

An XML-based Framework for

Language Neutral Program Representation and Generic Analysis

For

Prof. Frank Tompa

CS 741: Non-Traditional Databases

By

Raihan Al-Ekram

Student Id: 20082523

rekram@swen.uwaterloo.ca

April 19, 2004

School of Computer Science, University of Waterloo

2

Table of Contents

Abstract...3

1 Introduction..3

2 Program Representation Formalisms ...4

2.1 Syntax Trees ..4

2.2 Intra-Procedural Flow and Dependence Graphs...4

2.3 Inter-Procedural Flow and Dependence Graphs ...5

3 Program Representation using XML ..5

3.1 Java Markup Language (JavaML) ...5

3.2 Source Code Markup Language (srcML)...6

3.3 XMLizer...7

3.4 Agile Parsing..8

3.5 Generic Object-Oriented Domain Model ...8

3.6 Generic Procedural Domain Model ..9

3.7 Graph Exchange Language (GXL) ...9

4 A Framework for Language Neutral Program Representation and Generic
Analysis...10

4.1 Source Code...11

4.2 AST Representations ..11

4.3 Intermediate Representations..12

4.4 Generic Analysis Tools ...12

4.5 External Tools ...12

5 Intermediate Representations..12

5.1 FactML...12

5.2 CFGML..13

5.3 PDGML..13

6 Conclusion..13

Appendix A: FactML DTD..13

Appendix B: CFGML DTD ...14

Appendix C: PDGML DTD ...15

References ..16

3

Abstract

XML applications are becoming increasingly popular to define constrained XML data for
some special application areas. In pursuit there is a growing momentum of activities
related to XML representation of source code in the area of program comprehension and
software re-engineering. The source and the artifacts extracted from a program are
necessarily structured information that needs to be stored and exchanged among different
tools. This makes XML to be a natural choice to be used as the external representation
formats for program representations. But most of the proposed XML applications
represent source code at a very fine level of granularity. As such, we propose XML
applications for program representation at a higher level or granularity. By combining
the proposed XML applications we present a framework for language neutral program
representation at different levels of abstractions in order to facilitate the development of
generic source code analysis tools.

1 Introduction

The Extensible Markup Language (XML) [1], a World Wide Web Consortium (W3C) [2]
standard, has been widely accepted for storing and exchanging structured documents.
Many XML sublanguages have been developed to define constrained XML data for some
special application areas, often by means of a Document Type Declaration (DTD) or
XML Schema definition [3]. For examples Mathematical Markup Language (MathML)
[4] is defined for mathematical symbols, equations and formulae for electronic
interchange or Voice Extensible Markup Language (VoiceXML) [5] developed for voice
markup and telephony call control to enable access to the Web using spoken interaction
etc. Such markup languages are becoming increasingly popular because of the features of
XML – it is simple, easy to understand, extensible, searchable, open standard,
interoperable and there is a wide range of tool support for creation, manipulation and
transformation of XML documents automatically.

In pursuit there is a growing momentum of activities related to XML representation of
source code in the area of program comprehension and software re-engineering. The
source and the artifacts extracted from a program are necessarily structured information
that needs to be stored and exchanged among different tools. Which makes XML to be a
natural choice to be used as the external representation formats for program
representations.

In this report we survey the existing tools and techniques for representing program
artifacts in terms of XML. Our research shows that various XML applications namely
JavaML, CppML, OOML, srcML, PLIXML, PascalML, FortranML etc. have been
proposed to represent the source code of different languages in terms of their Abstract
Syntax Tree. But very little have been done to XMLize the program representations at
higher levels of abstractions. As such, we propose XML applications for higher-level
program representations like Intra-Procedural and Inter-Procedural Flow and Dependence
Graphs. We also present a framework for language neutral program representation at
different levels of abstractions in order to facilitate the development of generic source
code analysis tools.

4

The rest of the report is organized as follows. Section 2 provides a brief description of the
program representation formalisms at different levels of granularity with their intended
usage. Section 3 surveys the existing XML applications and tools for program
representation. Section 4 presents the XML-based program representation framework.
Section 5 discusses the proposed XML sublanguages for the intermediate representations.
Finally Section 6 concludes the report with directions to future work.

2 Program Representation Formalisms

While the source code is the original artifact of a software system, it is written and stored
in ASCII plain text format and is not suitable to be used directly for sophisticated program
analysis. More structured and abstract representations are needed to enable algorithmic
analysis and manipulation of programs. So the source code needs to be represented at
different levels of granularity.

2.1 Syntax Trees

A Parse Tree [6] is a hierarchical graphical representation of the derivations of the source
code from its grammar. The interior modes of the tree represent the non-terminals and the
leaves terminal symbols of the grammar. An Abstract Syntax Tree (AST) [6] is a more
economical representation of the source code abstracting out the redundant grammar
productions from the parse tree. The source sentence can be reconstructed from a Depth-
first inorder traversal of the tree nodes. The syntax trees are basic source code
representations at the finest level of granularity. These data structures are used by
compilers to analyze and transform source code entities. They also serve as the primary
source for constructing other higher-level representations. The syntax trees are the
abstraction of the source code in terms of the language grammar and hence are heavily
dependent on the programming language.

2.2 Intra-Procedural Flow and Dependence Graphs

The next higher-level abstractions of source code are the flow and dependence graphs.
These graph data structures are abstractions in terms of control flow and data flow of the
program and can be represented in a programming language independent way. The intra-
procedural graphs are for representing a single subroutine, procedure or function within a
program.

A Control Flow Graph (CFG) [7] provides a normalized view of all possible flow of
execution paths of a program. A CFG is a rooted directed graph where the nodes represent
basic blocks and arcs represent possible immediate transfer of control from one basic
block to another. A basic block is a sequence of consecutive instructions that are executed
from start to finish without the possibility of branching except at the end. The CFG
representation is extensively used for data flow analysis, code optimization and testing.

A Program Dependence Graph (PDG) [8] is a combined explicit representation of both
control and data dependences in a program. The PDG is a directed graph whose nodes are
connected by several kinds of arcs. The nodes represent statements and predicate

5

expressions and the arcs represent control and data dependence. The control dependence
arcs are labeled either True or the truth-value of the predicate. The data dependence arcs,
labeled by the variable name, indicate possible flow of data values between nodes where
the source node defines the variable and the destination node may use the data value of it.
The PDG is used for code optimization, parallelism detection, loop fusion, clone detection
etc. It is also used for performing slicing for maintenance and re-engineering purpose.

2.3 Inter-Procedural Flow and Dependence Graphs

Understanding the flow of information within a single subroutine is not sufficient for
optimization or analysis of the complete system, which is comprised of many procedures
and files.

The System Dependence Graph (SDG) [9] is an extension to PDG for programs with
multiple procedures. The SDG is constructed by connecting the individual PDG of each
procedure with some additional arc types. These arcs correspond to procedure calls,
parameters passed and return values.

Call Graphs [10] [11] are program abstractions used in traditional inter-procedural
analysis. It’s a graphical representation of the caller or callee relationships among the
procedures of a program, where the nodes indicate the procedures and the arcs indicate the
calls. The nodes and arcs in a call graph may contain labels to include attributes, e.g. line
number of the call or file name of the procedure. There can optionally be new entities in
the graph, e.g. abstract data types and their usage relationships in addition to the procedure
calls. From the basic graph higher level call graph can be constructed to show
relationships among files, modules or architectural entities instead of procedures. An
extention to call graph is the Program Summary Graph (PSG) that takes into account the
reference parameters and global variables at the individual call points. Other than inter-
procedural data flow analysis for optimization, call graphs are used for design recovery,
architecture extraction or other reverse engineering analysis.

3 Program Representation using XML

Simic and Tolnik [12] in there work explores the prospects of representing source code
using XML in place of classical palin text format. They demonstrate that an XML
grammar will improve the code structure, formatting, querying possibilities and will allow
making orthogonal extensions to code for annotations, revision control, access control and
documentation.

3.1 Java Markup Language (JavaML)

Badros [13] proposes an XML application, namely the Java Markup Language (JavaML),
to represent Java source code in terms of its AST in order to facilitate tools to peroform
software engineering anlysis by leveraging the abundance of XML tools and technologies.
The JavaML is defined by an XML DTD, where the elements represent the structure of
the AST and most if the source code information are sotred as attributes on the element

6

tags. Figure 1(a) shows a sample Java code snippet and Figure 1(b) presents its
corresponding JavaML representation.

public class FirstApplet extends Applet{
 public void paint (Graphics g){
 }
}

Figure 1(a): Sample Java code snippet

<java-source-program name="FirstApplet.java">
 <class name="FirstApplet" visibility="public">
 <superclass class="Applet"/>
 <method name="paint" visibility="public" id="meth-15">
 <type name="void" primitive="true"/>
 <formal-arguments>
 <formal-argument name="g" id="frmarg-13">
 <type name="Graphics"/></formal-argument>
 </formal-arguments>
 <block>
 </block>
 </method>
 </class>
</java-source-program>

Figure 1(b): JavaML representation of the code snippet

In addition to representing the mere syntax of the source code, JavaML stores some
semantic information as well. For example IDREF tags are used to refer to the declaration
of a variable from the locations where it is used, which can be used for scope resolution or
getting the type of a variable easily.

To demonstrate the concept, the author built a converter on top of the IBM Jikes Java
complier framework to translate textual Java source code to JavaML and an XSLT
stylesheet to transform JavaML back to textual form. Since JavaML represents the
complete AST of the source code, preservation of syntactic details of every programming
construcs may cause its size to explode. On the other hand since the AST abstracts out the
comments and much of the formatting information, the original source code document
cannot be regenerated from the JavaML.

3.2 Source Code Markup Language (srcML)

Collard et. al. [14] describes a technique to convert the C++ source code into an XML
representation, namely the Source Code Markup Language (scrML), in order to use it for
static extraction of facts. This is a markup technique where the tags are superimposed on
the source code keeping the original code as it is. The markups explicitly describe the
internal structure of the code preserving the comments and the formatting information.
The srcML is defined by an XML DTD. Figure 2(a) shows a sample C++ code snippet
and Figure 2(b) presents its corresponding srcML representation.

The srcML does not directly represent the AST, hence it does not require complete
parsing of the source code to generate the complete AST. It uses a multi-pass multi-stage

7

prasing technique with partial grammar specification to parse and tag from higer level
entities to their constituent lower level entities. This enables controlling the parsing upto
the desired level of interest depending on the focus of the analysis to be performed on the
source code. This appraoch of parsing and marking up only the selected constructs of
interest, while leaveing others as it is, is know as island parsing.

// swap two numbers
if(a>b)
{
 t = a;
 a = b;
 b = t;
}

Figure 2(a): Sample C++ code snippet

<unit>
<comment type="line">// swap two numbers</comment>
<if>if<condition>(<expr><name>a</name>><name>b</name></expr>)</condit
ion><then>
<block>{
 <expr_stmt><expr><name>t</name> = <name>a</name></expr>;</expr_stmt>
 <expr_stmt><expr><name>a</name> = <name>b</name></expr>;</expr_stmt>
 <expr_stmt><expr><name>b</name> = <name>t</name></expr>;</expr_stmt>
}</block></then></if>
</unit>

Figure 2(b): srcML representation of the code snippet

srcML translator is constracted from ANLTR [26] pred-LL(k) grammar specification and
a context stack. In the translator both pre and post actions are attached to the grammar
specifications to markup the source code with appropriate start and end tags using the
context stack.

3.3 XMLizer

McArthur et. al. [15] presents the XMLizer tool to transform source code of several
programming languages into their respective XML representations in order to facilitate re-
engineering and migration. The PL/IX Markup Language (PLIXML), the Pascal Markup
Language (PascalML) and the Java Markup Language (JavaML) are defined with their
own DTDs to represent PL/IX, Pascal and Java source code respectively. XMLizer
representation of the source code is essentially the XML representation of the AST. In
order to prevent the size of the representation from exploding, the tool uses a multi-weight
parser that can generate ASTs of variable granularity by allowing designated syntactic
construct to remain unparsed. This technique can also be used to preserve comments by
attaching them to unparsed constructs. The XMLizer is also developed by modifying the
ANLTR translator [26].

8

3.4 Agile Parsing

Cordy [16] in his paper describes a method for extending and generalizing the partial
markup idea of island or multi-weight parsing using the agile parsing technique of the
TXL [25]. This approach selectively marks up only those AST nodes in the source that are
relevant to a particular task. Using grammar overrides and utilizing TXL’s ordered
ambiguity resolution a very precise form of constructs can be specified for markup,
without any modification in the base grammar. Figure 3 shows a Java code snippet
selectively marked for declaration and statement types.

<method_declaration>private boolean doKeyword(Segment line,int i,char c)
{
 <variable_declaration>int i1=i+1;</variable_declaration>
 <variable_declaration>int len=i-lastKeyword; </variable_declaration>
 <variable_declaration>byte id =
 keywords.lookup(line,lastKeyword,len);</variable_declaration>
 <if_statement>if(id!=Token.NULL)
 {
 <if_statement>if(lastKeyword!=lastOffset)
 <expression_statement>addToken(lastKeyword-lastOffset,Token.NULL);
 </expression_statement>
 </if_statement>
 <expression_statement>addToken(len,id);</expression_statement>
 <expression_statement>lastOffset=i;</expression_statement>
 }
 </if_statement>
 <expression_statement>lastKeyword=i1;</expression_statement>
 <return_statement>return false;</return_statement>
}
</method_declaration>

Figure 3: Selective AST markup in a Java code snippet

This parsing technique is programming language independent and has been used with
grammars for Java, C++, COBOL, PL/I and RPG. There are no DTDs defined for the
markups, the non-terminal symbols of the particular grammar are used as the markup tags.

3.5 Generic Object-Oriented Domain Model

As part of the ISME framework Mamas and Kontogiannis [17] defines the Java Markup
Language (JavaML) and the C++ Markup Language (CppML), XML sublanguages
declared using DTDs, for representing Java and C++ source code in terms of their ASTs.
A generator for JavaML from Java source code is developed using JavaCC parser
generator [27]. On the contrary the CppML generator is developed using the CodeStore
API of IBM VisualAge C++ complier.

The models of the different object-oriented languages share many common features,
making it possible to develop a generalized superset domain model for the object-oriented
language paradigm. Based on this idea Object-Oriented Markup Language (OOML) is
developed as an aggregated and more generic representation for all object-oriented
laguages. OOML representations can be generated by defining mappings from JavaML
and CppML representations instead of directly manupilating the souce code.

9

Both Java and C++ represents objects by using the concept of classes, class variables and
class methods. Figure 4(a) shows the declaration of a class in OOML derived from the
correspoding JavaML declaration in Figure 4(b). Figure 4(c) gives the production rules
used for the mapping

<!ELEMENT Class (VariableDeclaration*,Method*)>
<!ATTLIST Class Identifier CDATA>

Figure 4(a): OOML representation of a Class

<!ELEMENT ClassDeclaration (UnmodifiedClassDeclaration)>
<!ELEMENT UnmodifiedClassDeclaration (Name,ClassBody)>
<!ATTLIST UnmodifiedClassDeclaration Identifier CDATA>
<!ELEMENT ClassBody (FieldDeclaration|MethodDeclaration)*>

Figure 4(b): JavaML representation of a Class

ClassDeclaration à Class
UnmodifiedClassDeclaration.Name à Class.Identifier
FeildDeclaration à VariableDeclaration
MethodDeclaration à Method

Figure 4(c): Mapping rules for translation from JavaML to OOML

3.6 Generic Procedural Domain Model

Zou and Kontogiannis [18] [19] in their work propose a generic domain model for
representing the procedural languages in XML. In first step the domain models of the AST
representations for the individual procedural languages are defined using XML DTDs.
One DTD is defined for each of the C, Pascal and Fortran languages, namely the CML,
the PascalML and the FortranML. In second step the domain models are enhanced with
information such as unique identifier, linkage and analysis information. Finally the
domain models are generalized by identifying common language structures found in the
group of procedural languages such as files, functions, data types, variables, expressions,
statements etc. and mapping them to their equivalents in the generic domain model, which
can be called the ProcML. Table 1 shows an example mapping from the Fortran Domain
Model to the Generic Domain Model.

3.7 Graph Exchange Language (GXL)

Graph Exchange Language (GXL) [20] [21] is an XML based language for describing
graphs. It evolved from unification of graph description languages like GRAph eXchange
format (GraX), Tgraphs, Tuple Attribute language (TA) and PROGRES. The conceptual
data model of GXL is a typed, attrubuted and directed graph. GXL describes both the
instance data and the scheme of the data in the same format.

Unlike the other representations discussed, GXL was not originally intended to represent
the source code. But the higher lever program representation formalisms being graphs
make GXL a natural choice for their representation. Figure 5(a) shows a simple Call
Graph and Figure 5(b) presents its corresponding GXL representation.

10

Table 1: Generalization of the Fortran Domain Model

Fortran Domain Model Generic Domain Model

Structure-Statement
Record-Statement
Common-Statement
Programs
Executable Program
Program Unit
Type-Statement
Read-Statement
Call-Statement
Indexable-Name/function-Params
Character-Statement
Equivalence-Statement
Intrinsic-Statement

Structure
Struct Variable Declaration
Global Variable Declaration
Program
File
Function-Def
Declaration
Function-Call
Function-Call
Function-call
String
Union-Struct
Function-Pointer

P Proc

File=“main.c”

V Var

Line=10

Ref

Line=25

Figure 5(a): A Call Graph

<GXL>
 <node id= “P” type= “Proc”>
 <attr name= “File” value= “main.c”/>
 </node>
 <node id= “V” type= “Var”>
 <attr name= “Line” value= “10”/>
 </node>
 <edge begin= “P” end= “V” type= “Ref”>
 <attr name= “Line” value= “25”/>
 </edge>
</GXL>

Figure 5(b): GXL representation of the Call Graph

4 A Framework for Language Neutral Program Representation and
Generic Analysis

While the AST level representations are useful for some type of analysis, they are not
usable for sophisticated higher-level analysis. Moreover, in order to perform program
analysis in a language independent way and to build generic analysis tools, language
neutral representations are required at different levels of granularity of the source
program. But the existing work lacks in defining program representations at a level higher

11

than the AST in terms of XML sub-languages. In this section we propose an XML-based
multi-layered framework to represent program artifacts at different levels of abstractions
in a language neutral way. We also demonstrate the usage of the framework for building
generic program analysis tools. The different layers of the framework correspond to
program representations formalism like AST, CFG, PDG, SDG, and Call Graphs etc. in
XML format. Figure 6 presents the system architecture of the proposed framework.

Ex
te

rn
al

 T
oo

ls

CppML CMLJavaML PascalML

C++ CJava Pascal Fortran

FortranML

OOML

CFGML PDGML/SDGML CGML

FactML

Source Code

AST Level Representations

Intermediate Representations

Data Flow
Analysis

Program
Slicing

Architechtural
Recovery

ProcML

...

...

...

...

...

...

The Program Representation Framework

Generic Analysis Tools

Figure 6: System architecture of the program representation framework

4.1 Source Code

Layer 0 of the framework is the original source text of the program to be analyzed.

4.2 AST Representations

Layer 1 is the first level abstraction of the source code in terms of the AST of the
program. We choose the AST representations proposed by Mamas and Zou to fit in this
layer, since these representations include generic representations for object-oriented and
procedural paradigm based on a generalized domain model. This layer consists of two
sub-layers. Layer 1.1 consists of the ASTs representations in programming language
specific markup languages – JavaML, CppML, CML, PascalML, FortranML etc. Layer

12

1.2 consists of the AST representations derived from the generic domain model of the
language paradigms – OOML and ProcML.

4.3 Intermediate Representations

Layer 2 is the next level of abstraction of the program in terms of the different intra-
procedural and inter-procedural graphs. This layer is also consisted of two sub-layers.
Layer 2.1 represents the basic facts of a program in the FactML format. The facts of a
program are the building block constructs of the program and the basic relationships
among them. These are used by the representations above this layer as basic units of
composition. These constructs are statements, variables, data types and functions etc. and
the basic relationships are the uses or definitions of variables and calls to functions. Layer
2.2 are the representations for intra-procedural and the inter-procedural dependence and
flow graphs of the program expressed as CFGML, PDGML, SDGML and CGML defined
to represent CFG, PDG, SDG and Call graphs respectively.

4.4 Generic Analysis Tools

Various program analysis tools can be written on top of the representation framework.
These tools work on language neutral program representations and enable the
development of a single tool to perform a particular type of analysis on the source code
written in any programming language. For example a generic data flow analysis tool can
be written to work on the CFGML or a single slicing tool can be written to use the
PDGML to perform program slicing on source code of any language.

4.5 External Tools

All the representations in the proposed framework are XML and hence can be easily
transformed to any other formats using XSLT stylesheets [25] or XQuery [26] technology
in order to enable exporting of data to an external tool. If the external tool also uses an
XML representation for its data then it is straightforward to import the data using the same
techniques. However if the external tool does not use XML representations, additional
mapping tools needs to be developed to map the external formats to the internal XML
representations.

5 Intermediate Representations

The XML-sublanguages for AST level representations of Layer 1 are already well studied.
As part of our work we define XML-sublanguages to represent intermediate
representations of Layer 2 that is necessary for generic program analysis.

5.1 FactML

The facts of a program consist of information about the basic constructs of th program and
the relationships among them. The basic constructs can be data types, variables,
statements and functions. The information relevant to a variable is its name and its scope,
i.e., if it is local, global or external. A variable construct is associated with a type construct

13

to indicate its data type. A variable construct can also be associated with a statement
construct in two possible ways – a variable is declared in a statement and a variable can be
used or redefined in one or more statements. The FacML DTD given in Appendix A
encodes such information about all the constructs in a program.

5.2 CFGML

A CFG is consisted of many basic blocks and the flow of controls among them. The basic
blocks in turn consist of a sequence of statements. The CFGML in Appendix B describes
its structure in an XML DTD. The basic constructs used in the CFGML are referred from
the DTD defined for facts using XLink [27] instead of redefining them in it.

5.3 PDGML

The PDGML defined in Appendix C describes the encoding of the PDG in an XML DTD.
There can be two kinds of elements in a PDG – the program constructs and the
dependences among them. The dependences are of two kinds. The control flow
dependences are between the statements and the dummy nodes and can be labeled either
True or False. Whereas the data flow dependences are between the statements and the
dummy nodes and are also associated with variables that cause the dependency. The basic
constructs used in the PDGML are also referred from the DTD defined for facts using
XLink.

6 Conclusion

In this report we presented a framework for language neutral program representation. The
framework is based on a multi-layered abstraction of source code facts represented using
several XML sublanguages. The framework adopts the existing XML applications for
source code representation and defines new applications to represent higher-level program
abstractions.

The framework presented in this report suggests the particular AST representations in the
Layer 1 and the tools to be used to generate these representations from the source code. In
layer 2 only the intermediate representations are defined, a set of representation
transformers needs to be developed to translate from Layer 1 representations to that of the
Layer 2. Since the representations of both the layers are XML, the transformers can be
built using XSLT stylesheets, XQuery technology or by programmatically manipulating
the DOM [28] tree of the source XML. Finally the usefulness and effectiveness of the
framework is to be validated by developing the generic program analysis tools on top of
the framework and using them for the intended program analysis and comprehension task.

Appendix A: FactML DTD

<!-- facts.dtd 0.1 -->
<!-- A DTD for representation of facts as an XML document -->

<!ELEMENT Facts (Statements?, Types?, Variables?, Functions?,
 UseDefs?, Calls?)>

14

<!ATTLIST Facts program CDATA>

<!ELEMENT Statements (Statement*)>
<!ELEMENT Statement EMPTY>
<!ATTLIST Statement
 id ID #REQUIRED
 lineno CDATA #REQUIRED
 tag CDATA
 function IDREF>

<!ELEMENT Types (Type*)>
<!ELEMENT Type EMPTY>
<!ATTLIST Type
 id ID #REQUIRED
 name CDATA #REQUIRED
 category (Primitive|Class|Struct|Pointer) “Primitive”>

<!ELEMENT Variables (Variable*)>
<!ELEMENT Variable EMPTY>
<!ATTLIST Variable
 id ID #REQUIRED
 name CDATA #REQUIRED
 scope (Local|Global|Parameter|External) “Local”
 declared IDREF
 type IDREF>

<!ELEMENT UseDefs (UseDef*)>
<!ELEMENT UseDef EMPTY>
<!ATTLIST UseDef
 id ID #REQUIRED
 category (Use|Def) “Use”
 statement IDREF #REQUIRED
 variable IDREF #REQUIRED>

<!ELEMENT Functions (Function*)>
<!ELEMENT Function EMPTY>
<!ATTLIST Function
 id ID #REQUIRED
 name CDATA #REQUIRED
 scope (Internal|External) “Internal”
 signature CDATA
 declared IDREF>

<!ELEMENT Calls (Call*)>
<!ELEMENT Call EMPTY>
<!ATTLIST Call
 id ID #REQUIRED
 statement IDREF #REQUIRED
 function IDREF #REQUIRED>

Appendix B: CFGML DTD

<!-- cfg.dtd 0.1 -->
<!-- A DTD for representation of a CFG as an XML document -->

<!ELEMENT CFG (Blocks, Flows)>

15

<!ATTLIST CFG
 xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
 program CDATA
 scope CDATA>

<!ELEMENT Blocks (Block*)>

<!ELEMENT Block (Statement*)>
<!ATTLIST Block
 id ID #REQUIRED
 label CDATA #REQUIRED

<!ELEMENT Statement EMPTY>
<!ATTLIST Statement
 id ID #REQUIRED
 xlink:type (simple) #FIXED “simple”
 xlink:href CDATA #REQUIRED>

<!ELEMENT Flows (Flow*)>

<!ELEMENT Flow EMPTY>
<!ATTLIST Flow
 id ID #REQUIRED
 from IDREF #REQUIRED
 to IDREF #REQUIRED>

Appendix C: PDGML DTD

<!-- pdg.dtd 0.1 -->
<!-- A DTD for representation of a PDG as an XML document -->

<!ELEMENT PDG (Items, Dependencies)>
<!ATTLIST PDG
 xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
 program CDATA
 scope CDATA>

<!ELEMENT Items (Variables?, DummyNodes?, Statements?)>

<!ELEMENT Variables (Variable*)>
<!ELEMENT Variable EMPTY>
<!ATTLIST Variable
 id ID #REQUIRED
 xlink:type (simple) #FIXED “simple”
 xlink:href CDATA #REQUIRED>

<!ELEMENT DummyNodes (DummyNode*)>
<!ELEMENT DummyNode EMPTY>
<!ATTLIST DummyNode
 id ID #REQUIRED
 type (Entry|InitialDef|FinalUse) #REQUIRED
 variable IDREF>

<!ELEMENT Statements (Statement*)>
<!ELEMENT Statement EMPTY>
<!ATTLIST Statement

16

 id ID #REQUIRED
 xlink:type (simple) #FIXED “simple”
 xlink:href CDATA #REQUIRED>

<!ELEMENT Dependencies (ControlFlows?, DataFlows?)>

<!ELEMENT ControlFlows (ControlFlow*)>
<!ELEMENT ControlFlow EMPTY>

<!ATTLIST ControlFlow
 id ID #REQUIRED
 from IDREF #REQUIRED
 to IDREF #REQUIRED
 label (True|False) “True”>

<!ELEMENT DataFlows (DataFlow*)>
<!ELEMENT DataFlow EMPTY>
<!ATTLIST DataFlow
 id ID #REQUIRED
 from IDREF #REQUIRED
 to IDREF #REQUIRED
 over IDREF #REQUIRED>

References

[1] XML.ORG, www.xml.org

[2] World Wide Web Consortium, www.w3c.org

[3] XML Schema, www.w3.org/XML/Schema

[4] MathML, www.w3.org/Math/

[5] VoiceXML, www.w3.org/TR/voicexml20/

[6] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-
Wesley Publishing Company. April 1979.

[7] Francis E. Allen. Control flow analysis, ACM SIGPLAN Notices, Volume 5 Issue 7.
July 1970.

[8] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren. The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on Programming Languages
and Systems. July 1987.

[9] Susan Horwitz, Thomas Reps and David Binkley. Intreprocedural Slicing Using
Dependence Graphs. ACM TOPLAS, Volume 12 No 1. January 1990.

[10] D. Callahan, A. Carle, M. W. Hall, K. Kennedy. Constructing the Procedure Call
Multigraph. IEEE Transactions on Software Engineering, Volume 16 Issue 4. April
1990

17

[11] G. C. Murphy, D. Notkin and E. S. Lan. An empirical study of static call graph
extractors. Proceedings of the 18th International Conference on Software
Engineering. March 1996.

[12] Hrvoje Simic and Marko Topolnik. Prospects of Encoding Java Source Code in
XML. Conference of Telecommunications, 2003.

[13] Greg J. Badros. JavaML: A Markup Language for Java Source Code. International
World Wide Web Conference, 2000.

[14] Michael L. Collard, Huzefa H. Kagdi and Jonathan I. Maletic. An XML-based
Lightweight C++ Fact Extractor. International Workshop on Program
Comprehension, 2003.

[15] Gregory McArthur, John Mylopoulos and Siu Ng. An Extensible Tool for Source
Code Representation Using XML. Working Conference on Reverse Engineering,
2002.

[16] James R. Cordy. Generalized Selective XML Markup of Source Code Using Agile
Parsing. International Workshop on Program Comprehension. 2003

[17] Evan Mamas and Kostas Kontogiannis. Towards Portable Source Code
Representations using XML. Working Conference on Reverse Engineering, 2000.

[18] Ying Zou and Kostas Kontogiannis. A Framework for Migrating Procedural Code to
Object Oriented Platforms. Asia Pacific Software Engineering Conference, 2001.

[19] Ying Zou and Kostas Kontogiannis. Incremental Transformation of Procedural
Systems to Object Oriented Platforms. Computer Software and Applications
Conference, 2003.

[20] Ric Holt , Andy Schürr, Susan Elliott Sim and Andreas Winter. Graph Exchange
Language. http://www.gupro.de/GXL/

[21] R. C. Holt, A. Winter and A. Schürr. GXL: Towards a Standard Exchange Format.
Working Conference on Reverse Engineering, 2000.

[22] James R. Cordy, C. D. Halpern and E. Promislow. TXL: A Rapid Prototyping
System for Programming Language Dialects. Computer Languages, January 1991

[23] ANother Tool for Language Recognition (ANTLR), www.antlr.org

[24] Java Compiler Compiler (JavaCC), javacc.dev.java.net

[25] The Extensible Stylesheet Language Family, www.w3.org/Style/XSL/

[26] XML Query, www.w3.org/XML/Query

[27] XML Linking, www.w3.org/XML/Linking

[28] Document Object Model, www.w3.org/DOM/

