
Document Warehousing Based on a Multimedia Database System

Hiroshi Ishikawa, Kazumi Kubota, Yasuo Noguchi, Koki Kato, Miyuki Ono, Naomi Yoshizawa, and
Yasuhiko Kanemasa

Software Laboratory, FUJITSU LABORATORIES LTD.
4- 1- 1 Kamikodanaka, Nakahara-Ku, Kawasaki, 2 1 l-8588 Japan

hiro@flab.fujitsu.co.jp

Abstract
Nowadays, structured data such as sales and business

forms are stored in data warehouses for decision makers to
use. Further, unstructured data such as emails, html texts,
images, videos, and oftIce documents are increasingly
accumulated in personal computer storage due to spread
of mailing, Www, and word processing. Such unstructured
data, or what we call multimedia documents, are larger in
volume than structured data and precious as corporate
assets as well. So we need a document warehouse as a
software framework where multimedia documents are
analyzed and managed for corporate-wide information
sharing and reuse like a data warehouse for structured
data. We describe a prototype document warehouse system,
which supports management of simple and compound
documents, keyword-based and content-based retrieval,
rule-based classification, SOM-based clustering, and XML
data query and view rules.

1. Introduction
Nowadays, structured data such as sales and business

forms are stored in data warehouses for decision makers to
use. Further, unstructured data such as emails, html texts,
images, videos, and office documents are increasingly
accumulated in personal computer storage due to spread of
mailing, WWW, and word processing. Such unstructured
data, or what we call multimedia documents, are larger in
volume than structured data and precious as corporate
assets as well. Traditionally, they are handled as bulk data
or BLOB (binary large objects) and are subject to no
interpretation by DBMS. So we need a software framework
where multimedia documents are analyzed and managed
for corporate-wide information sharing and reuse like a
data warehouse for structured data. We propose a
document warehouse realizing such a framework.

Document warehouses need to satisfy the following
requirements at least.

(1) Document files and folders managed by document
warehouses must be independent of physical details such as

names and locations. Such attributes are often changed,
which makes document sharing difficult.

(2) Document warehouses must provide users with
methods for analyzing contents of documents for further
processing. They must enable users to abstract keywords
from texts and feature data from images and videos.

(3) Document warehouses must provide a query facility
based on attributes of documents and keywords contained
by documents, needless to say. Browsing alone is
insufficient because a large amount of media data take long
time to play.

(4) Document warehouses must also provide a content-
based retrieval facility. Generally, images and videos
cannot be attached appropriate keywords in advance. We
need an alternative approach to retrieving such media data.
We must provide a facility which allows users to retrieve
documents by expressing feature data such as colors,
layouts, and motions. Such a content-based retrieval
facility enables inexact match in contrast to exact match
facilitated by keyword-based retrieval.

(5) Document warehouses must allow users to refine
queries in a step-wise fashion by combining both keyword-
and content-based query facilities of related multimedia
documents. Bidirectional access of interrelated documents
is also needed.

(6) Document warehouses must provide a facility for
automatically classifying documents according to user-
supplied viewpoints such as keywords and features. In
particular, we must allow overlapping classification where
a single document belongs to different groups. In an
ordinary file system, the user could overcome this issue by
making aliases, but this inflexible approach imposes
unnecessary efforts upon users.

(7) Document warehouses must provide a facility for
automatically clustering documents based on similarity of
features associated with documents. This helps as a first
step for further document analysis.

(8) Document warehouses must be able to manage
compound documents, which are groups of relevant data
such as texts, images, and videos as components.

O-7695-0071-4/99 $10.00 0 1999 IEEE
168

Compound documents must be handled like simple
documents.

(9) Document warehouses must allow users to retrieve
documents such as XML data scattered over WWW sites
and reuse them in applications for their custom needs. A
view facility for packaging such actions on documents is
mandatory like relational views.

(10) Document warehouses must support business rules
for associating documents with business processes. This is
necessary for document-based business solutions.

The above requirements are of course not
comprehensive. In fact, version control and scalability are
also important issues, but they are not addressed in this
paper due to space limitation. We have already proposed a
multimedia database system based on an object-oriented
database (OODB) for general networked multimedia
applications [4]. Document warehouses in this paper
customizes and enhances the multimedia database system
for use in corporate-wide document sharing and reuse.
Please note that document warehouses are an integration of
database technology and text, image and video processing.
In the following section, we describe our approach to
document warehouses based on a multimedia database
system.

2. Implementation
2.1 Basic Concepts

In this subsection we describe basic concepts, that is,
simple and compound documents, document folders, and
classification. To address all the issues described in
Section 1, we assume a multimedia database system which
enables flexible and efficient acquisition, storage, access
and retrieval, and distribution and presentation of large
amounts of heterogeneous media data [4]. We take a
realistic approach based on OODB [3], which is more
suitable for description of media structures and operations
than a traditional relational database (RDB). We have
enhanced OODB by supplying Event-Condition-Action
(ECA) rules [2].

First, we define documents in document warehouses. In
document warehouses, simple documents are implemented
as objects in terms of OODB. A simple document may be
any type such as text, image, and video. Document objects
have attributes such as date and creator. Document objects
also have attributes representing physical information such
as file descriptors. Documents are referenced through
object identifiers. Therefore, documents can be
unchangeably accessed even though physical attributes are
changed when documents are updated or moved. In other
words, documents in document warehouses are more
logical than ordinary files in that they are independent of
physical aspects. Document warehouses provide dedicated

analyzers for multimedia documents. Document analyzers
abstract and attach keywords and feature data to documents,
which are used in retrieval, classification, and clustering, as
described in detail later.

Document folders in document warehouses are defined
as a set of documents. Of course, the user can manually
insert documents into such folders. In addition, the user
can attach classification rules to document folders. Such
classification rules are implemented as an index whose
entry is a pair of folder names (identifiers) and keywords.
They are many-to-many relationships. Thus, one document,
in general, can belong to more than one folder. When
documents are checked in document warehouses,
documents are automatically classified into relevant folders
according to user-supplied classification rules if any. For
example, docl is classified into three folders by applying
three rules (See Figurel). The user can browse documents
associated with keywords attached to folders by just
opening the folders.

Figure 1. Classification and folder query

Classification rules are implemented as a special case of
event-condition-action (ECA) rules [2] supported by a
multimedia database as a kernel of document warehouses.
Thus, in a case of classification rules, an event is check-in,
a condition is keyword check, and an action is insertion.
ECA rules can be used to implementing business rules. In
this case, actions implement business processes.

As folders are sets of documents, set operations such as
union, intersection, and difference can be performed upon
folders. A user’s query intersecting two folders is evaluated
to produce a new folder containing documents which
belong to both of them. For example, “April and database”
folder contains a set of documents related to database
technology and created in April. Further, set operations can
help users to discover important documents as common
knowledge. We can create a set of common documents by
intersecting “retailer” and “manufacturer” folders (See
Figure 1).

In contrast to simple documents, a compound document
is implemented as a special folder containing related
documents such as texts and images as its components.

169

Compound document folders are also document objects
and given object identifiers like simple documents. They
are handled similar to simple documents. For instance, we
can obtain texts and images within a hard-copy document
by using OCR systems. Then they are analyzed by
dedicated analyzers, such as keyword abstracters and
feature abstracters, and are checked in document
warehouses as compound document folders. They are
inserted into document folders. They are retrieved based
both on keywords and contents. For instance, we assume
that compound documents have both keywords of
component texts and features of component images. If the
user retrieves documents by keywords of texts, the system
returns images associated with matching texts at the same
time and vice versa.

In some applications, a compound document consists of
a form and an email. If a form is filled in, an email is sent
to a person in charge. These business rules are
implemented by attaching ECA rules to compound
documents.

2.2 Approach to texts
Now we concretely discuss an approach to text data

management, focusing on HTML page management. First,
mapping between text contents and formats such as HTML,
SGML is necessary. We resolve such heterogeneity by
using polymorphism of objects [3]. Moreover, we need to
allow users to acquire texts and reorganize them for further
distribution. To this end, we provide HTML page
management by databases including storage and retrieval.
The system abstracts keywords from texts of collected
HTML pages automatically and stores keywords and URL
associated with texts into databases. Either HTML texts
themselves, or only their file names and URL are stored in
databases. In-line images as components of HTML texts
are also stored by databases. The system adds URL, file
names, titles, anchor character strings (i.e., links), data
types (e.g., GIF, JPEG) as default keywords. The user can
delete or add favorite keywords. We prefer the recall ratio
to the precision ration of keyword-based retrieval.
Relatively-addressed links (i.e., URL) are transformed to
absolutely-addressed links. The users can retrieve pages or
components by a wide variety of keywords and drag and
drop retrieved pages and components into work pages to
create new home pages in a WYSIWYG fashion. Content-
based retrieval of texts is facilitated by using a full text
search engine. Of course, if classification rules specifying
correspondence among folders and keywords are attached
to folders, then texts are classified into appropriate folders
based on keywords analyzed in the above way.

Figure 2. Retrieval map as a result of SOM-based clustering

Now we describe logical clustering by using texts as an
example. Ease of data acquisition through WWW, however,
makes the size of collected data unmanageable for the user.
Keyword-based retrieval alone is not sufficient. So we
logically cluster texts to enable similarity-based
navigational search for document exploration. The system
automatically abstracts keywords from collected HTML or
SGML texts. Then the system chooses most frequent 100
keywords contained by a set of texts and places each text in
the information space of 100 dimensions ranging from
having the corresponding keyword to not having it. The
system uses a Self-Organizing Map (SOM) [6] technique to
logically cluster a set of collected texts into the given
number of groups in the retrieval space of manageable
dimensions. The system displays the structured map by
using 2-D or 3-D graphics such as VRML. The user can
retrieve texts by navigating a 2-D or 3-D user interface
(See Figure 2). We use SOM because it helps to reduce
high dimensions of characteristic vectors and map data into
a 2-D or 3-D GUI.

More and more XML texts have been published on
WWW. XML texts are of course documents in our sense.
However, some kinds of XML texts should be viewed as
records or objects of databases and be rather called XML
data. In other words, XML data scattered over various
WEB sites can be distributed databases in general terms.
Therefore, we must provide a query facility over
distributed XML data. We devise an XML data query
language and an XML data view facility based on the query
language for customizing XML data and packaging
business rules.

The user defines XML data view rules by specifying

170

target and condition parts of a query. The basic unit of an
XML data query is an extended tag expression. It is an
URL plus document names followed by a series of tag
names. In the condition part, the user compares extended
tag expressions with constant values or other extended tag
expressions. The latter case is similar to RDB join
predicates. In the target part, the user specifies how to bind
query results to client applications. The target specification
includes inserting to folders, listing, embedding to spread
sheets, and other report generation. For example, this rule
compares financial results of 1996 and 1997 stored in local
and official sites company by company and displays the
results as lists (See Figure 3).

Condition:

A B C
1 URL/Report.Accounts
2 Year = 1997
3 Company = A4.Company
4 local/Report.Accounts
5 Year = 1996
6 Company

Figure 3. XML data view rule

In our temporary implementation, XML data view rules
are specified like spread sheet applications. The XML data
view rules are parsed and translated into an XML data
query (See Figure 4). The system further translates the
query into local and global queries and optimizes an
execution sequence of access methods. The index manager
creates and maintains appropriate indices for each tag such
as hash or B-tree. The system uses meta data expressed as
XML data, such as data size and update time, for
optimization if any.

2.3 Approach to videos and images
Logical video contents need semantic description of

contents, that is, what are recorded. Moreover, logical
contents are recorded in several ways, that is, in CODEC
such as MPEG and Motion JPEG, and in quality such as
frame sizes and rates. Long-duration play of whole video
streams is not always required. Users should rather have
partial access to video streams in order to jump to only
their necessary portions. We allow users to access to video
streams with uniform interfaces independent of CODEC by
using polymorphism of objects.

To facilitate interactive retrieval of multimedia, we
enable users to flexibly and efficiently access partial data
such as sub streams of videos by temporal information (e.g.,
temporal intervals), keywords, and other related
information. This technique of subsetting a large amount of
media data is analogous to RDB views. A stream view
selects a subset of logical contents by specifying a time
interval. Keywords are attached to views for keyword-
based retrieval. Feature data, such as figures, colors, and
motion directions, are attached to frames of streams
corresponding to views for content-based retrieval. Logical
contents have several physical streams of different quality,
which are chosen for appropriate QOS control in playback.

Figure 5. Framework for content-based query

We describe methods for feature analysis [5] (See
Figure 5). We use a light-weight technique to segment
scenes and recognize moving objects for content-based
retrieval of stream data. First, the system can detect scene
cuts by using differences in successive frames, such as
motion vectors of macro blocks of MPEG and colors. Thus,
in MPEG coding, we abstract motion vectors of macro
blocks by taking advantage of similarity between
successive frames and make motion compensation by using
such motion vectors. Motion compensation, however,
becomes difficult at the point between successive different
scenes. At the point, macro blocks with no motion
compensation become dominant. So we can detect cuts by

171

checking such macro blocks. To enhance the precision of
cut detection, we use difference of colors between
successive frames as well.

Then the user can define views of streams (i.e., sub
streams) by attaching keywords to such cut scenes.
Keywords of stream views enable association between
video data and other media data such as texts. Further, the
user can define new views recursively by combining
existing stream views. The user can retrieve sub streams
corresponding to views by using such keywords. The
system also chooses representative frames within a scene
and abstracts feature data and stores them into databases.
Please note here that matching with representative frames
can reduce the recall ratio of a content-based query since
feature data, such as colors and layouts, may change even
within a single scene.

Figure 6. GUI for content-based retrieval of videos

The system can also detect moving objects by using
motion vectors of MPEG. The system decreases the
number of colors to more accurately recognize moving
objects. The system also compensates camera work such as
zoom and pan and detects moving objects by using motion
vectors of MPEG. The system stores motion directions in
addition to figures and colors associated with moving
objects as a multi-dimensional index such as R-tree and
Quad-tree. The system allows the user to do content-based
retrieval by using this multi-dimensional index. Thus, the
user can illustrate a sample of user-specified colors, figures,
and motion directions through GUI (See Figure 6). A
sample figure consists of several parts like a car. The
system abstracts feature data from the user-specified
sample. The system uses the largest part, such as a

rightmost green rectangle, as a search key to Quad-tree
indices. Thus, the system selects an appropriate index for
the user-specified direction and searches the primary key
part against the index. The system evaluates the other parts
as additional conditions of a query by using the selected
index. The retrieval results are ranked based on the
similarity of matches and are tiled to display. The system
tiles still images for representative frames of retrieved
video scenes in order of similarity ranks. Then the user can
choose one representative frame and play an associated
scene (See Figure 7). The system allows the users to
retrieve video sub streams containing user-specified
moving objects without any interference from the
background information because the system can distinguish
the moving objects and the backgrounds unlike other
approaches such as QBIC [11.

Figure 7. Result of content-based video retrieval

Next we describe an approach to images as components
of documents. The system abstracts feature data such as
colors and layouts from images like videos. First, the
system divides a given image into several regions
representing different colors by reducing the number of
colors of the image. Next the system approximates each
region by a rectangle (i.e., a bounding box) and store its
color, size, and location within the whole image as a multi-
dimensional index.

The user can retrieve images by specifying a probe
consisting of colored rectangles through GUI similar to that
of video retrieval. In fact, the user cannot specify only
motion in retrieval of images unlike retrieval of videos.
Of course, the system allows the user to retrieve images by
specifying attributes and keywords. Classification rules can

172

be extended for accommodating feature data of images and
videos instead of keywords of texts. The system also allows
logical clustering of images and videos, based on their
feature data.

The system stores features associated with moving
objects and still images as a multi-dimensional index such
as R-tree and Quad-tree. We have implemented these two
methods and have selected the Quad-tree method. The
index creation time of the Quad-tree method is shorter than
that of the R-tree method because the former doesn’t
reconstruct trees in insertion. In a situation, such as
content-based retrieval, where the minimum search range is
fixed, the search time of the two methods is comparable.
We have implemented a three-dimensional index to
represent three primitive color coefficients of figures. In
our current implementation, we have not included a
dimension for the direction of moving objects. Instead, we
use eight indices for eight motion directions such as, up,
down, left, right, and their middles. Each index has three
dimensions corresponding to three primary color
coefficients of objects moving in the same direction. In still
image retrieval, we use only one index.

2.4 Approach to multimedia query
In real situations, single use of a retrieval facility such as

keyword-based or content-based retrieval facilities is
insufficient for retrieving necessary multimedia documents
only. Thus, we need integrated use of various facilities.
We take two complimentary approaches to this issue.
One approach is that we allow users to refine queries in a
step-wise fashion by applying keyword-based retrieval and
content-based retrieval facilities in succession. This
approach is useful if texts are related to whole video
streams. Another approach is that we relate texts and
video streams portion by portion and allow bidirectional
direct access. This is useful if audio data of video streams
can be transcribed into texts and parts of texts and video
streams can be interrelated on a time basis.

We discuss about synergy between mutimedia data and
that between OODB and document management. All data
handled by document warehouses are represented as
objects managed by OODB. Both keyword-based and
content-based retrieval of media data such as texts, images,
and videos, produces a subset of objects. Clustering of
media data from both a keyword and feature point of view
also makes a subset of objects. Therefore, combination of
such facilities helps to refine search results.

The user can relate texts, images, and videos either by
attaching explicit links, making compound documents, or
time-based joining. In particular, we cut video data by a
minute and translate audio data of a little longer than a
minute into texts by using a voice-recognition system. We
relate video and text data based on time codes.

We directly use query processing of underlying OODB
for attribute-based retrieval of media data. Keyword
indices of text data and content-based indices of image and
video data are B-trees or Quad-trees implemented as
applications of OODB although we don’t use query
processing of OODB directly. Further, we could add a full-
text retrieval engine as an application of OODB.

3. Conclusion
In this paper, we have proposed a document warehouse

for corporate-wide multimedia document sharing and reuse,
based on an object-oriented multimedia database system.
We have implemented a prototype document warehouse
system to verify the proposed approach. This prototype
supports management of simple and compound documents,
keyword-based and content-based retrieval, rule-based
classification, SOM-based clustering, and XML data query
and view rules.

Our system is unique in its enabling technologies: Its
document model is based on objects and folders, and its
classification uses ECA rules, and its content-based
retrieval focuses on object motion. In particular, its XML
data query and view rule facility is totally new. Further, our
document warehouse framework integrating the various
facilities has no comparable work to our knowledge. It
has been applied to in-house applications and has proved to
be effective. We plan to enhance the functionality and
performance of our system in order to make the system
applicable to industrial applications.

References
[l] Flickner, M. et al: Query by Image and Video Content: The
QBIC System, IEEE Computer Vol.28, no.9, 1995, pp.23-32.
[2] Ishikawa, H., et al.: An Active Object-Oriented Database: A
Multi-Paradigm Approach to Constraint Management, Proc. the
19th VLDB Conference, pp.467-478 (1993).
[3] Ishikawa, H., et al.: An Object-Oriented Database System
Jasmine: Implementation, Application, and Extension., IEEE
Trans. Knowledge and Data Engineering, vol. 8, no. 2, pp.285-
304 (1996).
[4] Ishikawa, H., et al.: An Extended Object-Oriented Database
Approach to Networked Multimedia Applications. Proc. IEEE
14th Intl. Conference on Data Engineering, (1998).
[5] Kato, K., Kondo, A., and Ishikawa, H. : Multimedia Database
InfoServer - Script and Video Playback (in Japanese), Proc. 7th
Data engineering Workshop, 1996, pp. 109- 114.
[6] Kohonen, T.: Self-Organizing Maps, Springer-Verlag (1995).

173

