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Abstract

In this paper, we present a new segment-based stereo
matching algorithm using graph cuts. In our approach, the
reference image is divided into non-overlapping homoge-
neous segments and the scene structure is represented as
a set of planes in the disparity space. The stereo matching
problem is formulated as an energy minimization problem
in the segment domain instead of the traditional pixel do-
main. Graph cuts technique is used to fast approximate the
optimal solution, which assigns the corresponding dispar-
ity plane to each segment. Experiments demonstrate that the
performance of our algorithm is comparable to the state-of-
the-art stereo algorithms on various data sets. Furthermore,
strong performance is achieved in the conventionally diffi-
cult areas such as: textureless regions, disparity discontin-
uous boundaries and occluded portions.

1. Introduction

Stereo matching is one of the most active research ar-
eas in computer vision and it serves as an important step in
many applications (e.g., view synthesis, image based ren-
dering, etc). The goal of stereo matching is to determine the
disparity map between an image pair taken from the same
scene. Disparity describes the difference in location of the
corresponding pixels and it is often considered as a syn-
onym for inverse depth. Due to the ill-posed nature of the
stereo matching problem, the recovery of accurate disparity
still remains challenging, especially in textureless regions,
disparity discontinuous boundaries and occluded areas.

An excellent review of stereo work can be found in [8].
In general, stereo algorithms can be categorized into two
major classes. The first class is local (window-based) algo-
rithms, where the disparity at a given pixel depends only on
intensity values within a finite neighboring window. Local
methods can easily capture accurate disparity in highly tex-
tured regions, however they often tend to produce noisy dis-
parities in textureless regions, blur the disparity discontinu-

ous boundaries and fail at occluded areas. The second class
is global algorithms, which make explicit smoothness as-
sumptions of the disparity map and solve it through various
minimization techniques. Recently, global methods such as
graph cuts [2, 11, 12, 13, 14] have attracted much attention
due to their excellent experimental results.

In this paper, we present a new segment-based stereo
method that achieves strong performance in the commonly
challenging image regions. The proposed algorithm is a
global stereo algorithm inspired upon the recent work of
Tao et al. [10] and the graph cuts-based algorithms of
Boykov et al. [2] and Kolmogorov and Zabih [11].

Tao et al. [10] describes a color segment-based stereo
framework, which is based on the assumption that there are
no large disparity discontinuities inside homogeneous color
segments. The main idea is that if a disparity hypothesis is
correct, warping the reference image to the other view ac-
cording to its disparity will render an image that matches
the real view. Therefore, the stereo matching problem is
solved through minimizing this global image similarity en-
ergy. Color segment representation is used to reduce the
high solution space and enforce disparity smoothness in ho-
mogeneous color regions. A greedy local search mechanism
by neighboring disparity hypothesis is proposed to further
reduce the expensive warping cost and infer reasonable dis-
parities for unmatched regions.

Boykov et al. [2] and Kolmogorov and Zabih [11]
present efficient graph cuts-based stereo algorithms to
find a smooth disparity map that is consistent with the ob-
served data. In their approaches, stereo matching problem
is formulated as an energy minimization problem, which
mainly1 includes: (i) a smoothness energy (Es) that mea-
sures the disparity smoothness between neighboring
pixel pairs; (ii) a data energy (Ed) that measures the dis-
agreement between corresponding pixels based on the
assumed disparities. A weighted graph is then con-
structed in which graph nodes represent image pixels,

1 In [11], an additonal occlusion energy Eocc is included that explicitly
addresses occlusions.
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graph label set (or terminals) relate to all possible dis-
parities (or all discrete values in the disparity range
interval) and graph edge weights correspond to the de-
fined energy terms. Graph cuts technique is then used to
approximate the optimal solution, which assigns the cor-
responding disparity (graph label) to each pixel (graph
node).

We take advantages of both the color segment-based
stereo framework and the graph cuts technique. In our ap-
proach, the reference image is divided into non-overlapping
homogeneous color segments and the scene structure is ap-
proximated as a set of planes in disparity space (not neces-
sarily the fronto-parallel planes). The stereo matching prob-
lem becomes assigning the corresponding disparity plane
to each segment, which can be easily formalized as an en-
ergy minimization problem in the segment domain. Specif-
ically, the energy function contains two parts: (i) a smooth-
ness energy (Esmooth) that measures the disparity smooth-
ness between neighboring segment pairs; (ii) a data en-
ergy (Edata) that measures the disagreement of segments
and their matching regions based on the assumed disparity
planes.

We can define Esmooth and Edata to enable them as
simplifications to energies Es and Ed. Under the assump-
tion that each homogeneous color region contains smooth
continuous disparities, energy Es only needs to measure
the disparity smoothness between neighboring pixels that
lie in different segments. Therefore, the disparity smooth-
ness between neighboring segments only needs to be asso-
ciated with the common segment boundaries, which leads
the derivation of Esmooth from Es. It is trivial to define the
disagreement of each segment and its corresponding region
as the accumulation of the disagreement from all pixels in-
side the segment. Therefore data energy Edata measures the
disagreement of all corresponding pixels of the whole im-
age, which is essentially data energy Ed.

We apply graph cuts technique in a similar manner as
in [2] et al. to approximate the optimal solution of our
energy function. Note that the graph nodes here represent
segments instead of pixels. In general, the number of seg-
ments is much less than pixels, which leads to a simple
graph structure and fast computation. In addition, note that
the graph label set here only contains the approximate dis-
parity planes of the scene instead of all possible discrete
values in the disparity range. Birchfield and Tomasi [1]
pointed out that by searching over discrete disparities, what
is preserved is actually piecewise-constancy rather than
piecewise-continuity. In our approach, piecewise-continuity
is enforced inside each segment through the plane represen-
tation. Furthermore, disparity smoothness is also enforced
between segments through the energy term Esmooth. This is
especially important for textured regions with smooth dis-
parities, as very likely many small segments will be present

in these regions. By enforcing smooth constraints between
segments, the disparity smoothness of these regions is pre-
served.

Our algorithm also shares certain similarities with the al-
gorithm of Birchfiel and Tomasi [1]. Both algorithms use
the smooth disparity function to represent disparity contin-
uous regions, which enforces piecewise-continuity. How-
ever, in [1] the image is segmented into regions with smooth
disparities through graph cuts, while we use color seg-
mentation. The accuracy of their regions is influenced by
the estimated disparity functions, while color segmenta-
tion only relies on the original image intensity. In general,
good color segmentation can capture much sharper inten-
sity boundaries without being confined to certain contour
shapes, while in [1], their region boundaries often ensure bi-
ases against curved object contours. In addition, occlusions
are incorporated in our approach (details see Section 3), but
they are not addressed in [1]. Furthermore, it is worth notic-
ing that in [1] graph cuts is still built in the pixel domain,
while ours is in the segment domain, which leads a sim-
pler computation in the stage of graph cuts.

The rest of the paper is organized as follows: First we
briefly describe the color segmentation process in Section 2.
Then we present in details the proposed algorithm, mainly
focus on how to estimate disparity planes inside the scene
(Section 3), and how to apply graph cuts to assign the cor-
responding disparity plane to each segment (Section 4).
We provide various experimental results in Section 5 to
demonstrate the algorithm’s strong performance for tradi-
tional challenging image regions. Finally, we conclude and
discuss future investigation areas in Section 6.

2. Color segmentation

Our approach is built upon the assumption that large dis-
parity discontinuities only occur on the boundaries of ho-
mogeneous color segments. Therefore any color segmenta-
tion algorithm that decomposes an image into homogeneous
color regions will work for us. In this paper, we strictly en-
force disparity continuity inside each color segment, there-
fore under-segmentation is not preferred. However, over-
segmentation is largely tolerated due to the smoothness dis-
parity constraints between segments defined in our Esmooth

energy term (details given in Section 4). In our current im-
plementation, mean-shift color segmentation algorithm [3]
is used.

3. Disparity plane estimation

We represent the scene structure as a collection of dispar-
ity continuous surfaces, and approximate each surface by a
plane (could be extended to more sophisticated models as
well). Note that we may lose some disparity accuracy due
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to the limitation of the plane approximation, but such a sim-
ple model is sufficient for many applications such as view
synthesis, image based rendering, etc. We estimate all the
possible disparity planes inside the scene through the fol-
lowing processes. First we obtain the initial pixel disparity
through local matching analysis. We then compute the ini-
tial plane parameters from each color segment (while skip
very small segments). Finally, we refine the plane parame-
ters through fitting them to grouped neighboring segments.

3.1. Local matching in pixel domain

In a standard rectified stereo setup, the correspondence
between a pixel (x, y) in the reference image I and a pixel
(x′, y′) in the matching image J is given by: x′ = x +
d(x, y), y′ = y, where the disparity d(x, y) can take any
discrete value from the displacement interval [dmin, dmax].
Let c(x, y, d) denote the matching cost (or dissimilarity) for
the pixel (x, y) in image I with disparity d. We compute
c as the average pixel intensity differences in a 3 × 3 sur-
rounding window, i.e.,

c(x, y, d) =
1
9

1∑

i=−1

1∑

j=−1

|I(x+i, y+j)−J(x+i+d, y+j)|.

Among all possible disparities for the pixel (x, y), the one
that gives the minimum matching cost is selected as the ini-
tial estimated disparity d̂(x, y).

3.2. Initial plane fitting from single segment

Plane fitting from the initial disparities in a segment is
discussed in details by Tao et al. [10]. We briefly review
their approach here. A plane is used to model the continu-
ous disparity of each segment, i.e., d = c1x + c2y + c3,
where c1, c2, c3 are the plane parameters and d is the corre-
sponding disparity of the image pixel (x, y). (c1, c2, c3) is
the least square solution of a linear system

A[c1, c2, c3]T = B (1)

where the i-th row of A is [xi yi 1], the i-th element in B is
d(xi, yi). After the initial plane fitting, an iterative process
is adopted to update the plane. In each iteration, the pixel
disparity is changed within a given range of the fitted plane
and the plane parameters are updated based on the modified
disparities accordingly.

In our work, we introduce several schemes to enhance
the robustness of the plane fitting algorithm.

• The solution of linear system (1) can be biased by pix-
els with unreliable initial disparities (we call them out-
liers), therefore we only include pixels with reliable
initial disparity estimation to form system (1). We de-
tect outliers through a simple crosscheck method. Let

pixel (x′, y′) (in the matching image) be the correspon-
dence of pixel (x, y) (in the reference image) based on
the initial disparity d̂(x, y), and let d̂′(x′, y′) be the ini-
tial disparity of pixel (x′, y′) in the matching image. If
d̂(x, y) �= d̂′(x′, y′), we consider pixel (x, y) as an out-
lier.

• Weighted least square scheme is adopted in the itera-
tion process. The plane parameters are computed ini-
tially through (1), while in the following iterations,
the weight of each equation in (1) is adjusted based
on the closeness of the pixel initial disparity to the
estimated plane, e.g., w(βi) = e−2∗βi , where βi =
|c1xi+c2yi+c3− d̂(xi, yi)|. The plane parameters are
updated accordingly based on the modified weights.

• Very small segments are skipped as they lack sufficient
data to provide reliable plane estimations.

A plane computed from a segment is added into the
plane set only if there is no similar plane already inside the
set. Generally, our plane set contains much less number of
planes than the number of segments in the image.

3.3. Refined plane fitting from grouped segments

Our purpose is not to find the best plane for each segment
but rather extract all possible planes for the image. There-
fore, it is crucial to extract a set of disparity planes that
accurately represent the scene structure. This is achieved
through refining plane fitting on grouped segments. The rea-
son behind our approach is that small fragmented regions
should be grouped together to provide more reliable pixels
to form the linear system (1). We proceed with the follow-
ing steps:

1. Measure segment matching cost for each plane in the
disparity plane set.

2. Assign each segment the plane ID that gives the mini-
mum matching cost.

3. Group neighboring segments with the same plane ID.
4. Apply the plane fitting process mentioned in subsec-

tion 3.2 to each grouped segment.

Steps 2 - 4 are trivial. We focus on how to measure seg-
ment matching cost for each disparity plane. It is natural to
compute it as the sum of the matching cost from each sin-
gle pixel inside the segment, i.e.,

C(S, P ) =
∑

(x,y)∈S

c(x, y, d), (2)

where S is a segment, P is a disparity plane, and d =
cP
1 x + cP

2 y + cp
3 (cP

1 , cP
2 and cP

3 are the parameters of P ).
However, there are several problems associated with this

approach. First, occluded pixels would easily bias this seg-
ment matching cost, especially in situations such as occlu-
sion counts nontrivial percentage of a segment, or occlusion
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exists in a smooth textureless segment. Second, although
accumulating pixel matching cost in a segment helps to re-
solve the matching ambiguities, the problem still remains,
especially in textureless regions.

We propose two remedies. First we exclude all possible
occluded pixels in computing the segment matching cost.
Second we augment the sum of pixel matching cost by the
percentage of non-supporting pixels to the disparity plane.

In more details, we consider only textured outliers as
possibly occluded pixels. Recall that outliers are pixels
with unreliable initial disparity estimation and are detected
through the crosscheck method. It is easy to see that oc-
cluded pixels are outliers under our outlier definition. We
do not treat outliers in smooth textureless regions as oc-
cluded pixels for two reasons: (i) smooth textureless pix-
els tend to fail the crosscheck as a result of matching ambi-
guities rather than occlusion; (ii) occlusions normally occur
around object boundaries, which are highly textured.

Among all non-occluded pixels, we consider a pixel sup-
port a disparity plane if its initial estimated disparity is
within a small vicinity of the plane; otherwise, we consider
it as a non-supporting pixel.

Let n be the number of non-occluded pixels in a segment
S, and let s be the number of supporting pixels to a dispar-
ity plane P in segment S. We define the segment matching
cost as follows:

C(S, P ) =
∑

(x,y)∈S−O

c(x, y, d) e1− s
n , (3)

where O represents the occluded portion in S.
Our matching cost function is composed of two parts:

(i) an accumulated sum of non-occluded pixel matching
cost, and (ii) an exponential function that increases along
the non-supporting pixel percentage. Note that the defined
matching cost function will favor a disparity plane with low
accumulated sum and large supporting size. This is espe-
cially useful for textureless segments. As in those segments,
the first part will be comparable for various planes, thus fa-
voring the disparity plane with large supporting size helps
to reduce the ambiguities. For textured segment, part (i) will
vary significantly between the correct disparity plane and
others, the role of part (ii) will enlarge even more the cost
difference, as the correct disparity plane will normally has
larger supports.

4. Disparity plane labeling by graph cuts

We have presented two major steps of the proposed al-
gorithm, namely, color segmentation and the disparity plane
estimation. In this section, we describe in details the formal-
ization of the stereo matching as an energy minimization
problem in the segment domain and its solution, i.e., label-

ing each segment with its corresponding disparity plane by
graph cuts.

Let R be the color segments of the reference image, D
be the estimated disparity plane set. The goal is to find a la-
beling f that assigns each segment S ∈ R a correspond-
ing plane f(S) ∈ D, where f is both piecewise smooth and
consistent with the observed data. We formulate it as an en-
ergy minimization problem in the segment domain, i.e., we
want to obtain a labeling f∗ that minimizes:

E(f) = Edata(f) + Esmooth(f) (4)

where,

• Edata is a data-dependent energy term containing the
cost of assigning plane labels to the segments:

Edata(f) =
∑

S∈R
C(S, f(S)). (5)

where C(S, f(S)) is defined in Eq. (3).

• Esmooth(f) enforces smoothness by penalizing dis-
continuities, i.e., imposing penalties if different dispar-
ity planes are assigned to neighboring segments.

Esmooth(f) =
∑

(S,S′)

uS,S′ · δ(f(S) �= f(S′)). (6)

where S and S′ are neighboring segments, uS,S′ is pro-
portional to the common border length between seg-
ment S and S′, and δ(f(S) �= f(S′) has value 1 if
f(S) �= f(S′), otherwise 0.

In general, minimizing the energy function given in
Eq. (4) is very difficult [14]. However, several new algo-
rithms based on graph cuts have been developed recently
to efficiently solve certain energy minimization problems
[2, 11, 12]. It is trivial to see our discontinuous function in
Esmooth is a Potts model, i.e., discontinuities between any
pair of labels are penalized irrelevant to the amount of la-
bel difference. Therefore we can use the methods of [11] to
construct a graph G and apply graph cuts to approximate the
global minimum of our energy function. Notice that in our
work, the graph nodes represent segments instead of pix-
els, and the label set is composed of all the estimated dis-
parity planes instead of all possible discrete values in the
disparity range. We proceed the following steps:

1. Start with an initial labeling f .
2. Set success := 0.
3. Select in a random (or fixed) order a disparity plane

P ∈ D.
3.1 Find f̂ = arg min E(f ′) among f ′ within one α-

expansion of f .
3.2 If E(f̂) ≤ E(f), set f := f̂ and success := 1

4. If success == 1 goto 2.
5. Return f .

The solution converges usually within 2-3 iterations. In
addition, it is extremely insensitive to the initial labeling.
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Table 1: Results of Different Stereo Algorithms.
Algorithms Tsukuba Sawtooth Venus Map

Ball Buntex Bdisc BP all Buntex Bdisc Ball Buntex Bdisc Ball Bdisc

Proposed 1.23 0.29 6.94 0.30 0.00 3.24 0.08 0.01 1.39 1.49 15.46
Layered [5] 1.58 1.06 8.82 0.34 0.00 3.35 1.52 2.96 2.62 0.37 5.24
Belief [9] 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
MultiCam [13] 1.85 1.94 6.99 0.62 0.00 6.86 1.21 1.96 5.71 0.31 4.34
GC+occl [11] 1.19 0.23 6.71 0.73 0.11 5.71 1.64 2.75 5.41 0.61 6.05
Improved Coop [6] 1.67 0.77 9.67 1.21 0.17 6.90 1.04 1.07 13.68 0.29 3.65
Symbiotic [4] 2.87 1.71 11.90 1.04 0.13 7.32 0.51 0.23 7.88 0.50 6.54
Var.win. [15] 2.35 1.65 12.17 1.28 0.23 7.09 1.23 1.16 13.35 0.24 2.98
Graph Cuts [2] 1.86 1.00 9.35 0.42 0.14 3.76 1.69 2.30 5.40 2.39 9.35
Multiw Cut [1] 8.08 6.53 25.33 0.61 0.46 4.60 0.53 0.31 8.06 0.26 3.27
Cooperative [16] 3.49 3.65 14.77 2.03 2.29 13.41 2.57 3.52 26.38 0.22 2.37
Bay. diff [7] 6.49 11.62 12.29 1.45 0.72 9.29 4.00 7.21 18.39 0.20 2.49

Note:The underlined bold number is the best in its category.

5. Experiments

The proposed algorithm has been implemented on a
2.4GHz Pentium IV PC platform. Typically, the disparity
is computed within 3 seconds after the color segmentation
for a 384x288 reference image. In this section, we present
experimental results of the proposed algorithm on six im-
age pairs. One set of thresholds is used for all the experi-
ments.

The first four image pairs along with their ground truth
data are taken from the Middlebury database. We evaluate
the performance using the quality measures proposed in [8].
A ”bad” pixel is defined as the one whose absolute dispar-
ity error is greater than one pixel. Percentages of ”bad” pix-
els are measured among: all pixels (Ball), pixels in untex-
tured areas (Buntex), and pixels near disparity discontinu-
ities (Bdisc). Only non-occluded pixels are considered in all
three cases.

Table I and Fig. 1 present the overall performance of our
algorithm, where Table I summarizes the quantitative evalu-
ation results and Fig. 1 shows the extracted disparity maps.
The proposed algorithm performs well, and it reaches the
first place in the Middlebury database ranking2 (at the sub-
mission time). Strong performance is achieved especially in
the conventionally challenging areas such as, textureless re-
gions, disparity discontinuous boundaries and occluded por-
tions (see the extracted disparity maps). Note that for the
Map stereo pair, our unsatisfying result is mainly due to the
initial color segmentation errors. The low contrast grayscale
texture causes many regions (especially foreground bor-
ders) mistakenly segmented. Since our algorithm assumes
disparity continuity inside each color segment, we cannot
separate background and foreground if they were grouped

2 Although the ranking just gives a rough idea of the overall perfor-
mance of an algorithm.

as one segment in the first place.
In addition, Fig. 2 and Table II report the detailed inter-

mediate results on the Venus data. These results demonstrate
visually and quantitatively the effectiveness of our plane fit-
ting and energy minimization methods.

The last two image pairs are taken from the Garden and
the Studio sequences, respectively. Since there is no ground
truth available, we evaluate the performance by synthesiz-
ing novel views through forward warping the reference im-
age based on the computed disparity map. Fig. 3 shows the
extracted disparity maps and the synthesized novel views.

Besides the strong numerical and visual performance,
an interesting by-product of the proposed algorithm is dis-
parity segmentation. Each disparity segment is a connected
region of color segments assigned the same plane in-
dex. To overcome occasional disparity over-segmentation,
we fit a new plane to each neighboring disparity seg-
ment pair and add it to the plane set. Disparity segmen-
tation is then obtained by applying graph cuts based on
the new plane set. The reason that this process can elim-
inate over-segmentation is straightforward: if the added
new plane is correct, the smoothness energy term domi-
nates, which favors joining the over-segmented disparity
segments together; otherwise, the data energy term dom-
inates, which favors keeping the original disparity seg-
ments. We demonstrate the disparity segmentation results
for all testing image pairs in Fig. 4.

6. Conclusion

We have demonstrated a new algorithm for stereo match-
ing. Our segment-based approach works well for images
with sharp color discontinuities and slanted disparity sur-
faces. Especially, strong performance is obtained in the con-
ventionally difficult areas such as textureless regions, dis-
parity discontinuous boundaries and occluded portions. In
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: Results on Middlebury data sets. From top to down order: Tsukuba, Sawtooth,Venus, Map. From Left to right or-
der: reference images, extracted disparity maps and the ground truth disparity maps (Disparities are scaled according to the
provided scaling factor in Middlebury data set).

addition, representing the disparity map as segmentations
and plane models is not only much compact than the con-
ventional dense pixelwise disparity map, but also beneficial
to other tasks such as image-based rendering, scene analy-
sis, etc.

Apart from the advantages of our approach, the current
version of our algorithm will not be able to handle the situ-
ation if there are disparity boundaries appearing inside the
initial color segments. In the future, we plan to investigate
more on how to split these problematic segments by com-
bining both color and disparity information.
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Figure 2: Detailed results on the Venus data. (a) Color segmentation. (b) Edge contours of color segmentation. (c), (d), (e), (f)
are extracted disparity maps from each intermediate procedure: (c) local matching, (d) initial plane fitting, (e) refined plane
fitting, (f) graph cuts labeling.
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Figure 3: Results on the Garden and Studio data. (a), (d) Reference images from Garden and Studio. (b), (e) the correspond-
ing extracted disparity maps. (c), (f) Novel views (Purple pixels are occluded regions).

(a) (b) (c)

(d) (e) (f)

Figure 4: Disparity segmentation results. Each plane index corresponds to a different color. (a) Tsukuba, (b) Sawtooth, (c)
Venus, (d) Map, (e) Garden, (f) Studio.
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