni/2 <P Q< (1/2)ni/2. U calculates
z=gP modP, y=g?mod?P, and s; = (N +a)ri¥ modn; (i =1,2).U
sends (&, y, s1,52) to B with U’s signature, as U’s identity.

3. U and B execute the following protocol: (Informally, U proves to B in a
zero-knowledge manner that (s, 52, z,y) is honestly generated.)

(a) U generates random numbers, Ry, Rq(-?), Rﬁ), ey R,(-:.’), R} € Zprime,
(i=1,2).

U calculates al”, o, ... af”) such that o =r? (modm) (i =
1,%j=1,---,7) (&{” = r;) and o) € [n;, 2] (i = 1,2,5 = 0, - - -, J).
U also calculates of such that of = r%X  (mod n;) (= ;2’+!  (mod n;))
and of € [n;, 2n;).

U also sends B the following values: z = BCy(Rn,Q) = BCy(Rn,N),
(N = PQ), w” = BC,(RY,a{"), ..., u") = BC,(RY, o), up =
BC’!(R:. ’ Q/:)

(b) U uses the CHECK COMMITMENT protocol with interval [(1/4)n,1/2,
(1/2)n1'/?] to prove that U knows how to open z to reveal a value
in [0, (3/4)n,/2). (Although z is a specific type of bit commitment:
¢ = BCy(0, P), the CHECK COMMITMENT protocol can be used
similarly.g

(¢c) U uses the COMPARE COMMITMENTS protocol with [(1/4)n;!/2,
(1/2)n,%/?] to prove that U knows how to open y = BC,(0,Q) and z =
BC(Rn,Q) in [0,(3/4)n,1/?].

(d) The following procedure is repeated for j = 0, - - wd—landi=1,2:
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U uses the MOD-MULT protocol with [n;, 2n;] for (ygj ),ugj ), u? ),
n;, P, G, g) to prove that al*V is committed to by uEJ ), (Duplicated
procedures between j-th step and (j + 1)-th step such as CHECK COM-

MITMENT protocol for u{’) can be omitted.)

(e) U uses the MOD-MULT protocol with [n;, 2n;] for (u§°), uEJ), u;, ni, P,
G, g) to prove that o} is committed to by u;.
U uses the MOD-MULT protocol with [n;,2n;] for (z,u}, BC,(0,s:),
n;, P,G,g) to prove that s; = (N + a;)r:¥ mod n; (i = 1,2), where
zi = 29® mod P = BCy(Rn, N + a;).

4. B gives §; = 8;'/¥ modn; (i=1,2)to U.
5. U obtains L; = (N 4 a;)/X mod n; by 6;/r; mod n; (i = 1,2).

5.2 The Withdrawal Protocol

When the customer wants to withdraw $w from the account, an electronic coin
of worth $w is then obtained by executing the withdrawal protocol with the
bank.

The withdrawal protocol itself is very simple: Bank B just issues a blind
signature to user U. Assume the consumer wishes to withdraw a divisible coin
worth w = 2 dollars from his account at bank B. (That is, assume U sends B U’s
signed message to request the withdrawal. Here, we assume that the key for U ’s
signature is independently generated from the other parameters except the size.)
Also, B has a public key of the RSA signatures, ey, ny), which corresponds to
w = 2 dollars. The following steps occur:

1. U chooses a random value b, then forms and sends Z to B.
Z =r**H(N || b) mod n,,,

where r € Z,,,, is a random integer and H is a one-way hash function.
2. B gives Z'/¢v mod n,, to U and charges U’s account $w.
3. U can then extract the electronic coin C = (H(N || b))'/¢* mod ny,.

5.3 Payment

Assume that customer U spends $y (< w) at shop V through the payment
protocol. The payment protocol consists of two stages: coin authentication and
denomination revelation. During the coin authentication phase, the shop verifies
that the coin bears the bank’s signature. During the second phase, the customer
reveals information about a certain set of nodes in the coin’s binary tree rep-
resentation depending on the denomination being spent. We assume that fr,
fa, fa and h are truly random (or pseudo random) functions’. These stages are
described in more detail as follows:

7 Here we omit the explicit description of the domains and codomains of these func-
tions, since they are naturally determined by the input and output variables.
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Coin Authentication Customer U supplies sﬁop V with (L1, L3), N, (C,b)
and w. The shop checks that L;X = N +a; (mod n;) (i =1,2), Ct» = H(N ||
b) gmod ny), (~1/N) =1, and (2/N) = —1.

If the number, k, of the nodes corresponding to U’s payment to V is less than
10 (k' = 10 — k > 0)8, V gives z),---,29s to U, U calculates (< fr(z1) >qr
)2 mod N}y, -+, [(< fr(za1) >Qr)Y? mod N};, and send them to V. V checks
the validity.

Denomination Revelation Let [y, 1y -- ‘y) (i €{0,1},i=1,...,0+ 1) be
the binary representation of y. Here the length, {+ 1, of the binary string is fixed
by the coin value (w = 2'), and some most significant bits such as Y141 can be 0.
Then, if y45.., =1 (¢ =1,...,141), U selects a node nj,..j. © among the nodes
in the ¢-th level that do not violate the two binary tree rules (see Section 3).
Here, U has memorized the nodes already spent. The average number of nodes
to be spent per a payment is at most (I + 1)/2.

We will show the payment protocol when U spends node n0j,j,..5¢ 1O V.
When several nodes are spent per a payment, the following protocol of each
node must be executed simultaneously.

1. U computes I3, ..;,,
t=1_ =2 .,
I:il"‘jl = [(< (gjl"'j!—l)z J‘(njx"'h-z)z Je-t.. '(9.1'1)2”x

fr(C || 0]l N) >qr)"* mod N]_;,

where 2;,.;, =< fa(Clljoll -l G | N)>1 (i=1,...,t—1).
2. V computes §2;,..;, when jiz; =1 (1 =1,....t - 1). Then V verifies the
validity of Ij,..;, such that

(F.fx"'ic/N) = -1,

(L)% =
-1 1=2. .
d(njl'“jl—l)z‘ 1"'(‘le“'it—z)z Her '('le)zhff'(c “ 0 “ N) (mod N)!
where d € {£1,£2}. If they are valid, V selects a random value ¢’ € {0, 1},
and sends V’s identity IDy, time T, and €' to U, where u = O(m), m =
|P|(= |QI). Otherwise V halts this protocol. V computes e = h(IDy || T ||
e'), where e € {0,1}*.
3. U computes e = h(IDy || T || ¢’). U also computes Aj,..j, such that

(42507 =22 < fa(C Nl ji ||l -1 s )| N) >qr  (mod N).
4. V verifies that
(Aj13) 22 fAC i || - 14t | N) (mod N),

where d' € {x1,+2}. If verification succeeds, V accepts U’s messages as
payment of the amount due.

® The value, 10, is theoretically O(m), where m = |P|(= |Q|). This is required for
checking whether N is the Williams integer with high probability.

® If U selects a node randomly among the valid nodes, U/ can conceal some information
about U’s purchase history to V, since if nodes to be spent are selected by a published
rule, V may get some information about the purchase history from the nodes.
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Remarks

1. Notations Ij,...;, and A;,..j, are differently used from those in [19]). (I, j.
and Aj,..;, in this paper correspond to X j, ..., and Y; j,..j, in [19].)

9. Function h can be a collision intractable hash function in place of a truly
random (or pseudo random) function.

5.4 Deposit

Deposit is as before; a transcript of payment is forwarded to the bank.

5.5 Detection of Overspending

Although, formally, the security including the detection of overspending is de-
scribed in Section 6, in this subsection, we will describe the detection procedure
of overspending.

Cleatly, if U overspends a coin, U must violate one of the two rules of the
binary tree approach (see Section 3).

First, we show that “Route node rule” of the binary tree approach is securely
realized. Assume that nodes ny,; ;, . and 7ny; ;. .., 8F€ used. (Clearly this
assumption violates the the route node rule.) Then U sends [j,...j; and [j,...j, to
shops, and these values are finally sent to B. B can firstly detect that the viola-
tion of the rule occurs, by checking the coin values (C,b) along with (L1, L2, N )
and the consumed nodes, nn,; ;. ;. and fng;, ;. s, in B’s data base. (To ef-
ficiently find the violation practically, B can use a short hashed values (e.g., 32
bytes) of the coin values as a search key in the data base.)

Then,

-1 : i
[jpge = (< (Rygic)? 3 (23,92 f0(C 1| 0| N) >qr)/* mod N]-s,
On the other hand, from [j,..j,, B computes

(Fjr--ig)z‘_i = ((.le.._j'_l)zt-"l.it - (le'__j'_)'-"’j.-.,,l)x

(< (@45, )" 3+ (2,5 £0(C | 0 || N) >qr)Y/* mod N}y, (mod N),

since ([,..,)  mod N is the quadratic residue and (£2;,..;,/N) = 1. There-
fore, B can compute

(< (@, gi)? (25,92 Fr(C || 0| N) >qr)* mod N1

Using this value and [j,...j;, B can efficiently and deterministically factor N and
obtains P and Q, from which B can trace U’s identity, z and y. Here, (P,Q)is
the witness of U’s violating one of these rules.

Next, we show that “Same node rule” of the binary tree approach is also
securely realized. Assume that a node np,; ;, ;, is used twice at different time
or place. Then U’s challenge messages (say, e; and e3) of the double spending
should be different with overwhelming probability from the property of a random
function, h). Then, clearly from Lemma 2, B can efficiently factor N and obtains
P and Q, from which B can trace U’s identity, = and y.
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6 Security

In this section, we show that the proposed cash scheme satisfies the four security
requirements under some assumptions.

First, we introduce the security requirements for our cash system. They are
a modification of those of [13].

Definition3. Let m be |P| = |Q|. The proposed cash system is secure if the
following conditions are satisfied:

— No forging: For all integers k > 0, for any poly-time nonuniform algorithm
Adv (e.g., dishonest customer), after Adv’s k times execution as a customer of
the (resp., opening, withdrawal) protocol with bank B, the probability that
Adv computes k + 1 (resp., licenses, coins) that pass the coin authentication
by a shop is negligible in m.

— No tracing: For any poly-time nonuniform algorithm Adv (e.g., dishonest
bank), after Adv’s execution as a bank and shops of the opening, withdrawal
and payment protocols with customers Uo and U;, and given a payment
transcript by customer U, (r € {0, 1}), the probability that Adv outputs
correctly is less than 1/2 4+ 1/m® for all constant ¢ and for all sufficiently
large m.

— No overspending: Suppose that customer U/ withdraws a coin, C, worth
w dollars through the valid opening and withdrawal protocols with bank B.
For any possible value of w, if customer U/ spends more than w dollars by C
through payment protocol with shops, then there exists a probabilistic poly-
time algorithm, DETECT (e.g., bank), which, given all payment transcripts
regarding C, can compute P such that z = gF mod P with overwhelming
probability in m, where z is U’s identity authorized in the opening protocol.

— No swindling: For any possible value of w, for any poly-time nonuniform
algorithm Adv (e.g., dishonest shop), given all transcripts of opening and
withdrawal protocols and after Adv’s executions as a shop of the payment
protocol with customers, in which the total payment value is w dollars, the
probability that Adv can deposit more than w dollars at Bank B is negligible
in m.

Remark: In No overspending condition, DETECT can not only trace U’s iden-
tity  from the overspending payment transcripts, but also gives the evidence,
P, that U cannot deny U’s overspending, since any poly-time algorithm is hard
to calculate P unless U overspends.

Next, the following assumptions are required to prove the security of the
proposed cash scheme.

Assumptions:

— (RSA signatures)

¢ RSA signatures used with one-way hash functions are existentially un-
forgeable against adaptive chosen message attacks!?®,

® Let (n1, K) and (ny, K) be two RSA public keys such that n; and nj
are independently selected, and [n1] = |ny|. Let ay,ay € {0, 1}I711/2 pe
independently selected and published. Let L¥ =N+a; (mod ny) and
LE¥ =N+a; (mod n3). Then, the signature (L1, L) for message N is
existentially unforgeable against adaptive chosen message attacks.

19 For the definition of "existentially unforgeable” etc., see [15]).

Copyright (c) 1998, Springer-Verlag



449

o There is no efficient algorithm, given an RSA public key, (n, K), to out-
put P and Z with P < n'/2, P=Z¥ (mod n), and K > |P| > L.

— (Factoring and Diffie-Hellman) Let P, Py, Qo, P; and Q; be primes,
No = PoQo, Ny = PiQ1, and m = |Po| = |Qo| = |P1} = |@i] < |P| <
dm for a constant d. Let (P — 1)/2 be a prime, and the order of g in the
multiplicative group Zj3 is (P — 1)/2. Then, for any probabilistic poly-time
(non-uniform) machine M, given P, g, (zo = gF° mod P, yo = g9° mod P),
(1 = ¢©* mod P,y = ¢9* mod P), and (N;,N;_,) (r €r {0,1}), M can
compute r with probability less than 1/2 + 1/m° for all constant ¢ and for
all sufficiently large m.

- (Random functions) Commonly available functions, fr, fa, fo and h are
truly random or pseudo-random?!.

Remarks

1. The first and second assumptions seem to be reasonable in practice, but
the third assumption may be controversial, since a truly random function can-
not be realized in the real world (as more than an exponential size of mem-
ory is required), and a commonly available pseudo-random function requires a
tamper-free device. However, by using this assumption, the theoretical security
requirements for our scheme can be clarified. We believe that a truly random or
pseudo-random function f can be replaced by a practical one-way hash function
family without sacrificing the security of our scheme, in practice.

2. The first assumption implies that factoring an RSA modulus n is hard, since
if it is solved, the first assumption does not hold. The second assumption implies
that both factoring N; and the discrete logarithm g© mod P are hard, since if
at least one of them is solved, the second assumption does not hold.

Theorem4. The proposed cash scheme is secure under the above-mentioned
assumptions.

7 Efficiency

For this section, let us assume that |P| = |Q| = 256 bits, |N| = 512 bits,
ns| = 514 bits (i = 1,2), ( (1/4)n/? < P,Q < (1/2)n1'?), |Prime| > 1030 bits,
[b| = 64 bits, and |ny| = 512 bits. Then, K = 2 + 1 (i.e., J = 8). We also
assume the binary tree has 18 levels, i.e., N = 217, where A’ = (the total coin
value)/(minimum divisible unit value). For example, the total value is about
$ 1000, and the minimum divisible unit is 1 cent. Here, we also assume that
efficient random hash functions are used, which are usually much faster than
modular exponentiations.

Then, customer U uses 576 bits (72 bytes) of data for the electronic coin
(C, b) worth $1000 and U’s proper data (electronic license, L1, Lg, P, Q) is 1536
bits (192 bytes). Thus the total amount of data (264 bytes) is small enough to
be stored on typical smart cards.

In the withdrawal protocol, customer U and bank B send 512 bit (64 bytes)

messages respectively, and U and B just compute one exponentiation modn,,
respectively.

1 For the definitions of truly random and pseudo-random functions, see [14].
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In the payment protocol (denomination revelation), 9 nodes are used on
average for each payment when the tree has 18 levels 12. For each node, two
912 bit values (I},..;, and 4;,..;,) are transfered to the shop. Hence, a total of
1152 bytes is transfered to a shop in a payment on average. The computation
required from a customer U for a payment is, in total, 18 (2 x 9) times the
computation of the 2-th (or 2“*+1-th) root mod N, using the factors of N. Each
root computation modN is almost comparable to exponentiation modN. The
computation required from the shop is almost the same, 18 exponentiations
modN.

The most time consuming part of our cash system is the opening protocol,
although the protocol is still Practical, as the amount of computation and com-
munication is O((log |P|)|P}%). But, this protocol can be executed much less
frequently than the other procedures such as withdrawal and payment protocols
(see Subsection 5.1). When J = 8 and k = 20, around 4000 multi-exponentiations
modP are required (from U and B respectively ) for the opening protocol. (A
multi-exponentiation can be computed almost as efficiently as a exponentiation
by the extended binary method [17].) The amount is fairly heavy, but all of U’s
computation can be pre-computed, and the opening protocol can be executed by
U’s terminal (Workstation or PC) instead of a smart card. (After the opening
protocol, U can store the data (just 192 bytes) in a smart card.)

8 Conclusion

This paper has presented a practical “divisible” off.line electronic cash scheme
that is more efficient than previous schemes. Our scheme is the first practical
divisible cash scheme that is single-term and in which every procedure can be
executed in the logarithmic order of the precision of divisibility.

In addition, we proved the security of the proposed cash scheme under
some cryptographic assumptions. Qur scheme is the first practical divisible coin
scheme whose cryptographic security assumptions are theoretically clarified.

The remaining problems are:

— Improve the efficiency of the opening protocol.

~ Realize the unlinkability among coins divided from the same coin.

— Prove the security under more primitive assumptions such as the hardness
of factoring and discrete logarithm.

— Find requirements which are formally shown to be sufficient for the security

of electronic cash schemes. (The four requirements shown in this paper are
still ad hoc.)
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