
A Model-driven Design Environment
for Embedded Systems

E. Riccobene
University of Milano

DTI, Crema, Italy

riccobene@dti.unimi.it

P. Scandurra
University of Catania
DMI, Catania, Italy

scandurra@dmi.unict.it

A. Rosti and S. Bocchio
STMicroelectronics Lab R&I,

Agrate Brianza, Italy

{alberto.rosti,sara.bocchio}
@st.com

ABSTRACT
This paper presents a prototype environment for HW/SW
co–design of embedded systems based on the Unified Model-
ing Language (UML) and SystemC. The environment sup-
ports a model-driven SoC design methodology which pro-
vides a graphical high-level representation of hardware and
software components, and allows either C/C++/SystemC
code generation from models and a reverse engineering pro-
cess from code to graphical UML models.

Categories and Subject Descriptors: J.6 [Computer
Applications]: Computer-aided engineering – computer-aided
design (CAD)

General Terms: Design, Languages, Documentation.

Keywords: HW/SW Co-design, UML, MDA, SystemC.

1. INTRODUCTION
Conventional system level design flows for System on Chip

(SoC) usually start by writing the system specification and
developing a functional executable model. The system is
refined through a set of abstraction levels, towards a final
implementation in hardware and software. Nowadays it is an
emerging practice to develop the functional model and refine
it with the C/C++/SystemC languages [25]. The hardware
part of the system goes down to the RTL level for the syn-
thesis flow, while the software part can be either simulated
at high (functional or transactional) level or compiled for an
Instruction Set Simulator (ISS).

In our opinion a further improvement to this practice can
be achieved by exploiting lightweight software modeling lan-
guages like UML [28] to describe system specifications and
generate from them executable models in C/C++/SystemC.

In accordance with the design principles of the OMG’s
Model-driven architecture (MDA) [11], we defined a model-
driven SoC design methodology [19, 2] which involves the
UML 2.0, a UML 2.0 profile for the SystemC language [25],
and some other UML profiles primarily related for the SW
implementations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

Figure 1: Tool architecture

In this paper, we present a prototype HW-SW co-design
environment that we have been developing to support this
model-driven SoC design flow. It works as front-end for
consolidated lower level co-design tools, and was primarily
intended to assist the designer across the refinement steps
in the UML modeling activity, from a high-level functional
model of the system down to the RTL level.

Our framework allows to use the UML profile to provide
a graphical entry for SystemC-based designs by UML dia-
grams, to generate SystemC code from models, and to per-
form reverse engineering from code to UML models.

This paper is organized as follows. Section 2 presents
the environment architecture and its components features.
Section 3 and 4 contain design examples. Section 5 lists
some related work. Section 6 draws some conclusions and
envisages future possible enhancements.

2. TOOL ARCHITECTURE
Figure 1 shows the tool architecture. Components visu-

alized inside dashed lines are still under development. The
tool consists of two major parts: a development kit (DK)
with design and development components, and a runtime
environment (RE) represented by the standard SystemC ex-
ecution engine.

The DK consists of a UML 2.0 modeler supporting the
UML profile for SystemC [18], translators for the forward/-
reverse engineering to/from C/C++/SystemC, and an ab-
straction/refinement evaluator to guarantee traceability and
correctness along the refinement process from the high-level
abstract description to the final implementation. This last
component is under development.

52.5

915

2.1 The Modeler
The modeler is built on top of Enterprise Architect (EA),

version 4.5, a commercial UML visual modeling tool by
Sparx Systems [3]. Among all the tools on the market this
one seems to be most suitable for our purposes. EA supports
UML 2.0 and the UML extension mechanism. It has state-
of-the-art development including XMI import/export [30] to
allow model interchange between tools, and forward/reverse
engineering in the C++ programming language. There is
however no reason to use other tools supporting UML 2.0
and the standard extension mechanism of UML profiles.

Fig. 2 shows a screenshot of EA. The SystemC data types
and predefined channels, interfaces, and ports are modelled
with the core stereotypes, and are available in the Project

View with the name SystemC Layer1.
Stereotypes for the SystemC building constructs (mod-

ules, interfaces, ports and channels) are available to be used
in various UML structural diagrams such as UML class di-
agrams and composite structure diagrams to represent hi-
erarchical structures and communication blocks. Behavior
is modelled by the use of special state and action stereo-
types which lead to a variation of the UML state machine
diagram, the SC Process State Machines. This formalism
has been included in the profile to model the control flow
and the reactive behavior of SystemC processes (methods
and threads) within modules. A finite number of abstract
behavior patterns of state machines [17] have been identified.

2.2 The Translators

The Code Generation Facility. Driving the design of code
is one of the key ideas of the OMG’s Model Driven Archi-
tecture [11]. Models are used to build programs by model
transformations. A platform-independent model (PIM) is
created in UML without specifying technology-dependent
details. The PIM can be mapped to a platform-specific
model (PSM), which contains design and implementation
details. The PSM is then mapped to implementation in a
particular coding language. The goal is to model once, and
generate everywhere.

Figure 2: Generate SystemC code from EA

Currently, modeling tools support code generation in a
variety of ways. Three categories of code generators can be

identified depending on the degree of completeness of the
PIM and of the resulting PSM [12]: skeleton generation,
partial generation, and full generation. Skeleton generation
has been adopted by most tools, and deals only with the
static structure of the system (classes with attributes and
relations). Partial generation takes a more complete spec-
ification as input. Behavior may be modelled by state ma-
chines, sequence diagrams, activity diagrams, etc. However,
these diagrams are most of the time incomplete at PIM level.
The result code needs further refinement, even if it already
integrates some significant pieces of behavior. Full gener-
ation tools introduce at PIM level a new action language,
conforming to an action semantics. The Action Semantics
proposal for the UML [1, 28], for example, defines only an
action metamodel (abstract syntax) to allow an easy map-
ping of classical languages such as Java, C++ or SDL. There
are several examples of such approach: iUML [6], Projtech
BridgePoint [16], Kabira Object Switch [8], or Telelogic Tau
architect/developer [26].

We followed a full generation approach; we adopted C/-
C++/SystemC as action languages at PSM level, so that
the source code is fully generated, even if we did not adopt
any action language at PIM level.

The EA supports forward/reverse engineering to/from C++.
We added to the EA the capability of generating complete
SystemC code from UML models for both structural and be-
havioral views. To this end, the EA provides an automation
and scripting interface for the customization of its user inter-
face and of the templates used to generate code from UML.
It is based on the Windows OLE Automation (ActiveX)
technology. Therefore all development environments capa-
ble of generating ActiveX COM clients are able to connect
to the EA automation interface, and this involves scripting
clients like Microsoft Visual Basic 6.0. Alternatively, the
XMI [30] import/export facility can be exploited to extract
the model information required to generate code for a target
language.

We developed an EA add-in in Visual Basic 6.0 which
exploits the added semantics in the profile definition to gen-
erate SystemC code from input models written in the Sys-
temC UML profile. This application can be invoked from
the main menu selecting Tools | SystemC (see Figure 2).

It is possible to generate code from the whole model, at
package level or even for single diagrams. Starting from the
selected element in the EA project view browser (project,
package or class diagram) the code generation analyzes the
underlying hierarchy of views generating the corresponding
C/C++ or SystemC code. The code generator traverses all
class diagrams and for every encountered class it produces
a C++ header file (.h); this happens both for the defini-
tion of SystemC classes (modules, channels and interfaces)
and for simple C++ classes, allowing a mixed design style.
Classes contain fields and methods, for each method it is
possible to describe its behavior either as an inline code
description or as a state machine diagram. Special state
machine diagrams, called SC Process State Machines, are
used to implement the behavior of the SystemC processes,
i.e. of methods declared to be reactive processes running
concurrently within modules. Each state machine there-
fore contributes to the generation and enrichment of a single
body file (.cpp) which contains the implementation code of
all methods of a class or module or channel. The internal
structure of composite modules, especially the one of the

916

Figure 3: The Simple Bus Structure

topmost level module (which represents the structure of the
overall system), is captured by UML composite structure di-
agrams; from these diagrams several UML object diagrams
can be created to describe different configuration scenarios.
The composite structure diagrams and object diagrams are
used to derive the module constructors in the header files.

For the SW part, we are working on the C code engineer-
ing and on how to support the specification of multiple tasks
and their mapping on abstract RTOSs models by including
precise modeling primitives directly at UML level.

The Reverse Engineering component. This component
is made of three parts: a parser, a data structure and a
XMI writer. We developed a parser for C/C++/SystemC
using the JavaCC tool [7]. The component accepts Sys-
temC code which is translated into constructs of the UML
profile for SystemC, C++ code which is translated to UML
classes (including the behavioral description) and C which is
translated into a UML object oriented-like model (C in our
vision is used to describe pure embedded software parts).
The internal data structure of our reverse engineering en-
gine captures the main structures of the C/C++/SystemC
model and their relations. The XMI writer finally produces
a UML model that can be imported in the EA tool.

The reverse engineering facility allows us to import ex-
isting models into our environment and to achieve rapidly a
high number of design cases. It is also indispensable to allow
round trip engineering, that is the synchronized cooperation
with code generation (forward engineering) to complete the
description of a model working on both the UML model and
the code. It is also useful in practice as a tool to inspect the
structure of a source code graphically. This reverse engineer-
ing tool is used, in fact, by our designer community mainly
for the analysis of the application code’s structure. Starting
from a bunch of source code header files, which are delivered
from designer group A to designer group B, it is possible,
from group B, to obtain immediately a graphical represen-
tation of the significative design changes introduced at code
level including structure, relations, variables, functions, etc.

3. THE SIMPLE BUS DESIGN
To test the expressive power of our profile in representing

a variety of architectural and behavioral aspects, we have
developed several different case studies, some taken from the
SystemC distribution like the Simple Bus design described

Figure 4: A master from the Simple Bus

here, and some of industrial interest like the one given in
the next section. The Simple Bus case study is a well-known
transactional level example, designed to perform also cycle-
accurate simulation1. It is made of about 1200 lines of code
that implement a high performance, abstract bus model.
The complete code is available at the SystemC web site [15].

We modelled the Simple Bus entirely in a forward engi-
neering flow. The Simple Bus design structure is modelled
by the UML composite structure diagram shown in Figure 3.
There are three masters as module parts with the stereotype
keyword <<sc module>>, while all the other parts – two slave
memories, a bus connecting masters and slaves, an arbiter to
select a request to serve, and a clock generator – appear with
the <<sc channel>> stereotype keyword as they expose in-
terfaces. Figure 4 shows the module definition for a blocking
master. It requires the interface simple bus blocking if.

4. THE OCCN CASE STUDY
The OCCN project [14] focuses on modeling complex on-

chip communication networks by providing a highly-parame-
terized and configurable SystemC library. This library is
made of about 14.000 lines of code and implements an ab-
stract communication pattern for connecting multiple pro-
cessing elements and storage elements on a single chip.

OCCN-based models have already been used by Academia
and Industry. The generic features of the OCCN modeling
approach involve multiple abstraction levels (from functional
level to RTL level), separation of communication and com-
putation, and communication layering.

This test case contains a mixture of SystemC constructs
and C++ classes; the situation is also complicated by com-
plex inheritances and by the fact that almost all the classes
are templates. The OCCN design has been imported auto-
matically from the C++/SystemC code into the EA-based
modeler exploiting the reverse engineering facility, then it
was refined using the modeling constructs of the SystemC
UML profile. We are using this example to test the reverse
engineering flow.

5. RELATED WORK
The possibility to use UML 1.x for system design [5] started

since 1999, but the general opinion at that time was that
UML was not mature enough as a system design language.
Nevertheless significant industrial experiences using UML
in a system design process soon started leading to the first
results in design methodology, such as the one in [27] that

1Transactional models are used for functional modeling of
the communication enhanced with actual timing informa-
tion. Communication is modelled by channels, through in-
terfaces which encapsulate low-level details.

917

was applied to an internal project for the development of a
OFDM Wireless LAN chipset. In this project SystemC was
used to provide executable models.

Later more integrated design methodologies were devel-
oped. In [10], a UML profile for a platform-based approach
to embedded software development is presented. It includes
stereotypes to represent platform services and resources that
can be assembled together. The authors also present a de-
sign methodology supported by a design environment, called
Metropolis, where a set of UML diagrams (use cases, classes,
state machines, activity and sequence diagrams) can be used
to capture the functionality and then refine it by adding
models of computation.

Another approach to the unification of UML and SoC
design is the HASoC (Hardware and Software Objects on
Chip) [4] methodology. It is based on the UML-RT profile
[21] and on the RUP process [9]. The design process starts
with an uncommitted model and after a committed model is
derived by partitioning the system into software and hard-
ware, and then mapped onto a system platform. From these
models a SystemC skeleton code can be also generated, but
to provide a finer degree of behavioral validation, detailed
C++ code must be added by hand to the skeleton code.

All the works mentioned above could greatly benefit from
the use of new constructs available in the UML 2.0 stan-
dardization. Currently, the UML with the enhancements
of the new standardization UML 2.0 and its profile mech-
anism is receiving significant interest as standard approach
to defining family of languages targeted to specific applica-
tion domains and levels of abstraction. This is confirmed
by several current standardization activities controlled by
the OMG such as: the SysML proposal [24], which extends
UML towards the System Engineering domain; the recent
MARTE initiative [22], a new UML profile for modelling
and analysis of Embedded Real-time Systems, in addition
to the existing UML profile for Schedulability, Performance
and Time [23]; and the UML for SoC Forum (USoC) in
Japan [29] founded by Fujitsu, IBM/Rational, and CATS to
define a UML extension for SoC design.

SysML [24] is a conservative extension of UML 2.0 for
a domain- neutral representation (i.e. a PIM model as in
MDA [11]) of system engineering applications. It can be
involved at the beginning of the design process, in place
of the UML, for the requirements, analysis, and functional
design workflows. So it is in agreement with our UML profile
for SystemC, which can be thought (and effectively made)
a customization of SysML rather than UML.

The standardization proposal [29] by Fujitsu, in collabo-
ration with IBM and NEC, has evident similarities with our
approach, like the choice of SystemC as a target implemen-
tation language. Their profile, however, does not provide
building blocks for behavior modeling.

Some other proposals exist about extensions of UML to-
wards C/C++/SystemC. However, they do not not rely on
UML 2.0 and on a UML profile definition. Moreover, in all
the proposals we have seen, no code generation, except in
[13], from behavioral diagrams is considered.

6. CONCLUSIONS AND FUTURE WORK
Using SystemC to link the system level SoC design flow

to the consolidated VLSI design flow is a well known is-
sue. What is innovative is the idea to rely on low-cost cus-
tomized UML visual modeling tools as front-ends of lower

level HW/SW co-design frameworks (these last would be
used therefore for the final exploration and synthesis only).

To foster our methodology in a systematic and seamless
manner, we are developing [20] a new design process UPSoC
(Unified Process for SoC)to assist the designer across the
UML modeling activity from a high-level functional model
of the system down to a RTL model.

We are still exploring the possibility to implement MDA-
style transformations (only recently supported by the ver-
sion 5.0 of EA) according to the levels of abstraction of the
UPSoC process (functional, transactional, behavioral, BCA,
and RTL). We are defining a refinement methodology with
precise abstraction/refinement rules for this purpose.

7. REFERENCES
[1] OMG, UML Specification, Document ad/03-03-09, version 1.5.

[2] S. Bocchio, E. Riccobene, A. Rosti, and P. Scandurra. A SoC
design flow based on UML 2.0 and SystemC. In International
DAC Workshop UML-SoC’05, June 2005, Anaheim, CA.

[3] The Enterprise Architect tool: www.sparxsystems.com.au/.

[4] M. Edwards and P. Green. UML for hardware and software
object modeling. UML for Real Design of Embedded
Real-time Systems, Chapter 6, 2003.

[5] G.Martin. UML and VCC. White paper, Cadence Design
Systems, Inc, Dec. 1999.

[6] iUML, from Kennedy Carter’s website. http://www.kc.com.

[7] Java Compiler Compiler. https://javacc.dev.java.net/.

[8] Kabira Design Center. http://www.Kabira.com.

[9] P. Kruchten. The Rational Unified Process. Addison Wesley,
1999.

[10] L. Lavagno, G. Martin, A. S. Vincentelli, J. Rabaey, R. Chen,
and M. Sgroi. UML and Platform based Design. UML for Real
Design of Embedded Real-Time Systems, 2003.

[11] OMG, Model Driven Architecture. http://www.omg.org/mda/.

[12] P.-A. Muller, P. Studer, F. Fondement, and J. Bivin. Platform
independent Web Application Modeling and Development with
Netsilon. Journal SoSym, 2005.

[13] K. Nguyen, Z. Sun, P. Thiagarajan, and W. Wong.
Model-Driven SoC Design: The UML-SystemC Bridge. UML
for SOC Design, Chapter 8, 2005.

[14] OCCN Project: http://occn.sourceforge.net/.

[15] The Open SystemC Initiative. http://www.systemc.org.

[16] BridgePoint Development Suite http://www.projtech.com.

[17] E. Riccobene and P. Scandurra. Modelling SystemC Process
Behavior by the UML Method State Machines. In Proc. of
RISE’04, volume 3475 of LNCS. Springer, 2005.

[18] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A UML
2.0 Profile for SystemC. ST Microelectronics Technical Report,
AST-AGR-2005-3.

[19] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A SoC
Design Methodology involving a UML 2.0 profile for SystemC.
In Proc. of DATE’05, IEEE.

[20] P. Scandurra. Model-driven Language Definition:
metamodelling methodologies and applications. PhD thesis,
University of Catania, Italy, December, 2005.

[21] B. Selic. A Generic Framework for Modeling Resources with
UML. In Proc. of SBCCI’03, 33:64–69, 2000, IEEE.

[22] R. D. Simone et al. MARTE: A new Profile RFP for the
Modelling and Analysis of Real-time Embedded Systems. In
UML for SoC Design workshop at DAC’05.

[23] OMG, UML-SPT profile, formal/03-09-01.

[24] SysML Partners web site. http://www.sysml.org/.

[25] T. Gröetker and S. Liao and G. Martin and S. Swan. System
Design with SystemC. Kluwer Academic Publisher, 2002.

[26] UML 2.0 Action Semantics and Telelogic TAU/Architect and
TAU/Developer Action Language. White paper, Telelogic,
2004.

[27] T. Moore et al. A Design Methodology for the Development of
a Complex System-On-Chip using UML and Executable
System Models. In Proc. of FDL, 2002.

[28] OMG, UML 2.0 Superstructure, ptc/04-10-02.

[29] Fujitsu Limited, IBM, NEC. A UML Extension Profile for
SoC. Draft RFC to OMG, 2005-01-01.

[30] OMG, XML Metadata Interchange (XMI) Specification, v1.2.

918

