
Duplex: A Distributed Collaborative Editing Environment in
Large Scale”

..,
Fhm~ois Pacull, Alain Sandoz, and Antdr4 Schiper

Dr5partement d’Informatique

Ecole Polyteclmique F+d6rale de Lausanne

CH-1015 La.usanne (Switzerland)

E-mail: {pacull, sandoz, sclliper}~illse. epfl.cll

ABSTRACT
DUPLEX is a distributed collaborative editor for users con-

nected through a large-scale environment such as the Intemet.

Large-scale implies heterogeneity, unpredictable communi-

cation delays and failures, and inefficient implementations

of techniques traditionally used for collaborative editing in

local area networks, To cope with these unfavorable con-

ditions, DUPLEX proposes a model based on splitting the

document into independent parts, maintained individually

and replicated by a kernel, Users act on document parts and

interact with co-authors using a local environment providing

a safe store and recovery mechanisms against failures or

divergence with co-authors, Communication is reduced to

a minimum, allowing disconnected operation. Atomicity,

concurrency, and replica control are confined to a manageable

small context.

KEYWORDS: Collaborative editing, distributed groupware,

large scale networks, concurrency control

INTRODUCTION

The past ten years have seen the number of interconnected

computers and networks increase in a considerable manner.

As a consequence, there is a growing interest in the design of

distributed groupware, that is, distributed computer applica-

tions which support cooperative work. Among these applica-

tions, collaborative editing is of great interest. Collaborative

editing is concerned with many issues in groupware design

since it addresses a fundamental necessity encountered by

groups of workers: the need to formulate and communicate

information inside or outside their community.

This paper presents the DUPLEX environment for collabo-

‘Researchsupported by the Swiss FNS and OFES under contract number

21-32210.91, as part of European ESPRIT Basic Rmearch Project Number
6360 (BROADCAST).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CSCW 94- 10/94 Chapel Hill, NC, USA
(@ 1994 ACM 0-89791 -689-119410010..$3.50

rative editing, a groupware application designed to fulfill

this need in a large-scale distributed environment. DUPLEX

furnishes a collaborative editing tool for groups of users

distributed in distant locations, such as the co-authors of

a scientific paper resident at different universities or the

partners of a multinational research project.

Collaborative editing involves both writing activities and

communication between co-authors, A collaborative editing

environment is composed of three separate facilities[18]:

b

●

●

a collaborative editor enables users to share and to

maintain the state of a document written by several

co-authors.

a direct communication facili~ helps co-authors ex-

change information about the collaboration. Recipients

of a message are selected by the sender.

a subject-based communication facility enables users to

distribute data on specific subjects, such as modifications

made in part of a document. Recipients are other users

possibly concerned about the subject.

These facilities furnish the means of interaction between

co-authors, Each facility can be designed to provide either

synchronous or asynchronous interaction [22]. With syn-

chronous interaction, modifications to the document context

(the body of all data such as text, figures, messages, direc-

tives, etc., produced using any of the three facilities) can be

observed in real-time by all members of the collaboration.

Several systems (GROVE [6], DistEdit [12], Mule [21])

propose a synchronous collaborative editor.

In contrast, the DUPLEX environment incorporates a collab-

orative editor witi asynchronous interaction between users

through a shared kernel which maintains the document con-

text. Synchronous interaction, if required, is achieved using

the two other basic facilities, For example, the initial doc-

ument outlining phase and the final polishing phase require

intensive direct communication rather than real-time edhing.1

The results of these phases are merged into the document in a

second step using the collaborative editor. By restricting the

1Such ~omufic~on in DUPLEX does not require mY kid of strong

consistency.

165

collaborative editor to asynchronous interaction, a powerful

environment can be designed for workers not affected by

the inherent inefficiency of communication and distributed

computations in large scale.

In asynchronous editors, sharing has been realized either

through a central store (Quilt [7], MultimETH [16], Prep

[19], Mule [21]), or through local replication of the data that

users are involved with (IRIS [2], CES [8]). DUPLEX proposes

a hybrid approach. Sharing is based (1) on a replicated ker-

nel which maintains shared information independently from

users’ locations and actions, and (2) on a set of policies for

replica management and local caching designed to optimize

concurrency control and response time.

Control of concurrent access to shared data is of course an im-

portant issue in collaborative editing. Three approaches have

been proposed in the literature: (1) system-enforced control

based on an appropriate document model which defines the

unit of concurrency [2, 8, 16]; (2) system-enforced control

based on the attribution of responsibility for document parts

to users (roles [14]); and (3) reliance on self-discipline and

trust in users’ perceptions of potentially conflicting behavior

[6]. The DUPLEX approach integrates all three in a flexible

manner. The document is decomposed into independently

editable parts as in IRIS [2], CES [8], and MultimETH

[16]. Decomposition is dynamic and based on document

structure; it reflects both document state and each author’s

current responsibility and involvement on different parts. The

dynamic aspect enables adaptive concurrency control using

a set of consistency policies tailored to collaborative editing.

Authors are allowed to choose the type of control (exclusive,

pessimistic, optimistic, etc.) that they wish on the document

parts they are concerned with.

This paper is structured as follows. We first present the basic

DUPLEX model and the document decomposition, Then we

present the structure and implementation of the kernel and,

finally, the user’s environment. A discussion concludes the

paper.

DUPLEX MODEL

This section is an overview of the distributed collaborative

editing environment. It presenta the underlying dktributed

system, the basic DUPLEX model, as well as the implications

of the basic model on fault-tolerance, concurrency control,

and integration in a large-scale environment.

Distributed System Model

The distributed system is composed of a set of nodes in a

wide area network. The set of nodes evolves dynamically

as users join or leave the collaboration, and as parts of a

document are added or removed. We consider only the

nodes involved with the editing of one document. Nodes

for different documents can be disjoint or overlapping, but

they are managed as independent distributed systems. A node

is the workstation of an author, a data repository for parts of

the document, or both. The failure semantics of nodes is

crash-failure [4], that is, all activities of a node, including

communication, stop upon failure.

Communication between nodes is point-to-point, asynchronous

(with no bounded transmission delays) and unreliable. In par-

ticular, links can fail and the network can be partitioned into

several mutually unreachable sub-networks. More precisely,

the nodes are connected through the Internet, which provides

the widest possible large-scale integration in the current state

of technology. This implies that two nodes might be unable to

communicate, though both can communicate with a common

destination.

Large-scale means that nodes might be scattered over large

distances, and in this case, can be connected using several

overlapping physical networks [3]. This implies high com-

munication latency and prevents the efficient implementation

of distributed algorithms between even small subsets of ac-

tively cooperating nodes. In the context of cooperative work,

interactions between users working in different time zones

suggest an asynchronous mode of operation.

Three major problems have an influence on the high avail-

ability and functionality of the system: (1) managing node

and communication failures, (2) controlling concurrency of

operations on shared objects, and (3) integrating the system

into a large-scale environment.

Duplex Basic Model
The DUPLEX model incorporates three basic concepts.

The first concept is document decomposition, which specifies

a set of rules to partition a document into independent parts.

This reduces the granularity of concurrency between users

and the effects of system failures which could lead to unavail-

ability of a document state. A document is partitioned into

disjoint pieces according to authors’ responsibilities (self-

attributed or agreed upon) in the collaborative editing, which

reduces the probability that several authors work on the same

data concurrently. Decomposition is dynamic and recursive;

it conforms to document structure and enables users to split,

merge, and destroy document parts in a globally consistent

manner (see the Document Decomposition section).

The second basic concept is the existence of a kernel, shared

by all members of the collaboration, which provides persis-

tence and availability of the most recent document state. The

kernel is composed of objects (at any time one object for

each existing independent document part), Kernel objects

are replicated to ensure availability and quick access (see the

Kernel section). Several operations are defined on a kernel

object ~i (e.g., read Oi, update o,, or break 07 into smaller

parts).

166

The third concept is the local user environment, which pro-

vides a personal safe store and autonomous workspace for

each author. Operations on kernel objects are invoked from

within users’ local environments, which are temporarily con-

nected to the kernel object upon invocation. The operations

themselves consist only of state transfer between the kernel

object and the user environment, or the other way around.

Once the operation is completed, the user environment is

disconnected horn the kernel object.

A user environment contains a set of copies of kernel objects,

which compose the user’s local viw of the document, These

copies are local and not maintained as kernel object replicas.

The user works locally on this view, disconnected from the

kernel, until either (1) a copy of an object is required to

continue work, and the user copies the object from the kernel,

or(2) the user decides that an object of the local view should

be shared and updates the corresponding kernel object. Users

work independently in their local environment and interact

through the kernel,

This is illustrated in Figures 1 and 2. User U1 has a view

of the document composed of a copy of objects 01, 02, 04.

Hk view is incomplete because there is no copy of 03, IJser

Uz, who wishes to work on 01, reads the object into her local

view (see Figure 1),

ou~

A01

A02

A

04

L?cdwemhnmml B
u~

A%
Read0]

lad we envi—

Figure 1: Kernel and user environments.

In Figure 2, User U2 has modified 01 and broken it up locally

into two local objects, 01 and O1.1. User LT2updates 01 in

the kernel, making the two objects shared. User UI’s view of

01 becomes obsolete.

As a consequence of the DUPLEX model, a user’s view of

the document can differ in several ways from the shared

replicas maintained by the kernel. First, a local view can

be incomplete in terms of the objects contained (like i?l ‘s),

Second, a user can modify copies of objects or the document

partition within the local view (like U2 after copying 01

and before writing it back). Finally, a user (e.g., C~2)can

Figure 2: Updating the kernel from a user environment.

modify the kernel state, making local views of other users

(e.g., U1) obsolete. Allowing the kernel state to diverge

from local views is adapted to the asynchronous working

interactions between users in a large-scale environment where

mutual consistency is impossible to achieve. A kernel object

can be modified, unknown to a user who had been working

previously on that part of the document. This user’s previous

views (stored and maintained locally) will enable him orherto

conduct adaptive recovery from within his or her environment

in collaboration with the author of the modifications, The

user’s view is saved locally on disk either explicitly at the
user’s request or periodically, and also when the user ends his

or her session.

Managing the differences between local views and the kernel

is realized using tools both at the kernel level (e.g., concur-

rency control, bulletin boards, journal records) and in the local

environment (e.g., storing of views, visualization). These

aspects are described in the related sections below.

Implications of the Basic Model
The concepts introduced so far respond to the three major

problems described at the end of the Distributed System

Model section.

Fau/t-to/erance. Thanks to the two kernel and user levels,

failures in the distributed system can be neatly classified and

their impact on the collaborative editor application confined.

Kernel objects are maintained independently from user en-

vironments and replicated to increase t%.dt-tolerance, There

are thus two types of nodes: kernel nodes, which maintain a

replica of at least one kernel object and user nodes, which

maintain the local environment of at least one author. A

node can be both kernel and user, but the two functions are

independent.

● Failure of a kernel node. The failure of a kernel node N

affects the availability of the kernel objects that have a

167

replica located on node N. The kernel nodes of an object

are maintained as a group [1, 15], and replication policies

are implemented using group concepts. In particular,

enforcing the atomicity of kernel operations and the

replica set partition problem are treated within the group

context [25, 26].

● Communication failure between kernel and user node.

Two types of failures can OCCUE failure during con-

nected operation and partition of a user node from some

kernel objects currently disconnected from the user.

The former is treated by enforcing atomicity of kernel

operations. The second type of failure implies that, at

some later time, a user might be unable to connect to

some partitioned kernel objects. This prevents neither

working on recently stored copies of those objects, nor

accessing other reachable kernel objects,

● Failure of a user node. This occurs, for example,

when an author’s node crashes, a local area network

breaks down, or a file server is unavailable. If the

crash occurs during connected operation with the ker-

nel, fault-tolerance implies enforcing atomicity of the

operation. Otherwise, the effeets are confined to the

user’s workspace. In particular, the crash of one user

environment does not affect the work of other members

of the collaboration.

Concurrency control. The data consistency problem arises

when several users make a request on the same kernel object

concurrently. This situation is inherent to all distributed

applications using shared data and raises a large number of

issues [27], especially in the replicated context [23]. Solving

the consistency problem requires (1) defining a consistency

criterion for the concurrent application, (2) adapting the

criterion to the replicated context (i e., defining one-copy

equivalent behavior), and finally, (3) implementing concur-

rency control and replica management policies accordingly,

Depending on the application and the underlying system’s

failure characteristics, different types of policies can be con-

sidered (pessimistic vs. optimistic, or syntactic vs. adapted

to application semantics [5, 13]),

In DUPLEX, the consistency problem is addressed by intro-

ducing document decomposition to reduce the occurrence

of conflicting operations. A consistency criterion is detined

to order operations on all kernel objects into a meaningful

sequence. Finally, different concurrency control policies

tailored to cooperative editing are proposed to users, enabling

thereto use the type of control (e.g., pessimistic or optimistic)

most appropriate to the situation at hand.

Large-scale integration. Large-scale integration poses two

problems: (1) long communication delays for connected

operation between distant nodes, and (2) the difficulty of

embedding the small document context into a large distributed

system.

The first problem is curtailed by maintaining a rich working

environment locally for each author, allowing each to work

mostly in disconnected mode, reducing the need for commu-

nication and the duration of connected operations, Moreover,

installing kernel objects on well-chosen sets of nodes can

speed up both communication and remote operations.

The second problem is more delicate. A name server is

necessary to manage the set of kernel objects distributed over

the large heterogeneous network. This set is small (typically

a few dozen elements) and composed of objects with names

that are contextual to the document. Replicas are, however,

maintained in heterogeneous file systems with no global

naming scheme consistent with the name space of the col-

laboration, This requires a dedicated name service designed

to solve this problem in large-scale distributed applications

[17]. Combined with judicious document decomposition and

kernel naming rules, the name service (see the Kernel section)

allows integration of the kernel in a large-scale heterogeneous

network environment.

DOCUMENT DECOMPOSITION

Document decomposition reduces the number of conflicts

between operations on kernel objects and hence the amount of

control (expensive in a large-scale system) needed to manage

consistency. Informally, if the document is maintained as

one object, then every pair of operations potentially conflict.

For N operations, one has N(N – 1)/2 conflicts to manage,

Whereas, if the document is split in, say k parts (k << N),

roughly equal in the sense that the probability of access to

any one part by an operation is uniformly distributed among

parts, then the number of conflicts drops to N(N – k)/2k.

Document decomposition in DUPLEX establishes rules for

splitting the document in order to realize these favorable

conditions,

Authors themselves are probably the most knowledgeable

about where conflicts might arise and whether they should~r,

on the contrary, cannot–be avoided, So decomposition is

designed both to enable consistent control of referencing,

access, and concurrency of the kernel and to allow user-

driven, dynamic document partitioning.

The consistency problem arises from concurrent activities

in the system (just as in a database maintained as a set of

independent items), and not fi-om distribution. (The influence

of distribution pertains to the implementation of atomicity,)

So one can consider the problem of document splitting in the

context of a document being maintained at one centralized

abstract location. In this respect, one can reason about the

document at a given instant as if there existed a unique draft

version which authors could handle as a whole (definitions

of the consistency criterion in the Kernel section will clarify

this notion),

Decomposition is based on the nested hierarchical structure

168

of the document draft (e.g., a book is composed of chapters,

which are composed of sections, sub-sections, paragraphs,

figures, etc.). Consider a draft of the document fkom the

hierarchical point of view: the draft is a Level-O segment

composed of several Level-1 segments (e.g., Int reduction,

DuplexModel, DocumentDecomposition, etc.), The draft

can thus be modeled as a well-formed bracketed expression:2

{o{llntroduction} {l DuplexModel}

{I DocumentDecomposition} ...
{l Discussion}}

which partitions the complete document into disjoint seg-

ments of Level-1, In turn, each Level-1 segment is itself

a well-formed sequence of LeveL2 segments, and so on

recursively. Finally, segments of the document without any

structure (e.g., a sentence or an unnumbered paragraph) are

called elementary segments.

In DUPLEX, any Level-k segment (k ~ O) can be defined

as an independent document segment and therefore can be

maintained as a kernel object, Elementary segments can be

independent but cannot be further decomposed.

An example of decomposition of the present paper is pre-

sented in Figure 3. Each box represents a segment. Inde-

pendent sub-segments of level-k are represented in the corre-

sponding columns, Dependent sub-segments are represented

as boxes nested in their parent segment.

%cumm +————-———————

11. Immdutim

— 2. W@ex Model

o,(2.2 Du#ex Sssic

M3. Dccumrmt C.stomp,

4, Kwnel.

4.1 Consisiemy

I

I
5.1 ,a Lccal Oiscon.,,

I
+

o 5.1 b /Won on ,,,

5.1.clhsctCOmm,..

52 Us6f Inted.

level+ level-l level-2 level-3

Figure 3: Example of decomposition.

Consider at a given instant a partition of the document

II = {S?} along these types of structural boundaries. A
complete description of independent segment S7 of level k

2~e ~ning ~ac~t indexrqr~enk thesegmentlevelin thedo~ment

biemrcby

is furnished by (1) a complete description of sub-segments

of Si which are not independent, (2) the relative position

in S7 of dependent and independent sub-segments, and (3)

references to the independent sub-segments, The latter can

be of level > k+ 1, as shown in Figure 3 (e.g., for independent

sub-segment 2,1. Dist ributedSystem at Level-2 relative to

sub-segment 2. DuplexModel at Level-l),

Independent segment Si is maintained as a kernel object.

Any two operations on Si represent potential concurrency

and are thus subject to concurrency control enforced by

this kernel object. Operations on Si, do not conflict with

operations on independent sub-segments of Si or on any other

independent document segment, and operations are executed

without concurrency control. Extracting an independent

sub-segment from Si,, merging an independent sub-segment

into S; (thus making it dependent), and adding a dependent

sub-segment anywhere in Si are atomic operations which

affect only S’i together with the considered sub-segment (and

not any of its independent sub-segments).

KERNEL

With time, independent segments are extracted from the

document, and, consequently, kernel objects are created in the

network. The fhnction of the kernel is (1) to maintain global

consistency of the decomposed document and (2) to ensure

continued access to the document context, The first function

requires the definition of a consistency criterion adapted to

collaborative editing. The second requires replication of

kernel objects. Both fbnctions together require adapting

the consistency criterion to the replicated context as well as

implementing kernel operations accordingly and efficiently

in the large-scale system.

Consistency

The basic idea beneath the consistency criterion is the notion

of draft versions suggested in the preceding section. Suppose

co-authors worked on a unique paper draft of the document

passed along horn one to another as requests to read, update,

or annotate the document arose. This mutually exclusive

protocol would enable the document (considered as an object

accessible concurrently) always to remain consistent, as all

updates and annotations would be at hand when an author

possessed the draft?’.

The ensuing consistency criterion, which relies on the ex-

istence of an ordering of all updates to document context

and of all reads, into a sequence consistent with causal

order [24] in the systeq is the one adopted in DUPLEX.

If the document state is distributed among a set of concurrent

objects, this sequence is called a linearization [10] of the

system. Linearizability is a criterion especially well-suited

gni~ is “Ot~0~aYhat tie c~ntenfiof thedocumentwouldbe~n.$isten~

sincethis is the responsibilityof eachauthor aspart of a muturdcontract
and is independentof the editing environmentandits concurrencycontrol
mechanisms!

169

to large systems because it is a local criterion, meaning that

if each object is linearizable individually, then the whole

system is Iinearizable. Thus concurrency control need only be

implemented on each object independently to ensure global

consistency of the document.

In [20] the Iineanzability criterion has been adapted to the

replicated context. In the case of simple objects, like seg-

ments of text, adapting Iinearizability to replication for fault-

tolerance is relatively simple and preserves the locality prop-

erty, thus enabling efficient implementations of concurrency

control.

Concurrency Control

Locality of the consistency criterion has a second useful

property: the mechanisms used to enforce linearizability of

different kernel objects can be selected on a per-object basis

and, moreover, changed at any time.

Using this feature, DUPLEX offers for each kernel object a

set of concurrency control policies (e.g., pessimistic, based

on capabilities, or optimistic, based on a straightforward

implementation of linearizable replicated registers), from

which users can chose according to the degree of concur-

rency they are ready to allow on a document segment they

are currently involved with. Exclusive access offers the

best guarantee that the latest updated view of an object is

actually the one maintained by the kernel. However, the

less expensive optimistic policies are more advantageous if

decomposition has been used properly to isolate a segment of

interest. Moreover, in case of a conflicting update overwriting

an object, the object can still be recovered from within the

local environment of the user having made the lost update (see

the User Environment section). Finally, agreement between

authors in conflict over some independent segment can be

reached using the direct or subject-based communication

facilities,

Atomicity and Replication

Atomicity of operations on non-replicated objects is inherent

to the synchronous mode of invocation in linearizable sys-

tems and is well- suited to the state-transfer-based DUPLEX

operations. However, in the replicated context, atomicity

requires reliable multi cast communication. In DUPLEX this is

realized by managing the replica set as a group of processes

in the virtually synchronous model [1, 26]. Localization of
group members (or replicas) is realized using a dedicated

lightweight name server for the document. The name server

links logical document segments (known to authors by a

common shared name established upon creating the inde-

pendent segment) to the set of replica processes running in

the distributed system.

Document Context

A iinal point is to describe what information about docu-

ment context a kernel replica maintains. This information is

composed of four separate items:

Textual information provides a complete description of

the document segment maintained by the kernel object

(e.g., a sequence of characters or the bitmap of a figure).

Structural information describes the decomposition

of the segment into dependent and independent sub-

segments, and maintains logical references (by name)

on independent sub-segments. The references are trans-

lated into addresses in the distributed system by the

lightweight name server, upon invocation of a kernel

operation on the segment.

A bulletin board supports the subject-based cormrtuni-

cation facility for the segment, This is a list of messages

that can be either persistent or of limited validity in

time, The list is causally ordered and consistent with

the interleaving of discussions and segment updates.

A journal contains information describing all the sen-

sitive operations (e.g., update, split, delete, etc.) per-

formed on the segment during its active lifetime. The

journal is persistent until the end of the collaboration,

that is, when the document is finished. The journal can

be consulted to help recovery by a user with views stored

in the local environment.

All operations on a kernel replica atomically modify or read

one or several of these items.

USER ENVIRONMENT

The basic function of the local user environment in DUPLEX

is to enable the user to perform local disconnected work

every time it is possible. Nevertheless “collaborative editing”

requires interaction between users in order to accomplish the

common task. This can be performed either as actions on the

kernel or as direc~ communication between users.

Operating Modes

Local dkcormecfedrnode. All activities that do not require an

action on kernel objects or interaction with co-authors is done

in local disconnected mode. It is by far the most common

mode of operation, since all text editing and previewing is

done in this mode, Since by definition the disconnected

mode does not require a network connection, a user can work
in the local environment though it is physically disconnected

from the rest of the world, for example, because of a failure

or because the user is working on a laptop during travel

(commonly referred to as disconnected operation [9, 11]).

Two types of operations are performed within this mode.

The first type is editing, performed on local copies using the

author’s preferred text or graphics editor (DUPLEX supports

all editors commonly used with UNIX, e.g,, Emacs, TextEdit,

Idraw, etc,),

170

\

\,

I \

@red) Title

(pred) Abstract indp’mkl
/’ ! 12urdexMode.1

@cd) Body /“’”/@ui)Distsyst — @d] IMsyt
22 Model 2.1,~l$~but~

l. Intro dutim 2.31rnplications
(rnd)Mcdd 2.3a Fmlt-tolersnm

3. ~CICUIUfA_It~~CUfLpOSlh 23.b Concummy Conmol

4. Keme.1 2.3.cLwgeScdeInre~ aum

4.1. Consistency

(ind) cc — @d)cc
4,3. Atoticity ondReplication 4.2. Concummy Cormol
4.4. Document Context

5. Usar Environrrmt

5.1. QperotingMod.es

5.1.a. LocslDiscoknnecte.d Mode

(ind) Actinn \]ind Action
SIC. Direct Cormrmic*tion .I.b. Action ontk Ke.msl

Roundbuttonsdefinetools: Archiving, CoommnicationFacilities,andsoforth

Squarebuttonsdefineoperatingmode: Edit, Lock Info, Transfezfiow’to Kernel,Bulletin Board,andsoforth

Figure 4: DUPLEX user interface.

The second type concerns archiving and retrieving document

context in the user environment. Archiving consists of storing

the successive views of the document an author constructs

by reading kernel objects and making modifications to the

content and structure of the document. It enables users

to keep a causal trace of their work even if it has never

been transmitted to the kernel or is later overwritten by a

co-author, The main difference from classical approaches

is that archiving is performed in the user environment and

not by the shared kernel. This responds to usersi interest

in rerneving information they know about (i.e., have already

seen) and decreases dependency on the kernel.

Action on the kernel. In connected mode, the user interacts

with the kernel, or more precisely with a kernel object. There

are three types of interaction with the kernel: (1) object

access concerns state transfer between kernel object and user

environment as well as modifications to segment structure;

(2) journal lookup enables the user to acknowledge important

operations, such as decompose, update or delete, performed

on the object by other users; and finally, (3) bulletin board

corzsultafion enables the user to generate, filter, and read

messages related to the segment maintained by the kernel

object.

Direct communication. Using communication with the

bulletin board, the recipient of a message cannot be defined

by the sender. Another facility is required to provide a direct

(and private) communication channel, The direct commu-

nication facilities (currently based on e-mail within the user

environment) provide both synchronous and asynchronous

communication between users or groups of users.

User Interface

Wsualization tool. The main component of the user interface

is the visualization of the user’s current local view of the doc-

ument. This visualization represents the document’s structure

into dependent and independent segments, as carI be inferred

from all local information present in the user environment.

In particular, the decomposition rules enable users to infer a
consistent numbering of segments in the local view. The

document structure is presented as a tree with nodes as

the segments. From this representation, users can apply

different customary tools (editor, word processor, speller,

171

etc.) and the DUPLEX tools (archiving, kernel operation, or

communication) in selected segments, using the mouse. The

user interface is reproduced in Figure 4. In particular, edges

in the representation are links to independent objects.

Dialog box. Interaction with the kernel, when requested

on a segment selected from the document representation,

is realized through a dialog box. The dialog box is the

specialized interaction means between the kernel and the user

workspace, during the working session and for the particular

object. Once a connection has been established, interaction

can be initiated by the user (e.g., to transfer state to and from

tAe kernel) or by the kernel (e.g., to notify the user of new

messages on the segment’s bulletin board). Communication

between a kernel object and the dialog box is realized using

unreliable datagrams to prevent long connected sessions.

DISCUSSION

The objective of DuFLEx is to provide a collaborative editing

environment on a large-scale network. Large-scale implies

heterogeneity, long communication delays, link failures, and

node crashes. It prevents using traditional techniques for col-

laborative editing which would work in a local area network.

Our approach explores two directions to make the system

scalable. The fist concerns cooperative work paradigms.

DUPLEX uses document decomposition together with a con-

sistency criterion adapted to collaborative editing in order to

limit conflicts between authors and to enable recovery using

subject-based or direct communication. Decomposition en-

ables users to clearly deftne the segments of the document

they are most interested in and to apply the concurrency

control they wish on these segments. Thus concurrency

control is adaptive, in the sense that it remains relatively

loose during the phase of document editing where users most

often work independently, but later becomes more restrictive

when independent segments are merged and concurrency

control is applied to larger pieces of the document. This

first direction emphasizes liberty of action and choice of

concurrency control mechanisms as a means to help the users

progress on the collaborative editing. It has been put to trial

while writing this paper and has proven to be satisfactory,

though this should not be surprising since it reflects our own

perception of cooperative work.

The second direction is more system-oriented and concerns

working in large-scale and heterogeneous environments. Re-

gardhg the latter point, DUPLEX is a set of library routines

running on top of UNIX and using X 11 and TCP/IP. It is

independent of any particular hardware. Concerning the

large-scale environment, making document segments inde-

pendent in the distributed system provides much flexibility

and enables users to implement the kemeUlocal environment

concept in a scalable manner. This should make the system

both reliable and efficient in large networks. Our next planned

development is to test this assertion with several partners on

European projects we are involved in.

REFERENCES

1.

2,

3,

4.

5.

6.

7.

8.

9,

10.

11.

12.

13,

14,

15.

172

Birman, K, The process group approach to reliable

distributed computing. Communications of the ACM.

36,12 (December 1993), 37-53.

Borghoff, U,M. and Tegge, G. Application of

collaborative editing to software-engineering projects.

ACM SIGSOFT. 18,3 (July 1993), 56-64,

Comer, D.E. Internetworking with TCPLIP: Principles,

Protocols, Architecture. Prentice Hall, Stevenage, 1988,

Cnstian, F. Understanding fault-tolerant distributed

systems. Communications of the ACM. 34,2 (February

1991), 56-78.

Davidson, S.B., GarciaMolina, H,, and Skeen, D.

Consistency in partitioned networks. ACM Computing

Surveys, 17,3 (September 1985), 341-370,

Ellis, C.A,, Gibbs, S.J., and Rein, G.L. Groupware:

Some issues and experiences. Communications of the

ACM. 34,1 (January 1991), 38-58.

Fish, R, S,,Leland, M,D.P., and Kraut, R.E. Quilt A

collaborative tool for cooperative writing. In Proceedings

of ACM Int. Coizfi on O@e Information Systems

Volume 9 (March, location), 1988, pp. 30-37.

Greif, 1,, Seliger, R,, and Weihl, W. A case study of CES:

A distributed collaborative editing system implemented

with Argus, IEEE Transactions on So~are Engineering.

18,9 (September 1992), 827-839. ,

Heidemann, J.S., Page, T.W., Guy, R.G., and Popek,

G,J. Primarily disconnected operation: Experiences

with Ficus. In Proceedings of the 2nd Workshop on the

Management of Replicated Data. (December, location),

1992, pages.

Herlihy, M. and Wing, J, Linearizability: A correctness

condition for concurrent objects, ACM Transactions on

Programming Languages and Systems, 12 (July 1990),

463-492.

Kistler, J.J, and Sartanarayanan, M, Disconnected

operation in the coda file system, ACM SIGOPS, 25,

5 (October 1991),13–16.

Knister, M.J, and Prakash, A. DistEdlt A distributed

toolkit for supporting multiple group editors. In

Proceedings of the ACM Con$ on Computer-Supported

Cooperative Work (CSCW ’90) (October, Los Angeles,

CA), 1990, pp. 343-355.

Ladin, R,, Liskov, B., and Shrira, L. Lazy

replication: Exploiting the semantics of distributed

services, Operating Systems Review. 25,1 (January

1991), 49-55.

Leland, M.D. P., Fish, R. S., and Kraut, R.E. Collabora-

tive document production using Quilt. In Proceedings

of the ACM Int. Conference on Computer-Supported

Cooperative Work (CSCW ‘88), (September), 1988, pp,

206-215,

Liang, L., Chanson, S,T., and Neufeld, G.W, Process

groups and group communications: Classifications and

requirements, IEEE Computer. 23,2 (February 1990),

56-65,

16. Lubich, H. and Plattner, B. A proposed model and

functionality definition for a collaborative editing and

conferencing system. In Proceedings of IFIP WG

8.4 Con$ on Multi-User Interj4aces and Applications,

(September, North-Holhmd),1990, pp. 215-232,

17, Lugeon, J.C. and Sandoz, A. Sharing a small domain in

a large distributed file system. Technical report, Swiss

Institute of Technology of Lausanne (anonymous ITP

ftp-lse.epfl,ch:/pub/TechReports/DILSE-6-93.ps), 1993.

18, Miles, V,C., McCar&hy, J.C., Dix, A.J., Harrison, M.D.,

and Monk, A ,F, Reviewing designs for a synchronous-

asynchronous group editing environment. In Computer

Supported Cooperative Work (pp, 137–1 60), Springer-

Verlag, 1993.

19. Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and

Morris, J, Issues in the design of computer support for

co-authoring and commenting. In Proceedings of the

ACM Con$ on Computer-Supported Cooperative Work

(CSCW ’90) (October, Los Angeles, CA), 1990, pp.

183-195.

20. Pacull, F. and Sandoz, A. R-linearizability: An extension

of Iinearizability to replicated objects. In Proceedings of

the 4th IEEE Workshop of Future Trends of Computing

Systems. 1993.

21. Pendergast, M.O. and Vogel, D. Design and

implementation of a PCiLAN-based multi-user text

editor. In Proceedings of IFIP WG 8.4 Con$ on

Multi-User Znteglaces and Applications (September,

North-Holland), 1990, pp. 195-206.

22. Posner, I.R. and Backer, R.M. How people write

together. In Proceedings of the 25th Hawaii International

Conference on System Sciences, Vol. IV (January), 1992,

pp. 127-138.
23. Raynal, M. and Mizuno, M. How to find his way in

the jungle of consistency criteria for distributed shared

memories. In Proceedings of the 4th IEEE Workshop on

Future Trends of Computing Systems, 1993, pp. 340-346.

24. Schiper, A., Eggli, J., and Sandoz, A. A new algorithm

to implement causal ordering. In Proceedings of the 3rd

Workshop on Distributed Algorithms. 1989, pp. 219-232.

25. Schiper, A. and Ricciardi, A. Virtually synchronous

communication based on a weak failure suspector. In

Proceedings of the 23rd IEEEInt. Con$ on Fault Tolerant

Computing Systems. 1993, pp. 534-543.

26. Schiper, A. and Sandoz, A, Uniform reliable multicast

in a virtually synchronous environment. In Proceedings

of 13th IEEE Int. Conference on Distributed Computing

Systems (May), 1993, pp. 561-568.

27. Sheth, A. and Rusienkiewicz, M. Management

of interdependent data: Specifying dependency.

Proceedings of the 1st Workshop on the Management

Of Replicated Data (November). 1990.

173

