A Complex Systems Approach to Service Discovery

Ricky Robinson and Jadwiga Indulska
School of Information Technology and Electrical Engineering
The University of Queensland
{ricky, jaga}@itee.uq.edu.au

Abstract— Complex systems are those systems composed of
many, often very simple, interacting autonomous entities. Inter-
actions between these entities give rise to behaviour and patterns
at the global level that cannot be predicted by examining the
behaviour of any single individual component in the system. By
this definition, pervasive computing environments are complex
systems. This paper develops the idea that complex systems
theory can aid the design of service discovery, and that results
from the field of complex networks research can be applied
to service discovery protocols to improve their scalability and
robustness. We describe the influences of complex systems theory
on the design of an existing service discovery protocol for
pervasive computing environments, and show that the application
of complex systems ideas can improve scalability, performance
and robustness of service discovery protocols.

I. INTRODUCTION

Pervasive computing environments are complex systems.
These are environments where devices are distributed through-
out, and the applications executing on each device operate with
a higher level of autonomy than traditional applications. This
autonomy is achieved through the use of such elements as
service discovery and context information. These devices are
often simple, with limited capabilities and dedicated to just
one or two specialised tasks. It is their interaction with other
devices that makes them useful. The composition of these
devices, or more precisely the services executing on those
devices, enables a broad range of tasks to be completed in
the distributed environment. In essence, the whole is greater
than the sum of the parts, a key feature of complex systems.
Although in current computing environments, both the tra-
ditional and pervasive kinds, protocol and application spec-
ifications attempt to fully specify the allowable interactions
and relationships between services and other entities in the
system, other more intriguing and unexpected behaviours may
arise from these interactions. In some cases, these emergent
properties can contribute in a positive or negative way to the
overall operation of the system, by influencing such factors as
efficiency and robustness. The important thing to note is that
these properties were neither designed nor predicted by the
designer of the system.

This paper shows the application of ideas from the field of
complex system to service discovery by using our own service
discovery protocol, Superstring [8] as an example. Superstring
contains elements to support wide-area and dynamic local-
area interactions. We apply complex systems ideas to both the
local-area and wide-area components of Superstring.

The remainder of this paper is organised as follows. Section

IT contains a discussion of the related work in the field of
service discovery, and points out why these existing protocols
do not meet the demands of large scale pervasive computing
environments. Section III gives a short introduction to complex
systems theory, and introduces some common terms to be
used throughout this paper. In Section IV, we show how some
of the ideas introduced in Section III have been applied to
Superstring and the distributed hashtable algorithm on which it
is based. Section V outlines other areas of pervasive computing
which may benefit from the application of complex systems
science, and concludes the paper.

II. RELATED WORK

Existing service discovery protocols can be classified as
commercial and widely available, or as academic research.
It is interesting that most of the service discovery protocols
developed as part of recent research projects take an entirely
different approach than commercial protocols. The research
focus in recent times has been on scalability. INS/Twine [2]
and Superstring [8], for example, utilise an underlying peer-
to-peer distributed hashtable as a basis for a service discovery
protocol able to scale to at least metropolitan area networks.

In contrast, the available commercial protocols are fo-
cused on providing a discovery mechanism to relatively small
networks. Hence, they utilise techniques such as multicast
as exemplified by the Simple Service Discovery Protocol
component of UPnP [4], centralised directories or resolvers
such as that used in Jini [12], or rely on lower level protocols
to discover other devices, each of which may be queried for
services individually. This approach is used in Salutation [13]
and Bluetooth [3]. Their emphasis is not to scale to large
numbers of nodes and resources, rather it is to provide a simple
discovery mechanism for a small community of devices.

INS/Twine and Superstring utilise the Chord protocol [11]
as the underlying key lookup mechanism. The basic Chord al-
gorithm utilises a circular skiplist structure. Each key identifier
and node identifier is drawn (by means of hashing the key for
key identifiers and hashing the IP address for node identifiers)
from the set of m bit identifiers, where m is large enough
that the probability of two nodes or keys hashing to the same
identifier is negligible. Each key maps to a single Chord node.
The mapping is such that the key is stored at the first node
whose identifier is equal to or succeeds the key. Every node
maintains a structure known as a finger table whose entries
map identifiers to IP addresses. The first entry in the finger
table contains the ID and IP address of the next node on the



identifier circle. The second entry contains the address of the
node distance 2 away. The third contains the address of the
node distance 4 away and so on. Thus the table contains m
entries, with each successive entry being twice the distance
from the current node as the preceeding entry. The routing of
a key proceeds by finding the entry in the table whose identifier
most closely preceeds the key in the identifier space. The node
at that entry is contacted and provides the address of the next
hop node by executing the same algorithm. In this fashion,
the distance to the target node is reduced by half for each
successive contact.

INS/Twine generates Chord keys by hashing strands ex-
tracted from hierarchical service descriptions and queries.
These keys allow INS/Twine to identify nodes to which
advertisements and queries should be routed. Superstring also
defines a hierarchical service description and query structure.
It generates Chord keys from the root component of service
descriptions and queries. Again, Chord provides a scalable
means to identify the nodes to which Superstring advertise-
ments and queries should be sent. Any improvement to Chord
will therefore carry over to Superstring and INS/Twine.

III. AN OVERVIEW OF COMPLEX SYSTEMS

Complex systems is a relatively new field of science con-
cerned with the way in which the behaviour of parts of a
system give rise to global behaviours. A key aspect that
differentiates complex systems from complicated systems is
the nature of the interactions between the components in the
system. A complicated system, such as a nuclear submarine,
consists of many components that interact in a predictable
fashion. In complex systems parlance, such a system is known
as linear due to the predictable sequence of cause and effect. A
complicated system (as opposed to a complex one) may consist
of many thousands of components, but each component has a
static set of other components with which it can interact. On
the other hand, complex systems such as societies, economies
and, we argue, pervasive computing environments, contain
components that often interact in a non-linear fashion. An
often quoted example of a non-linear relationship is the way
in which the effectiveness of a particular medication changes
as the dosage increases. A medicine may be completely
ineffective until a threshold dosage is reached. The medication
remains effective for dosage levels above this threshold, but
may become ineffective or harmful if the dosage is too high.

These complex relationships can give rise to emergent be-
haviours. Emergent behaviours are those that arise at the global
or system level and cannot be predicted from observing the
behaviour of the individual components. Emergence is the for-
malism behind the common saying “the whole is greater than
the sum of the parts”. Some common emergent behaviours
are those of self-organisation such as flocking and swarming
in birds and insects. Computer networks such as the Internet
organise themselves into scale-free networks. Such emergent
patterns are not unique to computer networks. Indeed, social
networks, the graphs formed by disease propagation and so
forth, have all been found to have the scale-free property.

In many cases, when emergent patterns and behaviours are
observed, a power-law relationship lies at the heart of the
interactions. Among other things, this aspect of complexity
science is being used to combat the spread of viri, and also to
study social interactions.

Recently, scientists have begun investigating how to improve
the performance of various communication protocols armed
with the knowledge that much of the time, computer net-
works have a scale-free structure. For example, researchers are
improving the Gnutella peer-to-peer protocol [6], which had
previously been shown to scale very poorly [7], by altering
the protocol to exploit the scale-free topology of the peers.
Anthill [1] is a framework for peer-to-peer computing that
makes use of complex systems theory to provide scalability
and adaptability. Anthill and Gnutella variants are only two
of the attempts to apply complex systems theory to computer
network protocols. Complex systems science, in our view, has
much to offer the pervasive computing research community
and distributed computing in general.

IV. APPLYING COMPLEX SYSTEMS THEORY TO SERVICE
DISCOVERY

A pervasive computing environment is an immense socio-
technical system composed of people, institutions, devices,
computer networks and protocols. All these elements interact
with each other in diverse ways. Often an interaction is pre-
cipitated by environmental conditions (or context) surrounding
a user or device. These elements and the interactions between
them give a sense of the enormous complexity that can arise
in a pervasive system.

The following sections present the design of an adaptable
service discovery protocol, which uses complex systems theory
and ideas from natural complex systems to provide scalability,
robustness and flexibility in the face of diverse computing
environments and mobility.

A. Overview

The wide variety of computing environments poses a prob-
lem to service discovery protocols (though these problems are
not unique to service discovery). The differences in network
characteristics and device behaviour of a wide-area environ-
ment with predominently static nodes as compared to a small
ad hoc network of limited capability devices are enormous.
The following sections present a service discovery protocol
that abstracts away the differences in computing environments
using a layered approach. The lower layers are optimised
for particular environments, but each of these specialised
layers utilises complex systems theory in order to improve
its operation. This protocol defines two underlying layers.
The first is based on the concept of ant foraging and is
intended for use in small, highly dynamic environments. The
second utilises an existing protocol overlayed on a distributed
hashtable algorithm, to provide scalability to the wide-area [8].
Complex network theory is used to improve the performance
of the distributed hashtable algorithm. Above these layers, a
single service discovery interface exists to provide a consistent



means for clients and services to access service discovery
functions regardless of the nature of the underlying network
characteristics. Figure 1 shows the organisation of this layered
service discovery protocol.

Service Discovery Layer

Ant Routing Layer DHT Routing Layer

Ad hoe networks Static and Wide Area Networks

Fig. 1. A high level view of the service discovery architecture.

B. A Biological Model for Small Dynamic Networks

Many biological systems exhibit properties of self-
organisation and emergence, and can be classified as complex
systems. Such systems are inherently adaptive, but there is
no centralised control. There is no authority determining
when or how the system should adapt. Rather, the behaviour
exhibited by the biological system as a whole emerges from
the behaviours of the individuals within the system. Clearly
such systems have parallels with pervasive computing envi-
ronments, which likewise lack a central authority and must
adapt to prevailing conditions.

The service discovery protocol described here is based on
the process used by ants to discover food resources. In a
process known as stigmergy, ants leave behind pheromone
trails from food resources to the nest. This allows other ants to
follow the trail. The service discovery protocol envisaged here
also uses stigmergy. However, in this protocol (see algorithm
below), pheromone trails can be differentiated by the type of
resource they lead to. When a service is deployed it sends its
service description to nearby nodes, thereby slightly increasing
the chance of its discovery by a matching query.

procedure receive(message)

if isQuery(message) then

if match(message) then
respond(matchingService Records)

else if expired(message) then
respond(unresolved)

else
decrementTT L(message)
forwardRandom(message)

end if

else

store(message)
forwardNextH op(message)
end if

The above algorithm is executed at each node. Nodes
receive messages. If the message is a query then it is checked
against stored query results that have previously traversed
through this node on their way back to a querying client. If
there is a match, then the query terminates and the matching
service record is returned. If there is no match and the query
has reached its hop limit, then the query is unresolved and a
message to that effect is sent in response. Otherwise, the query
is forwarded to a randomly chosen neighbour. If the message
is a positive query response, then the response is stored at this
node and then forwarded in the direction of the querying client.
Stored records eventually timeout unless they are reinforced
by further queries. This simplified version of the algorithm
ignores issues such as routing loops and query backtracking
(if a loop or dead end is detected, the query should backtrack
to the first node that has other neighbours to which the query
can be sent).

If a service (or more correctly, queries for a particular
kind of service) is popular, then the pheromone trails become
reinforced. If a service is not popular, then the pheromone trail
leading to it (which was created as the result of a matching
query) will dissipate. This means that an already popular
service will have more chance of being discovered than a less
popular one because there are more pheromone trails leading
to it, and thus likely that a query will come across an existing
pheromone trail. In complex systems parlance, it can be said
that the network evolves to favour popular services because
resolution times for popular services will be faster than for
unpopular services. The protocol adapts to node failures by
reforming pheromone trails as time goes by, thereby providing
some robustness. In the event of many simultaneous node
failures resolution times, even for popular services, may be
long, but they regain their former levels as more queries are
issued.

Not only do ideas from complex systems - such as emer-
gence, self-organisation and adaptation - aid the design of
protocols for pervasive computing environments, but complex
systems analysis techniques may also prove useful. Visual-
isaton is a powerful analysis technique used by many complex
systems theoreticians. Whilst other methods of analysis may
also be utilised, visualisation often provides quick insights into
potential problems and unexpected behaviour. A visualisation
of interacting agents created by Spector and Klein [10] pro-
vides a striking example of the way in which unexpected,
seemingly intelligent, behaviour can arise from simple in-
teractions. Whilst we do not elaborate on complex systems
analysis techniques in this paper, we provide an example where
visualisation can aid the design of a protocol such as that
described above.

The above protocol based on ant foraging displays many
advantageous behaviours such as biasing popular services
and adapting to topology changes. However, a closer ex-
amination reveals a potential problem, and one that would
become immediately obvious with a relevant visualisation. The
creation of pheromone trails has the effect of hiding some
matching services. The problem is that if multiple matching



services exist, then the one to have been discovered first has
a much higher chance of being discovered first by future
queries since the pheromone trail means it becomes more
widely known. This has the unwanted effect of burdening
some service instances while other service instances remain
largely unutilised. A simple visualisation loaded with an
example community of nodes (devices) and a simulation of
the service discovery protocol will highlight this problem
almost immediately. Ants themselves, provide a solution to
this problem. A small proportion of worker ants in a colony
will not follow established pheromone trails, electing instead
to discover other food sources. We add this behaviour to our
protocol by randomly deciding not to follow an established
pheromone trail for a small percentage of queries.

The ant foraging algorithm has several benefits over existing
protocols for small dynamic environments. Existing protocols
either use an immobile central registry, or they require queries
to be sent to all devices until the required service is found.
The pheromone trail in the ant foraging algorithm allows all
nodes to be mobile because there is no central repository and
because pheromone trails will heal over time. Furthermore the
pheromone trail allows the community to grow to many more
than one hundred devices since service descriptions can be
propagated throughout the network.

This section has shown the way complex systems theory can
inform the design of a service discovery protocol for pervasive
computing environments. The next section details an adjunct
to a distributed hash table protocol inspired by ideas from the
field of complex networks.

C. A Deterministic Model for the Wide Area

Another challenge is to find a protocol that will scale to
much larger networks than the ant foraging protocol described
above and that will provide the guarantee of no false negative
responses. Peer-to-peer hashtable protocols such as Chord [11]
and Pastry [9] offer a way in which to guarantee, in the
absence of node failures, the success of key lookups in a
distributed environment. INS/Twine [2] and previous work
by the authors [8] are built upon these distributed hashtables
to create a reliable service discovery mechanism. But by
building on top of a deterministic hashtable structure negates
any benefits of the scale-free nature of the underlying network
upon which the distributed hashtable is built. That is, capable,
highly connected nodes are forced to play the same role as
less capable and less connected nodes. An obvious question
to ask, in light of this discussion of complex and scale-free
networks is, can the distributed hashtable be made scale-free?
Doing so has the important benefit of reducing the average
path length from one node to any other node in the peer-to-peer
hashtable. In turn, any service discovery protocol overlaying
such a scale-free hashtable would achieve lower query latency.
The remainder of this section is devoted to detailing the
mechanism by which Chord can be influenced toward a scale-
free topology.

First of all, note that any type of caching in Chord will
result in a reduced average path length from one Chord node

to another. As such, a simple modification to the algorithm and
the structures used to support the algorithm can yield a more
scalable protocol in terms of the average number of nodes that
need to be contacted during lookup. The simplest addition to
the Chord algorithm is to cache the addresses of nodes which
are discovered during a lookup. The finger table then stores
as many identifiers and IP addresses for each interval as it is
capable of doing. During lookup, the node can then choose to
contact either the node with the closest ID to the target node,
or it can measure response times, and choose to contact the
node with the fastest response. This elementary improvement,
or one very similar to it, is suggested in the Chord paper itself.

Complex network theory suggests a way in which this cache
can be used to transform the Chord protocol to tend toward
a scale-free set of interactions, thereby reducing the average
number of nodes contacted during each lookup further than the
above simple caching mechanism could do. In a heterogeneous
network, such as one might find in a pervasive computing
environment, one will find all manner of devices, some of
which are capable of storing large amounts of data and are
connected to high bandwidth links. Other devices will be
resource poor, and are connected to other devices only through
low bandwidth links. If a caching function is introduced to
Chord, the size of the cache will vary with the capability of
the Chord node. Nodes with large caches will generally have
information about nodes closer to the target than would be
the case in the original Chord algorithm. This is true because
complex network theory holds that highly connected nodes, or
hubs as they are known, can usually reach every other node
in the network in a small number of hops. In the context of
our hashtable protocol, it means that it is likely that highly
connected nodes can more than halve the distance to the
target on each hop, since it is probable they know of nodes
closer to the target than was possible under the original Chord
protocol. The new algorithm maintains correctness since each
step brings the querying node at least twice as close to the
target node as the previous step.

Capable nodes cache the ID and IP address of each node
contacted during their own lookup operations. This requires
no additional message overhead. Less capable nodes operate
similarly, but only cache the IDs and IP addresses of the most
highly connected nodes within an interval. The size of the
cache is completely adjustable for each node. In our simula-
tion, nodes are assigned a random capability that represents a
space metric. In our testing, the maximum capability that can
be assigned to a node is ten percent of the total number of
nodes in the simulation. The minimum capability is one.

Our results indicate that this simple modification of the
original Chord algorithm results in a significant lowering of
the average path length between nodes. In fact, as more and
more lookups are performed, the average path length between
nodes shortens. Figure 2 summarizes the results obtained from
our simulation of the modified Chord algorithm. For each
test, a million lookups were performed, and the average path
length calculated. For example, in a network of 512 nodes,
the average path length in the original Chord algorithm is



—&— Modified Chord
3 —8— Original Chord

Path length

] T T T
o 5000 10000 18000

Numbker of nedes

20000

Fig. 2. Average path lengths of the original and modified Chord algorithms

approximately four. In the modified algorithm, after a million
lookups, the average path length is one. In larger networks,
where our simulation shows the hop length has been reduced
to two thirds of its original length, the hop length is reduced
even further if more than a million queries are issued since
knowledge of highly connected nodes will propagate further
through the network. The choice of caching algorithm does
have an effect on the average path length. To determine
this, the caching algorithm was modified to cache the least
connected nodes. In a network of 512 nodes, the average
path length is two. Therefore, the cache replacement algorithm
has a bearing on the average path length in the network.
Furthermore, we do not consider a least-recently used purging
policy since node popularity changes dynamically when new
nodes join the network and when new keys are added to
the distributed hashtable. The capability of a node, in terms
of its capacity to store pointers to other nodes, is a static
property, and therefore a better choice on which to base
a cache purging policy. Superstring and Twine can benefit
from the performance improvement gained from the above
modification to Chord. Superstring, because it is targeted at
those situations in which ad hoc communities of devices
are linked by more permanent infrastructure, can especially
benefit from this scalability gain, since the core infrastructure
is not mobile. That is, it is very likely that nodes in the
core infrastructure will make millions of lookups during their
lifetimes, and thus benefit from these modifications.

V. CONCLUSION

Our foray into the application of complex systems tech-
niques to service discovery has suggested many other areas of
pervasive computing where complex systems theory could be
applied.

For example, our previous work on context [5] indicates that
the relationships between context elements, such as location,
user preferences and device capability are not simple or linear.
Rather, they are interdependent and can be affected by actions
of the user. Therefore, context is a primary example of a
necessary pervasive computing component that meets the def-
inition of a complex system. Treating it as such may provide

new insights into creating a scalable context management
system, and might yield useful emergent context elements that
go unnoticed using existing techniques. Current approaches
to context management tend to focus on small subsets of
context information (primarily location information), and this
is inadequate for the pervasive environments of tomorrow.

Applications for complex systems theory are being found
in fields as wide-ranging as sociology, biotechnology and
immunology. In this paper, we show a novel application of
complex systems theory to service discovery. In particular,
this paper shows that the theory of complex networks can be
applied to create a scalable distributed hashtable algorithm,
which can benefit any service discovery protocols overlayed
on them.

Pervasive computing environments are complex systems.
They abound in intricate relationships that give rise to complex
behaviours. This paper highlights how the pervasive computing
research community could benefit by embracing complex
systems approaches as a way to designing more robust and
scalable components for pervasive computing environments.

REFERENCES

[1] Ozalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill: A
Framework for the Development of Agent-Based Peer-to-Peer Systems.
In Proceedings of the 22nd International Conference on Distributed
Computing Systems, 2002.

[2] Magdalena Balazinska, Hari Balakrishnan, and David Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for Intentional Re-
source Discovery. In Pervasive 2002 - International Conference on
Pervasive Computing, number 2414 in LNCS, pages 195-210. Springer-
Verlag, August 2002.

[3] Bluetooth SIG. Bluetooth Specification version 1.1, February 2001.

[4] Yaron Y. Goland, Ting Cai, Ye Gu, and Shivaun Albright. Simple Service
Discovery Protocol/1.0. IETF draft specification, October 1999.

[5] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen. Ex-
periences in Using CC/PP in Context-Aware Systems. In The 4th
International Conference on Mobile Data Management, 2003.

[6] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernado
A. Huberman. Search in power-law networks. Physical Review E, 64,

2001.
[7] Jordon Ritter. Why Gnutella Can’t Scale. No, Really.
Technical report, Darkridge Security Solutions, Available from:

http://www.darkridge.com/ jpr5/doc/gnutella.html, 2001.

[8] Ricky Robinson and Jadwiga Indulska. Superstring: A scalable service
discovery protocol for the wide-area pervasive environment. In The 11th
IEEE International Conference on Networks, 2003.

[91 A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), number 2218 in LNCS, pages 329-350, Heidelberg, Germany,
November 2001.

[10] Lee Spector and Jon Klein. Evolutionary Dynamics Discovered via

Visualization in the BREVE Simulation Environment. In ALife VIII:

Workshop Proceedings, 2002.

ITon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In SIGCOMM ’01. MIT Laboratory for Computer Science,

August 2001.

Inc Sun Microsystems. Jini Technology Core Platform Specification

v1.2. Technical report, Sun Microsystems, Inc, 2001.

[13] The Salutation Consortium. Salutation architecture specification (part 1)
v2.0c. Specification, The Salutation Consortium, June 1999.

(1]

[12]



