
CoCache: Query Processing Based on
Collaborative Caching in P2P Systems

Weining Qian, Linhao Xu, Shuigeng Zhou, and Aoying Zhou

Department of Computer Science and Engineering, Fudan University

Abstract. Peer-to-peer (P2P) computing is gaining more and more
significance due to its widespread use currently and potential deploy-
ments in future applications. In this paper, we propose CoCache, a
P2P query processing architecture that enables sophisticated optimiza-
tion techniques. In the scenario of CoCache, a large number of peers,
each of which may be attached with a local relational database and a
cache, are connected through an arbitrary P2P network. CoCache is dif-
ferent from existing P2P query processing systems in three ways. First,
a coordinator overlay network (CON) maintaining the summary of the
whole system is constructed by applying DHT technique to query plan
trees. CON protocol ensures the efficiency for handling dynamic envi-
ronments. Second, a preliminary cost-based optimization technique for
retrieving appropriate cached copies of data is studied. With the help of
CON, we show the possibility of fine optimization in even large scale and
dynamic distributed environments. Last but not the least, the collabora-
tive caching strategy is presented, with which even small portion of cache
storage on each peer may result in great improvement on query process-
ing performance. Extensive experiments over real-world and synthetic
settings show the effective and efficiency of CoCache.

1 Introduction

Peer-to-peer (P2P) computing is now gaining more and more interests in both
academia and industry, due to the scalability, self-organization, load-balancing,
autonomy and anonymity provided by systems with large amount of resources
(e.g., bandwidth, storage and CPU cycles), contents and services shared by var-
ious peers. Enabling query processing is a natural extension of key and keyword
based search in existing P2P systems [2, 8, 1, 5, 12]. There are several challenges
to implement complex query answering functionalities in P2P systems. First of
all, as in any P2P system, peers can join and leave the system anytime, anywhere
and anyhow, which results in a purely dynamic and ad hoc network environment.
Thus, the underlying protocol should be robust enough to handle peer and net-
work failure. Secondly, a full decentralized process must be adopted for query
processing. In a dynamic P2P environment, due to the lack of global information,
both query execution and optimization become difficult. At last, the collabora-
tion of autonomous peers is essential to fully take advantage of the resources
in the system. This usually involves more optimization issues, such as coordina-
tion, locality-aware peer clustering, and load balancing. In summary, P2P query

processing should be effective and efficient for handling dynamic networks, and
large scale distributed yet autonomous peers.

In this paper, we present CoCache, a query processing system with col-
laborative cache. Caching or replication is widely adopted in centralized and
distributed systems. It has several advantages, one of which is that data is avail-
able even when the source is temporarily inaccessiable. Furthermore, since the
retrieval of cached data is usually much cheaper than that of the source, caching
is often used as an optimization technique for decreasing latency. At last, in dis-
tributed systems, cached objects become partial copies of source that can serve
different requests from different machines at different time. Therefore, caching
is also employed in many P2P systems, and studied intensively [4, 14, 3, 12].

CoCache is different from existing P2P systems using cache. First, each
peer collaborates with other ones to determine what to be cached. Intuitively, a
peer tends to the cache data complementary to cached data in nearby peers. Fur-
thermore, both the caching process and query processing, i.e. the process to find
cached or source data, are fully decentralized based on a distributed hash table
(DHT) scheme, called CON, for Coordinator Overlay Network. The third differ-
ence is the cost-based optimization employed in dynamic environments. Query
answering performance is improved greatly with low overhead for maintaining
CON. In summary, the contributions of this paper are as follows:

– A P2P query processing framework, CoCache, is presented. One of its main
features is that a DHT-based subnet called CON is used to index the re-
sources, i.e. data sources and cache. Analytical results show the ease and
efficiency for CON maintenance.

– A cost-based optimization scheme is introduced to CoCache. With low over-
head of statistics exchanging, query performance can be improved greatly.
Experimental results show that for frequently posed queries, this technique
is even more efficient.

– An implementation of the collaborative caching strategy, which is another
main feature of CoCache is introduced and empirically studied. Experi-
mental results show that even a small portion of storage devoted for caching
on each peer can improve the performance of query processing greatly.

The rest part of this paper is organized as follows. In Section 2, the archi-
tecture and protocol of CoCache, as well as CON, are introduced. The query
processing and optimization scheme is introduced in Section 3. We introduce
the details of implementation for collaborative caching in Section 4. In Section
5 extensive empirical study of CoCache is introduced. After the related work
introduced in Section 6, Section 7 is devoted for concluding remarks.

2 The Architecture of CoCache

2.1 The CoCache and CON Networks

A peer may take different roles in CoCache network: a requester is a peer who
issues one or more queries. A source peer is a peer whose database is accessible

(a) CoCache and CON network (b) Peer architecture of CoCache

Fig. 1. Archiecture of CoCache network and nodes.

by other ones. A caching peer is a requester who caches result(s) of its queries
or subqueries. Both source peers and caching peers are called providers. A co-
ordinator is a peer in charge of maintaining information about a specific query
expression. The information includes the providers that can provide data to an-
swer the query, the locality information of the providers, and the coordinators
corresponding to the sub- and super-expressions. The coordinators are also re-
sponsible to coordinate the requesters to determine which part of data to be
cached by which peer.

Figure 1 (a) illustrates the architecture of a CoCache network. A CoCache
network can be an arbitrary peer-to-peer network1. Each peer may share its data
with other peers and pose queries. Each node in the query plans is mapped to
a specific node via distributed hash table (DHT), who will become the coordi-
nator of the query expression. A coordinator maintains a finger table in which
each entry points to the coordinator of a super- or sub-query expression. The
coordinators form a virtual coordinator overlay network (CON), that is embed-
ded in CoCache. The architecture of a node in CoCache network is shown in
Figure 1 (b). Different from other peer data management systems, each node is
equipped with two modules called Local Negotiator and Coordination Module.
The former module takes the responsibility of negotiating with coordinators to
determine what data should be cached, while the later is in charge of the coor-
dination among the requesters for collaborative caching when the node becomes
a coordinator.

A query is represented by a relational calculus expression2, which can be
transformed to a query tree. The peer identifier p(v) of the coordinator corre-
sponding to a node v in the tree is determined by using the following rules:

1 Currently, CoCache is developed based on BestPeer[7].
2 In this paper, we do not consider the equivalence of two query expressions.

1. If v is a leaf node, p(v) = h(v), in which h() is a general purpose hash
function, such as MD5 or SHA.

2. For node v corresponding to a unitary operator, such as σ or π, p(v) = p(v′)
in which v′ is the child of v.

3. For node v corresponding to a binary operator, i.e. ./, p(v) = p(v1)|p(v2),
in which v1 and v2 are the children of v, and | means bitwise OR of two bit
strings.

Thus, given a query, the coordinator of each sub-query can be determined by
using consistent hashing h(). Coordinator p(v) is also called the host of node v.

Each coordinator maintains a finger table, in which entries are coordina-
tors corresponding to parent and children nodes in the query tree. Formally,
given a query q, v is a node in the query tree, while v′, v1 and v2 are parent,
children nodes of v respectively. Then, < v′, v, p(v′) >, < v, v1, p(v1) > and
< v, v2, p(v2) > are three entries in peer p(v)’s finger table. Note that for coor-
dinators corresponding to more than one query expressions, the hosts of parent
and children nodes in each query should be included in the finger table. The
peers in the finger table are called its neighboring coordinators.

The coordinators are logical peers. In a P2P network, it is possible that there
is no peer whose identifier is the same as the identifier of a specific coordinator.
Different P2P platforms use different ways for handling this kind of problems.
Chord, for example, uses the peer whose peer-id is the first one follows a specific
identifier in the identifier space to be responsible for the tasks assigned to that
specific identifier [13]. Another popular P2P platform CAN uses the closest peer
in the torus-like identifier space to take over the tasks for a specific identifier
[10]. CoCache is implemented on top of a hybrid P2P system, BestPeer [7], in
which superpeers, called LIGLO servers, are responsible for this physical-logical
identifier mapping task. It should be noted that although BestPeer is chosen as
the bottom platform, CoCache is independant of underground layer. It can be
moved to other P2P platforms with few modifications.

Peer Join When joining a CoCache network, a requester first determines
the coordinators corresponding to its queries. Then, the queries along with the
peer information, such as peer identifier, locality information and other statis-
tics about the peer, is sent to the coordinators. The requester also collects in-
formation about the cached data from the coordinators. Thus, a query plan is
generated, and evaluated by retrieving data from providers in the query plan3.
If a requester agrees to cache data, it informs the coordinators of the cache. The
coordinators updates their local index when new caching peer’s notification is
received. When a coordinator has collected a set of updates of caching peers, it
initiates a re-caching process, which is introduced in Section 4.

It is possible that a new arrival peer’s identifier is more suitable for a logical
coordinator than the current one’s. The new peer takes over the information of
the old coordinator including the finger table. Then, it sends update information
to all neighboring coordinators, so that they can update their finger tables.
3 The details of query processing are introduced in the next section.

Peer Leave For the leave of a requester or provider, or the drop of a query by
a requester, the leaving peer informs the coordinators to update their indexed
information. If the leaving peer is a coordinator, it contacts the next suitable
peer in the system to take over the coordination information. It also informs its
neighboring coordinators to update their finger tables to point to the new one.

Failure Handling A peer may leave the system due to power, hardware or
network failure. In such cases, a peer may not be able to inform other peers or
coordinators. A failure may be detected by various ways. The failure of a coor-
dinator may be found due to a connection failure of a neighboring coordinator
or a requester, while the failure of a provider may be detected when a requester
tries to retrieve data from the failed peer. In CoCache, each requester sends the
information about its queries to the coordinators periodically. When a coordina-
tor fails, the information is routed to the new coordinator, which takes over the
work of failed one automatically. When a peer notices the failure of a provider,
it informs the corresponding coordinators to update the index. The coordinator
then forward this message to all requesters that are registered to retrieve data
from the failed peer4.

3 Query Processing in CoCache

A cache is a binary tuple (v,N), in which v is the logical expression, and N is a
multiset of peers, which is called the container of the cache. For each occurance
p ∈ N , peer p contributes fixed size of storage space to caching data of logical
expression v. Note that a source peer can be treated as a special cache, whose v
is the data source, and N is the set only having the peer itself.

A query plan of a query q is a set of caches P{(vi, Ni)} satisfied that
⋃

i R(vi) ⊇
R(q), in which R(vi) and R(q) mean the relations with logical expressions vi and
q respectively. The cost of a query plan is defined as

costq(q|P) =
X

i,vi∈P

c(vi → pq) + C({vi}, q) (1)

in which c(vi → pq) is the cost for transmitting cache (vi, Ni) to requester pq,
while C({vi}, q) is the computation cost to evaluate query q given cached data.

In implementation, c(vi → pq) is estimated using |R(vi)|×bvi,pq , where |R(vi)|
is the size of the relation, and bvi,pq is the cost to transfer one unit of data from
peers in the container to the requester. Assuming that peers in a container is
close to each other in a subnet, bvi,pq can be approximated by using bpj ,pq , in
which pj is an arbitrary peer in the container. Ping-pang protocol can be used
for estimating bpj ,pq .

Having received a query, after the host of the query is determined, a requester
sends the query along with the peer information to the coordinator, and retrieves
the part of index about available caches. In case the caches cannot satisfy the
4 The details about cache selection and registration is introduced in the next section.

Algorithm 1 Query processing in CoCache

Input: query Q, cost threshold t Output: query plan P

1: send(p(Q),Q);C ← {< Q, p(Q) >};V ← Q;{Send query q to coordinator p(q)}
2: R←retrieve(p(Q),“select C(vi, Ni) from CACHE where vi = Q”);
3: best← choose(R);
4: while costq(best) > t do
5: for all < v0, c >∈ C do
6: C′ ← C′

S
retrieve(c,“select < v′, p > from FT(v, v′, p) where v = v0”);

7: end for
8: C ← C′;
9: for all < v′, c′ >∈ C do

10: R← R
S

retrieve(c′,“select C(vi, Ni) from CACHE where vi = v′”);
11: end for
12: best← choose(R);
13: end while
14: returen best;

query processing request, the neighboring coordinators corresponding to the sub-
queries are contacted, and more information of caches is collected. This process
is iterated until a query plan satisfying the cost request is found. (Algorithm 1).

4 Collaborative Caching

A cache plan is a set of valid caches, P{(vi, Ni}. Its cost is defined as

costc(P) =
X

vi∈P

costq(vi|Pvi) (2)

in which Pvi is the query plan to answer query (cache) vi satisfying that Pvi ∈ P .
The aim of collaborative caching is to minimize the cost of the cache plan. Note
that the purpose of query processing is different from that of caching in that the
former aims at optimizing a specific query on a specific peer, while the later tries
to coordinate different peers to achieve a globally optimized caching solution.

The caching process is driven by the coordinators. When a coordinator has
collected a set of updates about the requesters, it starts a re-caching process.
Otherwise, when detecting a new requester that agrees to cache some data, the
coordinator assigns it to the cache in the query plan whose c(vi → pq) is the
maximum. The main process of caching can be roughly divided into three phases:
cache plan initialization by CON, negotiation, and construction of cache.

4.1 Cache Plan Initialization by CON

A coordinator partitions requesters with common sub-query v, and being willing
to cache, into k groups based on their locality information. Thus, peers within
the same group can communicate to each other via high-bandwidth connections.
Then, the small groups N that are not capable enough to cache the subquery,
i.e. (v, N) is not a valide cache, are assigned to nearby groups of peers.

The partitions of requesters are populated in CON with K levels, which is
called coordination level. Thus, each coordinator has collected a set of candidate
caches P ′{(vi, Ni)}, in which each vi is a logical expression and Ni is a group of
peers. Each coordinator greedily choose caches with maximum cost gain per unit
of storage for queries {vi}. Here, cost gain of a cache c for a specific query q is
defined as ∆q(c) = costq(q|P)−costq(q|P ∪{c}). Thus, the cost gain is evaluated
using ∆(c) =

∑
vi∈P ′ ∆vi(c). The chosen caches are put into the candidate cache

plan P , and the record of free space on a requester is decreased. This process is
iterated until no requester has free space or no valid cache remained.

The caches (vi, Ni) in the candidate cache plan whose logical expression vi

is the same as that of the coordinator are chosen as initial caches. This process
is conducted in the spare time of the coordinators.

4.2 Negotiation for Caching

A coordinator informs the peers in the containers of initial caches. A requester
may receive several notifications from different coordinators. It chooses the caches
with logical expressions closest to that of the query of the requester to cache,
until no free space is left. The requester sends the feedback to the coordinators.
The coordinator removes the peers do not agree to cache from the containers,
and checks if the cache is still a valid one. The requesters in the valid caches are
informed, so that they retrieve the data for caching. For those invalid caches, a
coordinator informs the requesters in the containers, so that the requesters can
reassign the spaces left for the invalid cache for other caches.

4.3 Cache Construction

When a requester receives is notified for caching by a coordinator, it begins the
cache construction process. If the free storage space is large enough for caching all
result of the logical expression, the requester evaluates the query corresponding
to the expression, and caches the result. Otherwise, the requester chooses the
portion of result that are not cached by other peers in the container. In CoCache
implementation, data are partitioned into chunks with identifiers. The identifiers
are assigned to the peers in the container via hashing. Furthermore, each caching
peer multicast its cached chunks to those peers in the same container. Each
peer in the container is responsible for maintaining the cache, and serve other
requesters. Since only nearby peers are put into the same container in cache plan
initialization process, the peers in the container may serve each other efficiently.

4.4 Query Processing Implementation

Each CoCache peer is equiped with a query engine5. Queries are written in
standard SELECT-FROM-WHERE form without aggregation. Some peers may
share the common schema of data. Each requester knows the schema of data to
5 Current implementation of CoCache uses IBM DB2 UDB 7.1 as query engine.

be queried. We believe that this setting is common in many applications, such as
information management in large enterprises. The problem of schema discovery
can be solved using information retrieval style method introduced by PeerDB[8].

The logical query expressions are translated to SQL queries for query pro-
cessing. For retrieval of data in caches, a query is transformed to a set of SQL
queries for chunks respectively, and then sent to the caching peers in the con-
tainer. In case that a caching peer fails, the corresponding subquery is sent to
data source to retrieve the missing chunks. The caches are retrieved simultane-
ously. After obtaining all the data cached (or from data sources), the query is
evaluated, and the result is returned to users. Cache construction is similar to
query processing. A requester or caching peer periodically re-evaluate its query.
The problem of ensures consistency of query result in P2P systems is left as open
problems for further study.

5 Empirical Study of CoCache

5.1 Simulation Experiments

For synthetic data, we generate a table with 32 columns and 128 rows blocks, in
which each block is in the same size, and is marked with coordinate (rid, cid).
Thus, given a quadruple (top, left, bottom, right), the blocks whose coordinate
satisifies left ≤ cid ≤ right and top ≤ rid ≤ bottom are determined. Each peer
generates such a quadruple to determine the data to be stored, while each query
is also a quadruple. The data overlapped by a query is the answer to the query. If
any blocks on any single peer only overlaps part of the blocks of a query, the data
on different peers must be joined together. The query with maximum number of
joins involves data on sixteen peers to be joined. The synthetic data set is tested
in a P2P system simulator. One thousand peers are simulated. The peers are dis-
tributed in a network with topology generated by the program downloaded from
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz,

In addition to CoCache, PeerDB [8] without caching (PDB-NC) is used
as baseline, while PeerDB with caching (PDB-C) is compared with CoCache.
Note that in the later case, each peer devotes the same size of storage space for
caching.

In Figure 2 (a), the minimum, average and maximum runtime of cache plan
intialization is shown. It is obvious that the runtime is ascendant with the in-
creasing of coordination level K. For some coordinators with few corresponding
requesters, the process may be very fast. Furthermore, it is shown that even K
is set to 3, the average runtime of coordinators does not increase much. Since
in worst case, the candidate cache plans collected by a coordinator is explosive
to K, the performance goes bad when K is larger than 4. However, the average
runtime is linear to K in our experiments. In Figure 2 (b), the requesters a coor-
dinator should negotiate with is shown. The larger K is used, the less requesters
a coordinator should negotiate with. The reason is that by exchanging candi-
dates caches, a coordinator may drop a lot of caches that are not preferred for

0

5

10

15

20

25

30

35

0 1 2 3 4
K-Level

C
oo

rd
in

at
io

n
T

im
e

(s
)

Min. Max. Avg.

(a) Runtime for cache
plan initialization.

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4
K-Level

N
um

be
r

of
 R

eq
ue

st
er

s

Min. Max. Avg.

(b) Number of re-
questers to be noticed
per coordinator.

Fig. 2. Workload on coordinators with different coordination levels.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4
K-Level

Q
C

 (
C

oC
ac

he
/P

D
B

-N
C

)

2 Blocks/Peer 4 Blocks/Peer 8 Blocks/Peer

(a) Query processing
elapse time comparison
of CoCache and PDB-
NC.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4

K-Level

Q
C

 (
C

oC
ac

he
 C

ac
hi

ng
/P

D
B

-N
C

)

2 Blocks/Peer 4 Blocks/Peer 8 Blocks/Peer

(b) Cache construction
elapse time compared
with that of query pro-
cessing in PDB-NC.

0

1

2

3

4

5

6

1 2 3 4
K-Level

C
os

t-
G

ai
n

(C
oC

ac
he

/P
D

B
-C

)

2 Blocks/Peer 4 Blocks/Peer 8 Blocks/Peer

(c) Cost gain of Co-
Cache compared with
PDB-C.

Fig. 3. The cost of query processing, view construction compared with PDB-NC and
PDB-C, with different settings of caching space and coordination level.

their limited contribution for increasing cost gain. It is shown that when K is
equal or larger than 2, the view candidate refinement process eliminates a large
amount of view candidates. Thus, setting K = 2 may save both computation
and communication cost.

Figure 3 (a) shows the query processing cost comparison between CoCache
and PDB-NC, in the condition that caches are constructed, while the cache con-
struction cost is shown in Figure 3 (b). It is shown that both query processing
and cache construction cost is quite small when compared with the query pro-
cessing cost of PDB-NC. In Figure 3 (c), CoCache is compared with PDB-C
on query processing cost. CoCache outperforms PDB-C when each peer con-
tributes limited storage for caching (2 blocks/peer). Even when the storage for
caching is large enough for the whole query result (8 blocks/peer), CoCache is
slightly better than PDB-C on average. If collaborative caching is less frequent
than query processing, such as applications of continuous query processing, Co-
Cache is more efficient than PDB-NC and PDB-C, and its advantage is much
more obvious when cache space is limited.

0

1

2

3

4

5

6

7

1 2 3 4
K-Level

C
os

t G
ai

n
(B

as
el

in
e:

 P
D

B
-N

C
)

CoCache CoCache Best PDB-C PDB-C Best

(a) 2 blocks for caching
per peer

0

1

2

3

4

5

6

7

8

1 2 3 4
K-Level

C
os

t G
ai

n
(B

as
el

in
e:

 P
D

B
-N

C
)

CoCache CoCache Best PDB-C PDB-C Best

(b) 4 blocks for caching
per peer

0

1

2

3

4

5

6

7

8

9

1 2 3 4
K-Level

C
os

t G
ai

n
(B

as
el

in
e:

 P
D

B
-N

C
)

CoCache CoCache Best PDB-C PDB-C Best

(c) 8 blocks for caching
per peer

Fig. 4. Cost gain comparison of CoCache and PDB-C, divided by that of PDB-NC.

The cost gains under different K’s and different block-size settings are shown
in Figure 4. Here, CoCache-Best means the cost gain obtained when each
coordinator knows the status of the whole system, which is an ideal condition
and is impossible to be reached in applications, while PDB-C Best means the
cost gain obtained for all the peers while PDB-C means the cost gain obtained
only for those peers participating in collaborative caching. The figures show that
the cost gain increases along with K. In any cases, the cost gain of CoCache is
at least half of that obtained under ideal environment. When it is impossible to
store the required data locally, CoCache always outerperforms PDB-C. Even
all query results can be cached, CoCache is still a little better than PDB-C,
since only raw data are cached in PeerDB.

5.2 Experiments in a Real P2P Environment

DBLP data set is transformed from DBLP XML records6, in which the total
number of tuples are more than 600,000, and the corresponding storage space is
more than 200MB. The data set is partitioned and assigned to the peers. Further-
more, the quries are generated by a generator. Totally 144 queries are generated
to be used in experiments, in which the number of joins varies from zero to five.
The details of the data set partition and query generation are introduced in [9].

The DBLP data set is tested in a LAN environment with 40 peers, each of
which is a PC with Pentium 1.4 GHz processor and 128MB RAM. The peers
are divided into four groups. Within each group, ten peers are connected with
one hub, and the hubs are connected by campus network with each other. Co-
Cache is developed using Java, and running under Microsoft Windows 2000
Workstation. IBM DB2 UDB 7.1 is used as database engine. In experiments on
DBLP data set, two schemes of block sizes are tested. In C1 scheme, each peer
contributes a large storage space for caching (512KB per query), while in C2
scheme, only a small storage space is devoted for caching on each peer (128KB
per query). Furthermore, the scheme of PDB-NC is used as baseline.

6 http://dblp.uni-trier.de/xml/

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Min. Avg. Max.

R
es

po
ns

e
T

im
e

(C
oC

ac
he

/P
D

B
-N

C
)

C1 C2

(a) Response time:
summarization.

0

0.2

0.4

0.6

0.8

1

1.2

Min. Avg. Max.D
at

a
T

ra
ns

m
is

si
on

 (
C

oC
ac

he
/P

D
B

-N
C

)

C1 C2

(b) Volume of data
trnasfered: summariza-
tion.

0

1

2

3

4

5

6

7

8

Min. Avg. Max.

T
hr

ou
gh

pu
t (

C
oC

ac
he

/P
D

B
-N

C
)

C1 C2

(c) Throughput: sum-
mariation.

Fig. 5. Experiments on DBLP dataset in a real P2P environment: CoCache vs. PDB-
NC.

The response time, volume of data transfered, and throughput for 144 queries
are recorded and shown with their summaries in Figure 5. It is interesting that
the volume of data transfered in C1 scheme is more than that in C2 scheme.
This is because that in C1 scheme, more cachess are established, which presumes
more overhead and cache-to-cache data transfer. However, it is shown that the
response time of C1 is better than C2, since cache-to-cache data transmission is
usually cheap. Even in C2 scheme, the performance is not far worse than that
in C1 scheme. The result is quite consistent with that obtained in simulation.
It can be concluded that by collaborating, few contribution on each peer can
gain much improvement on performance. The throughput of C2 scheme does
not win PDB-NC scheme much. Since only part of data with maximum cost can
be stored in caches, requesters still need to obtain data from some data sources
that are not very far away.

6 Related Work

There are several popular peer-to-peer platforms that support key or identi-
fier based search, such as Chord [13], CAN [10], Pastry [11], and BestPeer [7].
Caching is supported by some such platforms [13, 10]. However, the key-based
caching scheme is usually too coarse to support complex query processing.

Providing query processing functions in P2P systems is a hot research topic.
Several prototype systems are developed. They have different focuses, including
interactive query processing (PeerDB [8]), DHT-based query execution (PIER
[2]), schema mapping based query rewriting and processing (PIAZZA [1]), and
data mapping based query processing (Hyperion [6]). As in PIER, we assume
that schema information can be obtained in advance by requesters [2]. However,
CoCache has a different focus for providing a mechanism for sharing data,
processing and partial results among nearby peers with common subqueries.

Caching in P2P systems is extensively studied for its advantages for per-
formance improvement. SQUIRREL [3] and BuddyWeb [14] are two prototype

systems that allows each peer to share its Web cache, so that it can be shared
by other peers in the same community. PeerOLAP, another cache sharing P2P
system is designed for online analytical query processing [4]. The data are par-
titioned into aligned chunks which become the objects to be cached. Different
caching strategies are studied, and the efficiency is shown under the setting
of a self-configurable P2P network. The work closest to our research is range
query result caching [12]. The ranges in a one-dimensional space is mapped to a
two-dimensional CAN. Efficient search algorithm is developed to find the cached
ranges. Above methods have the same characteristic in that each peer caches data
blindly with other peers, while CoCache uses collaborative caching based on
information collected via CON. Different from the CAN in range query caching,
that is used to index data, CON is used to index combinations of dimensions
and peers.

7 Conclusions and Future Work

We propose a query processing framework called CoCache in this paper, which
is designed to utilize the limited storage devoted by various peers. The collabo-
rative caching scheme adopted is a natural extension of key-based caching. With
the help of DHT-based coordinator overlay network, peers can obtain summary
information of the related queries and providers’ information. Thus, collabora-
tive caching can serve the queries more efficiently than existing caching schemes
in P2P systems. Furthermore, the coordinator overlay network enables the cost-
based optimization with low maintenance overhead. Experimental results show
that CoCache is especially effective when each peer has limited storage for
caching, which is a great challenge in real-life applications.

The authors would like to extend the research work in several directions.
First, more query optimization techniques are to be studied based on the frame-
work of CoCache. Furthermore, consistency maintenance and cache replace-
ment strategies in CoCache system are to be explored. Last but not the least,
we are working on more complex caching schemes for heterogeneous peers who
do not share the common schema.

Acknowledgement

This work is supported by Infocomm Development Authority of Singapore (IDA).
The authors would like to thank Jianfeng Yin, Wenyuan Cai and Tian Xia for
their help in implementing the previous version of CoCache, called PeerView,
and Dr. Wee Siong Ng for providing the source code of PeerDB.

References

1. A. Halevy, Z. Ives, P. Monk, and I. Tatarinov. Piazza: Data management infras-
tructure for semantic web applications. In Proceedings of the 12th World-Wide
Web Conference (WWW’2003), 2003.

2. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the internet with pier. In Proceedings of the 29th International Confer-
ence on Very Large Databases (VLDB’2003), 2003.

3. S. Iyera, A. Rowstron, and P. Druschel. Squirrel: A decentralized, peer-to-peer web
cache. In Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC’2002), 2002.

4. P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive peer-to-
peer network for distributed caching of olap results. In Proceedings of ACM SIG-
MOD 2002 International Conference on Management of Data (SIGMOD’2002),
2002.

5. A. Kementsietsidis, M. Arenas, and R. J. Miller. Managing data mappings in
the hyperion project. In Proceeding of IEEE Conference on Data Engineering
(ICDE’2003), 2003.

6. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer
systems: Semantics and algorithmic issues. In Proceedings of ACM SIGMOD 2003
International Conference on Management of Data (SIGMOD’2003), 2003.

7. W. S. Ng, B. C. Ooi, and K.-L. Tan. Bestpeer: A self-configurable peer-to-peer
system. In Proceedings of IEEE Conference on Data Engineering (ICDE’2001).
IEEE Press, 2002.

8. W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb: A p2p-based system for
distributed data sharing. In Proceedings of IEEE Conference on Data Engineering
(ICDE’2003). IEEE Press, 2003.

9. W. Qian, L. Xu, S. Zhou, and A. Zhou. Peerview: View selection for query process-
ing in p2p systems. Technical report, Dept. of Computer Science and Engineer-
ing, Fudan Univeristy, Available at http://www.cs.fudan.edu.cn/wpl/memeber/

wnqian/, 2004.
10. S. Ratnasamy, P. Francis, K. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In Proceedings of the ACM SIGCOMM 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM’2001), 2001.

11. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware’2001), pages
329–350, 2001.

12. O. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A peer-to-peer framework for
caching range queries. In Proceedings of the 20th IEEE International Conference
on Data Engineering (ICDE’2004), 2004.

13. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: a
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM’2001), pages 149–160.
ACM Press, 2001.

14. X. Wang, W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Buddyweb: A p2p-
based collaborative web caching system. In Proceedings of Peer-to-Peer Computing
Workshop (Networking 2002). IEEE Press, 2002.

