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ABSTRACT

The cryptographic security of the Merkle-Hellman sys-
tem (which is one of the two public-key cryptosystems
proposed so far) has been a major open problem since 1976.
In this paper we show that when the elements of the public
key ayr.-.,a, are modular multiples of a superincreasing
sequence (as proposed by Merkle and Hellman), almost all
the equations of the form

n

iElxiai = b X, € {0,1}
can be solved in polynomia time, and thus the cleartexts

Xpee Xy that correspond to given ciphertexts b can be

easily found.
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OUTLINE OF THE ALGORITHM
The algorithm proposed in this paper analyses the

given numbers a peees@, and attempts to find a trapdoor

;
pair of natural numcers W and M such that Wa . (mod M)
is a superincreasing sequence and its sum is smaller than

M. Knowledge of any pair of numbers with these properties

makes it possible to solve arbitrary equations of the form
X:;a, = b X € 10,1}

in polynomial time {see Merkle and Hellman [1978]). Since
the a, were obtained from a superincreasing sequence

by modular multiplication, we know that at least one such
pair exists. Our algorithm finds some trapdoor pair, but
it is not guaranteed to find the original pair used in

the construction of the ai's.

In the Merkle-Hellman construction, the elements of
the original superincreasing seguence have known sizes
(but unknown values!). For the sake of simplicity, we as-
sume that the i-th number has n + i - 1 bits, so that
the smallest element is smaller than 2n, the largest

element is smaller than 22n-l, and the modulus is between

22n—1 and 22n (in their original paper, Merkle and
Hellman recommend this scheme with n = 100). After the

modular multiplications, all the numbers become approxi-

mately 2n-bit long. They can be published in a permuted
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order (so that ay does not necessarily correspond to the
smallest element in the superincreasing seguence), but
our algorithm remains polynomial in n even when such an
unknown permutation is used.

The algorithm is divided into two parts. In the
first part, Lenstra's integer programming algorithm is
used to find a rational number 0 < a < 1 such that a

necessary condition for W and M to be a trapdoor pair

is that % € [a,a+e] for a certain small e. In the
second part, we use the fact that the ratio % is approx-
imately known to find at most n2 subintervals (Qi,ri)
in [a,a+e] such that g e{(;i,ri) for some 1 1is also
a sufficient condition for W, M to be a trapdoor pair.

If we assume that some pair exists, at least one of the
subintervals must be non-empty. By using a fast dio-
phantine approximation algorithm, we can find the smallest
W and M whose ratio is in such a subinterval.

Let W,,M, be the (unknown) trapdoor pair of 2n-bit
numbers used in the construction of the a, sequence. The
first step of the algorithm is to generalize the defini-
tion of a trapdoor pair to arbitrary real positive W and
M. When M = MO, the graph of the function Wai (mod MO)

for real multipliers 0 < W < M has a sawtooth form:

0
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The slope of the functicn (except at discontinuity points)
is a. ., the number of minima is asy and the distance
between successive minima is Mo/ai (which is slightly
more than 1).

If a; corresponds to the smallest element in the
superincreasing sequence, then the multiplier W has
the property that Wai (mod MO) is at most 2n, and

thus the distance between W and the closest minimum to

its left cannot exceed 2n/ai ~ 270

The unknown W
must thus be very close to some minimum of the sawtooth
curve. Unfortunately, even if we impose the integrality
constraint on W (which we do not), there are too many
possible values for W and we cannot check them one by
one.

If aj corresponds to the second smallest element
in the superincreasing sequence, then a similar analysis

. \ ) +1
shows that W must also be within a distance of 2n /a
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from a minimum of the aj—sawtooth, and thus the two min-
ima of a. and aj must be very close to each other.
This greatly reduces the number of places in which W
may be, but it still does not characterize it uniquely.

We can proceed in a similar way and superimpose more
sawtooth curves on the same diagram. The fact that W
is close to a minimum on each curve implies that all these
minima are close to each other, and thus we can replace
the problem of finding W by the equivalent problem of
finding the accumulation points of minima of the various
curves.

In the full paper we show that when four sawtooth
curves are superimposed, the probability that four minima
will be so close to each other is so small that it is
extremely unlikely to happen in more than a few places

in the region 0 < W < M (it must happen somewhere

0
since by the construction of the ai's such a WO exists).
The number 4 is independent of n, and depends only on
the ratio between the sizes of MO and the smallest
element of the superincreasing sequence (which was as-
sumed to be 2).

Two problems remain: How to get rid of M, (whose
value is actually unknown) and how to find the accumula-
tion point of the minima of the four sawtooth curves.

The key observation is that the location of the ac-

cumulation point in the diagram depends on the slopes of
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the curves, but not on their sizes. If we divide both
coordinates by MO, we get the sawtooth curve of the
function Va:.L (mod 1), 2 - vV < 1, which is independent
of MO:

In the new coordinate system the slope of the curve remains
a.s the number of minima remains ass but the distance
between successive minima is reduced to l/ai. The orig-
inal W parameter is replaced by a new V = W/M0 para-
meter, and the allowable distance between this parameter
and the closest curve minimum is reduced by a factor of
approximately 2%% (from 277 o 2730y

The problem of locating the accumulation point of
minima in the new coordinate system can be described by
linear inequalities with four integral unknowns. With-
out loss of generality, we assume that a, a, ay a, cor-
respond to the four smallest elements in the superincreas-

ing sequence (there are 0(n4) ways to guess them). We

further assume that among the four minima at the accumula-
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tion point, the a,-minimum is the rightmost (i.e., clos-

1
est to WO/MO). Then the ccni’-ions that the 1i-th min-
imum of ajs j=th minimum cf 2y k-th minimum of ayy
and f-th minimum of a, are sufficiently close to each
other are:
i,3,k,2 1integers 1 <1i< a; - 1
0 <2 -1 <o 1<jz<a,-1
1 2
0 <X koI 1 <k<ay-1
1 3
~ 1 g ~=3n+3 - .
u;g*'é"_a 4__.@_<_a4—l
1 4

By muitiplying the inequalities by their denominators, we
get an equivalent system in which all the coefficients

of 1i,j,k and & are integers with no more than 5n bits.
Since Lenstra's integer programming algorithm is polynomial
in the size of the coefficients for a fixed number of un-
knowns, we can find the (almost certainly unique) accumu-
lation point oi the Iour minima in polynomial time.

Once the value of i is known, it is easy to find
the interval [a,oa+c] of V values for which the values
of all the n sawtooth curves are properly bounded. An
important property of this interval is that it cannot con-
tain discontinuity points since all the sawtooth values
in it must be smaller than 1.

A typical enlarged section of the superimposed
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diagram in the vicinity of WO/M0 is:

dva; (mod 1)

Any pair of numbers W,M such that % € [o,a+e]
gives properly bounded values under modular multiplica-
tion, but these values need not be a superincreasing
sequence and thus they do not necessarily lead to an easily
solvable knapsack. The second part of the algorithm
extracts from the [a,a+e] interval those subintervals
(Qi,ri) for which the transformed sequence is guaranteed
to be superincreasing.

Since the [a,a+e] interval does not contain discon-
tinuity points, the n sawtooth curves look like n
linear segments in it. These n segments can intersect
each other in at most O(nz) points. By finding and
sorting these points, we can subdivide [o,a+e] into

O(n2) subintervals with a well defined vertical order
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between the curves in each subinterval. When this order
is known, we can express the conditions for a superincreas-

ing sequence by the linear inegualities

Va . - C . \ > 4 (Va . - C .
m(1) T(1i) ey g T(3) m(3)
/ (3) <7 (1) \
n
y (Va. = c.) < 1
i=1  *t *

in which the 7 is the permutation of the indices speci-
fied by the vertical ordering in the subinterval and the
c; is the number of ai—minima between 0 and the ac-
cumulation point. The solution of each set of inequali-
ties is a (possibly empty) subinterval (Qi,ri) in which
all the superincreasing and size conditions are satisfied.
At least one of these subintervals must be non-empty, and
the smallest natural numbers W and M such that W/M
belongs to such an interval can be found in polynomial

time (note that W and M cannot exceed WO and M.,

0
which are 2n-bit long). Once these numbers are found,
the cryptanalysis of arbitrary ciphertexts in the al,...,an

system becomes trivial.

CONCLUSIONS AND OPEN PROBLEMS

We have demonstrated that Merkle-Hellman cryptosys-
tems in which the public keys are obtained from superin-
creasing sequences by a single modular multiplication

are totally insecure. It remains an open problem whether
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keys obtained by two or more modular multiplications are
cryptographically secure. In addition, the exact complex-
ity of our algorithm needs further analysis since it can
be cptimized in 2 number of ways (e.g., 3 superimposed
sawtooth curves are sometimes enough, and then the Lenstra
algorithm can be replaced by a much simpler algorithm

based on continued fractions).
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