
Toward Tighter Tables

Nathan Hurst, Kim Marriott, and Peter Moulder
Clayton School of Information Technology, Monash University

Clayton, Victoria, Australia

{njh,marriott,pmoulder}@infotech.monash.edu.au

ABSTRACT
Tables are provided in virtually all document formatting systems
and are one of the most powerful and useful design elements in
current web document standards. Unfortunately, optimal layout of
tables which contain text is NP-hard for reasonable layout require-
ments such as minimizing table height for a given width [1]. We
present two new independently-applicable techniques for table lay-
out. The first technique is to solve a continuous approximation
to the original layout problem by using a constant-area approxi-
mation of the cell content combined with a minimum width and
height for the cell. The second technique starts by setting each col-
umn to its narrowest possible width and then iteratively reduces the
height of the table by judiciously widening its columns. This sec-
ond technique uses the actual text and line-break rules rather than
the constant-area approximation used by the first technique. We
also investigate two hybrid approaches both of which use iterative
column widening to improve the quality of an initial solution found
using a different technique. In the first hybrid approach we use the
continuous approximation technique to compute the initial column
widths while in the second hybrid approach a modification of the
HTML table layout algorithm is used to compute the initial widths.
We found that all four techniques are reasonably fast and give sig-
nificantly more compact layout than that of HTML layout engines.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Format and notation—automatic
table layout,heuristics,optimisation

General Terms
Algorithms

Keywords
table layout, optimisation techniques, conic programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’05, November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011 ...$5.00.

1. INTRODUCTION
Tables are provided in virtually all document formatting systems

and are one of the most powerful and useful design elements in
current web document standards such as (X)HTML, CSS and XSL.
Indeed because of their power, tables are frequently (mis)used by
web designers to finely control page layout, not just to display tab-
ular information.

Unfortunately automatic layout of tables which contain text is
not an easy task. Both Wang and Wood [11] and Anderson and
Sobti [1] have proven that table layout with text is NP-hard. The
underlying reason is that if a cell contains text then this implicitly
constrains the cell to take one of a discrete number of possible con-
figurations corresponding to different numbers of lines of text. It
is not too surprising that it is NP-hard to find which combination
of these discrete configurations best satisfies reasonable layout re-
quirements such as minimizing table height for a given width.

For this reason most document formatting systems require the
author to control column width in tables containing text, something
that turns table formatting into a tedious chore. However, in on-
line documents it is not practical to require the author to exactly
fix table column widths at document authoring time since the table
layout needs to adjust to different width viewing environments and
to different text sizes since, for instance, the viewer may choose a
larger font, or some of the text may be generated dynamically. Thus
in the current (X)HTML, CSS and XSL table specification, authors
do not need to precisely specify width of table columns, instead the
author may allow these to adapt to the viewing context while still
preserving the general design intended by the author.

Unfortunately, standard automatic table layout engines for HTML,
CSS and XSL can give poor layout for tables containing signifi-
cant amounts of text or multi-column or multi-row cells. Here we
present four new approaches to table layout all of which are rea-
sonably fast and give better layout than current HTML engines. As
an example consider the three tables shown in Figure 1 which com-
pare table layout using Mozilla against the layout we obtain with
one of our approaches.

The key insight behind our first approach is that at least for cells
with more than a few words of text the cell configurations can be
approximated by a continuous (non-linear) constraint that the cell is
large enough to contain the area of its contents. As some evidence
for this claim we have plotted the area of the paragraph divided by
the text area against paragraph width for all minimal text configu-
rations for the complete works of the Australian poet, C.J. Dennis
(some 154 paragraphs with about 20,000 words.) Note that the text
area is the area of the text when laid out in a single line. The re-
sults are shown in Figure 2. It is clear that area approximation is
accurate except when the cell is very narrow.

Example 2n2-linear is a very simple table of two cells, demonstrating that our methods can give more compact
layout even for very simple tables

Example multipara has two cells with identical text except that one of them contains line breaks and demonstrates
the HTML algorithm’s poor handling of multi-paragraph text

Example simple-brick demonstrates Mozilla’s poor handling of compound cells. Note that the table has 3 columns
but because the middle column has no non-compound cells, Mozilla assigns it zero width as is allowed by the
HTML algorithm

Figure 1: Three example tables comparing layout using Mozilla (on the left) with our first hybrid approach (on the right).

0 200 400 600 800 1000 1200 1400

width of column

0.8

1.0

1.2

1.4

1.6

1.8

2.0

s
c
a
le

d
 a

r
e
a
 o

f
t
e
x
t

Figure 2: Plot of actual paragraph area divided by text area
as a function of paragraph width for the complete works of the
Australian poet, C.J. Dennis.

This suggests an approach in which we first solve a continuous
approximation to the original layout problem which has minimum
values for the column widths and row heights reflecting minimum
cell widths and text height but rather than requiring each cell to be
big enough to contain its contents we instead require that it is large
enough to contain the area of its contents. We then find a solution
to the original problem by setting the column widths to their value
in the optimal solution to the continuous table layout problem and
laying out the text in each cell and setting the row heights to the
minimum value respecting the constraints. The advantage of ap-
proximating the table layout problem by a continuous constrained
optimisation problem is that this is easier to solve than the original
NP-hard problem, and, as we show, can be solved in polynomial
time using conic programming. We call this approach area approx-
imation.

Our second approach, which we call iterative column widening,
starts by setting each column to its narrowest possible value by tak-
ing into account minimum widths for each of the cells in the table

and then iteratively reducing the height of a row (and hence the ta-
ble) by judiciously widening table columns. Efficient implementa-
tion of iterative column widening requires efficient computation of
the next shortest cell configuration, i.e. the minimum width which
allows the text in a cell to be laid out in one less line. We give
a simple, linear time dynamic programming algorithm to compute
this.

Our third approach combines the previous two approaches in a
hybrid algorithm in which we first solve the continuous approxima-
tion to the original layout problem and then, in a second phase, use
iterative column widening to improve this solution.

Our fourth approach is a variant of this hybrid approach in which
we use a modification to HTML’s ‘Autolayout Algorithm’ [9] to
compute the initial column widths and then use iterative column
widening.

It is worth noting that good automatic table layout will have
greater importance for at least three reasons. First, it is increas-
ingly common for document content to be generated dynamically,
for instance from a database. In such cases web designers can only
provide a default layout since they do not have detailed knowledge
of the document content. Second, the range of devices used to
view web-pages has increased enormously, and the same document
needs to look good when viewed using a laptop, PDA, or a wall-
mounted video display. Third, material on the web is increasingly
being used as the primary source for production quality printing
etc. The requirements for print-media based layout are much more
stringent than for on-line viewing. This is confounded by the dif-
ferent page sizes used in different countries, e.g. US letter in the
US and A4 in Australia.

Another application of our work is for better, more powerful ta-
ble layout in document formatting systems such as LATEX and word
processors. Also our techniques can be used to improve format-
ting of spreadsheets for printing on fixed size pages. Existing tools
do quite badly, often resulting in a single column being printed on
an extra page. The techniques presented here can be used to ef-
ficiently choose between portrait and landscape, and to determine
the minimum number of pages to use.

This is not the first paper to model table layout as constrained
optimisation. Beach’s thesis [4] presented the table layout prob-
lem formally. Wang and Wood [11] investigated the problem of

semantic modelling of tables and presented a branch and bound al-
gorithm, accelerated with a polynomial-time greedy algorithm. The
iterative widening algorithm is related to Wang and Wood’s [11]
greedy algorithm. One difference is that we are interested in min-
imising an objective function (the table height) rather than just find-
ing the first solution which satisfies the constraints. The second
difference is that our algorithm is a heuristic, it never uses a branch
and bound search.

Anderson and Sobti [1] provide further analysis of the complex-
ity of the table layout problem and give an efficient algorithm for
generating all minimal configurations for a text cell. They investi-
gate a linear programming approximation to the problem in which
the convex hull of the configurations is modelled as a conjunction
of linear constraints. This is related to the area approximation algo-
rithm. Their approach has the disadvantage that all minimal config-
urations for each text cell must be computed and then their convex
hull. Since the number of minimal text configurations can be linear
in the number of words in the cell this is expensive and can lead
to a linear program which has a linear number of constraints in the
number of words in the table.

Other related work includes that of Borning et al [5, 6, 3] who
allowed the designer to specify required and preferred linear arith-
metic constraints over column widths. A linear constraint solver is
then used to determine column widths.

2. THE TABLE LAYOUT PROBLEM
We first formalise the table layout problem. We assume through-

out this paper that the table of interest has n columns and m rows
and that wc is the width of column c and hr the height of row
r. The designer must specify how the grid elements of the ta-
ble are partitioned into logical elements or cells. We call this the
table structure. We distinguish between simple and compound
cells. A simple cell is a single grid element (i.e. it spans a sin-
gle row and column of the table) while a compound cell consists
of multiple grid elements forming a rectangle, i.e. the grid ele-
ments span contiguous rows and columns. If d is a cell we define
rows(d) to be the set of rows spanned by d and cols(d) to be the
set of columns spanned by d. We let bottom(d) = maxrows(d)
and right(d) = maxcols(d). Each cell d has a minimum width,
minwidth(d), which is the length of the longest word in the cell, a
minimum height, minheight(d), which is the height of the highest
word, and a line width linewidth(d) which is the length of the cell
contents when laid out in a single line.

Designer constraints specify relationships between the column
widths and/or row heights. These are specific to a particular table
and of kind:

• fixed size for selected column widths1

• lower bounds on selected column widths or row heights

• fixed ratios between selected column widths

The final aspect to table layout is the layout style. This captures
what is required in a good layout and is generic, capturing a partic-
ular kind of style objective. We shall focus on the minimum height
layout style: Given a page width find a layout for the table that, in
decreasing order of importance, is no wider than the page width,
minimizes table height, and minimizes table width.

The table layout problem is, given a table structure and content
for the table cells, some designer constraints and a layout style,
to find an assignment to the column widths and row heights s.t.:
1Note that specifying that a table column is x% of the page width
is a fixed size constraint

(a) the cells are large enough to contain their content; (b) the de-
signer constraints are satisfied; and (c) the layout style is satisfied.
In the case of conflict, these are in order of decreasing importance.

The main reason for this choice of features is that it generalises
tables provided in standard document processing software includ-
ing HTML.

HTML 4.0, CSS 2 and XSL provide similar table formalisms.
The designer can specify the table as a collection of simple and
compound rectangular cells. They can specify that a column has
an absolute width, such as 200 pixels; or a percentage width rela-
tive to the width of the table (in CSS2 and XSL) or of the object
surrounding the table (in HTML). They can also specify the width
of the table in this way. HTML allows the designer to specify that
a column should have width that is some fixed ratio of the special
width “*”.

The suggested layout algorithm for HTML tables is quite com-
plex [9] but essentially works as follows. The effect is to try and
minimize table height for a particular width. The minimum width
for a column is just the maximum of the minimum widths of the
cells in the column while the line width is the maximum of the line
widths of the cells in the column. For multi-column cells the line
width is split between the columns, exactly how is left to the imple-
mentation. Fixed width columns are given the size specified by the
user. The widths of the unfixed width columns are scaled to fit the
remaining width. The scaling for each column is proportional to the
difference between the column’s line width and minimum width :
thus the line width is regarded as the column’s desired width but no
column will have its width scaled below its minimum width. Once
the column widths are computed the cell contents are placed in the
cells and the minimum height of each cell computed. A greedy text
layout algorithm is used to place text. The row height is set to the
maximum of the row’s cell heights.

As we have seen, this approach can give quite bad layout if a cell
contains more than one paragraph, or the table has multi-column or
multi-row cells.

3. AREA APPROXIMATION
The main idea behind our first approach to table layout is that

for cells with more than a few words of text the cell configurations
can be approximated by a continuous (non-linear) constraint that
the cell is large enough to contain the area of its contents. We solve
a continuous approximation to the original layout problem which
has the same designer constraints and layout style as the original
problem but rather than requiring a cell to be big enough to contain
its textual content we instead require that for each cell d

area(d)≤ (∑
r∈rows(d)

hr)× (∑
c∈cols(d)

wc) (1)

where area(d) is the area of the contents of d. In the case of text
this includes the area of the words and a separator between adjacent
words. We also add linear constraints to ensure that a cell is wider
than its longest word and taller than its highest word. We call such
a problem the continuous table layout problem.

We solve the continuous layout problem to determine the column
widths in the original problem and then layout the text in each cell
to determine the minimum height of the rows. This is similar to
how HTML layout is performed once column widths have been
determined.

A constrained optimisation problem is said to be a convex pro-
gramming problem if the objective function is convex and the so-
lutions to the constraints form a convex set, i.e. any point between
two solutions is also a solution. Convex programming problems
have the important property that any locally optimal solution is a

globally optimal solution [7], which makes them considerably eas-
ier to solve than non-convex problems. Fortunately:

LEMMA 1. The continuous table layout problem is a convex
programming problem

This follows because we can rewrite the problem into a linear pro-
gram plus a conjunction of simple area constraints of the form
c≤ x×y where x and y are constrained to be the sum of the column
widths and row heights respectively. Now such constraints are con-
vex as are linear constraints, so the conjunction of designer con-
straints is convex. Furthermore the minimum height layout style
can be modelled by a linear objective function and so the entire
problem is a convex programming problem.

This result suggests that we can use general purpose mathemati-
cal optimisation techniques for solving convex programming prob-
lems. Unfortunately, neither linear programming nor quadratic pro-
gramming techniques are powerful enough, but we can use a more
powerful technique known as conic programming. Conic program-
ming is a generalisation of quadratic programming that allows cer-
tain curved constraints. Conic programs can be solved in polyno-
mial time using recently developed interior point methods. These
methods have reached sufficient maturity to provide a practical, ef-
ficient approach for solving such problems. For more details we
refer the reader to [10].

We have used the Mosek conic programming optimisation kit [2].
This solves problems of the following form: The first part of the
problem is a standard linear program over the variables x1, . . . ,xn.
This consists of a linear objective function to be minimised, an op-
tional lower and upper bound for each variable xi and a conjunction
of linear inequality constraints over the xi each of which has form:
l ≤∑

n
i=1 aixi ≤ u. Observe that if the lower bound l and upperbound

u are equal then this is an equality. The second part of a conic pro-
gram is a conjunction of “cone” constraints each of which is over
a different set of variables y1, . . . ,ync a subset of x1, . . . ,xn. A cone
has one of two forms:

y1 ≥

√√√√ nc

∑
j=2

y2
j or 2 · y1 · y2 ≥

nc

∑
j=3

y2
j .

A variable can appear in at most one cone constraint, but they can
be effectively placed in multiple cones by creating mirror variables
and equating these in the linear constraints.

It is relatively simple to model the continuous table layout prob-
lem as a conic program of the above form. The basic area constraint
for cell d given in Equation 1 can be modelled using the second
form of cone over three variables x1,x2,x3:

2 · x1 · x2 ≥
3

∑
j=3

x2
3

with linear constraints equating

x1 = ∑
r∈rows(d)

hr and x2 = ∑
c∈cols(d)

wc

and setting both the lower and upper bound of x3 to
√

2 ·area(d).
Since arbitrary linear constraints over the row and column vari-

ables are allowed in the conic program it is simple to model de-
signer constraints such as fixed size, minimum width or height,
or fixed ratios between column widths. Modelling the minimum
height layout style is also simple: The objective function to be min-
imised is ∑

m
r=1 hr and we add the constraint

0 ≤
n

∑
c=1

wc ≤ table width

to ensure the table is no wider than the maximum allowed width.

A simple example is a 2x2 table with two single cells in the first
row and a 2-column compound cell on the second row:

w1 w2
h1 A1 A2
h2 A3

We have three constraints we need satisfied:

h1 ·w1 ≥ A1, h1 ·w2 ≥ A2, h2 · (w1 +w2)≥ A3

The first step is to transform the compound cells into simple cells
using a linear transformation. We construct a variable w = w1 +w2
for the compound cell and a variable for each area term. We also
need a separate variable for each extra use of a row or column,
in this case we introduce h1,1 and h1,2 as aliases for h1. Finally,
we construct the special “constant” variables ai which provides the
area constraint bound. The complete set of variables and bounds is

0 ≤ h1, 0 ≤ h1,1, 0 ≤ h1,2, 0 ≤ h2,

0 ≤ w1, 0 ≤ w2, 0 ≤ w,
√

2 ·A1 ≤ a1 ≤
√

2 ·A1,√
2 ·A2 ≤ a2 ≤

√
2 ·A2,√

2 ·A3 ≤ a3 ≤
√

2 ·A3

(In our code we actually create a separate variable for each row and
column variable each time we use them, but this clutters things.)

We have 3 cones, one for each cell:

2 ·h1,1 ·w1 ≥ a2
1, 2 ·h1,2 ·w2 ≥ a2

2, 2 ·h2 ·w ≥ a2
3

which are linked using the linear constraints:

0 ≤ h1−h1,1 ≤ 0
0 ≤ h1−h1,2 ≤ 0
0 ≤ w−w1−w2 ≤ 0
0 ≤ w1 +w2 ≤ table width

And our objective function to be minimised is h1 +h2.
One of the main strengths of using conic programming to solve

the continuous table approximation problem is that, because it al-
lows arbitrary linear constraints, it is straightforward to handle more
complex designer constraints such as fixed aspect ratios for cells,
maximum widths on cells or columns, and fixed ratios between cell
height and widths (including compound cells) rather than just be-
tween columns and rows. It is also simple to handle different layout
styles, such as minimizing table width for a given height, or finding
the most compact layout for a given aspect ratio since these can be
couched as minimising a linear objective function. Furthermore,
embedded tables are naturally treated as just another kind of cell
with a minimum area, width and height constraint. One extension
that cannot be handled is to allow non-rectangular compound cells:
this leads to a non-convex problem, which cannot be modelled with
conic programming alone.

4. ITERATIVE COLUMN WIDENING
Our second approach to table layout starts by setting each col-

umn to its narrowest possible value by taking into account mini-
mum widths for each of the cells in the table and then iteratively
reducing the height of a row and hence the table by judiciously
widening table columns. The detailed algorithm is shown in Fig-
ure 3. For simplicity we first ignore designer constraints.

The algorithm relies on two functions for computing informa-
tion about minimal text configurations for cells. The first func-
tion, min height(d,φ ,ψ), returns the minimum height for the row
bottom(d) that allows the contents of cell d to fit given width φ(wc)

column-widening(max width)
φ := minimum-col-widths()
ψ := compute-row-heights(φ)
(φ ,ψ) = reduce-table-height(φ ,ψ , max width)
return (φ ,ψ)

minimum-col-widths()
for each column c = 1, ...,n do

cells c := {d | d a cell s.t. right(d) = c}
min width := max {0}∪

{minwidth(d)−∑c∈cols(d)\{right(d)} φ(wc) | d ∈ cells c}
φ := φ [wc 7→ min width]

end for
return φ

compute-col-widths(ψ)
φ := []
for each column c = 1, ...,n do

cells c := {d | d a cell s.t. right(d) = c}
min width := max {0}∪{min width(d,φ ,ψ) | d ∈ cells c}
φ := φ [wc 7→ min width]

end for
return φ

reduce-table-height(φ ,ψ , max width)
repeat

current width := ∑
n
c=1 φ(wc)

current height := ∑
m
r=1 ψ(hr)

best := 0
best score := 0
for each row r = 1, ...,m do

cells r := {d | d a cell s.t. bottom(d) = r}
min height r := max {0}∪

{minheight(d)−∑r′∈rows(d)\{bottom(d)}ψ(hr′) | d ∈ cells r}
if min height r ≤ ψ(hr)− ε then

ψ ′ := ψ[hr 7→ ψ(hr)− ε]
φ ′ := compute-col-widths(ψ ′)
ψ ′ := compute-row-heights(φ ′)
new width := ∑

n
c=1 φ ′(wc)

new height := ∑
m
r=1 ψ ′(hr)

score := current height−new height
new width−current width+1

if score > best score and new width ≤ max width then
best := r
best score := score

end if
end if

end for
if best = 0 then return (φ ,ψ) end if
ψ := ψ[hbest 7→ ψ(hbest)− ε]
φ := compute-col-widths(ψ)
ψ := compute-row-heights(φ)

forever

Figure 3: Iterative column widening table layout algorithm

for all columns c ∈ cols(d) and height ψ(hr) for the other rows r ∈
rows(d)\{bottom(d)}. The second function min width(d,φ ,ψ) is
dual to min height. It returns the minimum width for the column
right(d) that allows the contents of cell d to fit given height ψ(hr)
for the rows r ∈ rows(d) and widths φ(wc) for the other columns
c ∈ cols(d) \ {right(d)}. Efficient implementation of min width
and min height is important for the efficiency of this approach and
is discussed in Section 6.

Using min width it is simple to define compute-col-widths which
takes an assignment to the row heights ψ and computes the mini-
mum width for each column which allows the cell contents to fit
in each column for the given row heights. The only subtlety is
the treatment of compound cells: they are only considered when
the rightmost column in the compound cell is reached. Dually,
compute-row-heights can be defined in terms of min height. For
brevity we do not include the code for compute-row-heights.

The function minimum-col-widths is similar to compute-col-widths
but instead of using min width to compute the minimum width of
the cell for a particular row height assignment it uses the mini-
mum allowed width for each cell in order to determine the mini-
mum width for each column.

The main function column-widening(max width) takes a table
and the maximum desired width for the table. The algorithm starts
by computing the narrowest possible width for each column and
then, given these widths, the minimum height for each row in the
table. The core part of layout is performed by the function reduce-
table-height. This iteratively improves the current configuration for
the table by choosing a row and reducing the height of that row by
widening some columns. This is repeated until it is no longer pos-
sible to reduce the height of any row without violating the maxi-
mum width for the table. At each step we use a heuristic to choose
which row should have its height decreased. The for-loop inside
the main loop does this. It uses compute-col-widths followed by
compute-row-heights to compute for each row j a new configura-
tion (φ ′,ψ ′) for the table in which row j’s height is strictly less by
at least ε and the height of no other row increases. Note that this is
not always possible since the minimum height for a row may have
been reached. If the new configuration is valid, i.e. not too wide,
a score for its utility is computed. We simply compute the ratio of
height reduction to increased table width but more complex scoring
mechanisms are also possible. The row with the greatest score is
chosen for height reduction.

It is reasonably straightforward to extend the algorithm to handle
designer constraints (although we have not yet done so.) For ratio
constraints we can collapse columns constrained to be in a fixed
ratio to a single column. The only trick is that such columns now
have a multiplier for each cell indicating their effective width or
height.

In the case of minimum width or height constraints we simply
modify compute-row-heights and compute-col-widths so that they
never set a row or column (respectively) to a value less than the
minimum.

Fixed width columns are a little more difficult. The first issue is
that we do not want a column with fixed size to be at the right of a
compound cell since this will mean that we cannot expand the cell
properly. Instead we use an ordering on columns in which the first
columns are those of fixed width and the term “right” refers to the
maximum column in the cell with respect to this new ordering. We
must then modify compute-col-widths so that it always sets a fixed
width column to its desired width.

We believe it is possible to extend the iterative column widen-
ing algorithm to handle other designer constraints and table design
styles, but at the risk of making the algorithm more complex and

somewhat ad hoc. Unlike conic programming, iterative column
widening does appear to generalise to non-rectangular compound
cells. We plan to investigate this further. It also appears reasonably
simple to handle embedded tables: they behave just like text cells
having a set of minimal configurations which the algorithm iterates
through.

We also note that the algorithm definition given here is poten-
tially quite inefficient since at each step we may recompute many
things, in particular cell configurations. Our actual implementation
uses caching to improve efficiency.

5. TWO HYBRID ALGORITHMS
Iterative column widening is actually a general heuristic for im-

proving table layout given any initial width for the columns. Thus
is can be used as second phase with say the HTML layout algo-
rithm or with the Area Approximation Algorithm. Importantly, it is
an any time optimisation algorithm–it can be stopped at any point
in time and the current configuration will be a valid table layout
which is better than the initial layout, although it may be less than
optimal. We have therefore investigated two hybrid approaches to
table layout.

In the first hybrid approach we use the Area Approximation Al-
gorithm to compute column widths and then improve this with
the Column Widening Algorithm. More exactly, the second phase
takes the solution θ to the continuous approximation of a table lay-
out problem. We assume that θ makes each cell at least as wide
as the cell’s minimum width. We first set the column widths φ to
[wi 7→ θ(wi) | i = 1, . . . ,n] and compute the row heights ψ using
compute-row-heights. We now narrow the column widths ψ ′ by
using compute-col-heights and then call reduce-table-height with
φ and ψ to improve this layout.

An example is shown in Figure 4. The example shows how this
second phase reduces the height of the table by two lines.

In our second hybrid approach we use a variant of the HTML al-
gorithm to compute the initial column widths rather than the Area
Approximation Algorithm. Our variant uses the function minimum-
col-widths from Figure 3 to compute the minimum column widths
and the obvious modification to this function (in which the call to
minwidth(d) is replaced by linewidth(d)) to compute the line width
for each column. This is in accord with the HTML specification
since it has the same behaviour for non multi-column cells but we
believe gives better, more principled behaviour for multi-column
cells than do standard implementations of the HTML table layout
algorithm.

6. EFFICIENT COMPUTATION OF MINI-
MAL CELL CONFIGURATIONS

Efficient implementation of min width and min height is impor-
tant for good performance of the Iterative Column Widening Algo-
rithm and the two hybrid algorithms. These compute the narrowest
(shortest) minimal configuration for the cell which is less than a
given height (width) respectively, where a minimal configuration
is a pair (w,h) s.t. the cell contents can be laid out in a rectangle
with width w and height h but there is no smaller pair that fits the
contents, i.e. for all w′ ≤ w and h′ ≤ h, either h = h′ and w = w′, or
the cell contents do not fit in a rectangle with width w′ and height
h′.

In the case of images, there is only one such minimal configura-
tion, so this is easy; but for text with uniform height with n words
there are up to n minimal configurations with each corresponding to
a different number of lines, while for text with non-uniform height
there may be O(n2) minimal configurations. Currently our imple-

mentation only handles cells with text of uniform height but we are
extending it to handle non-uniform height text.

Given a fixed width for a rectangular cell it is reasonably simple
to compute the minimum height for the cell which will allow the
cell’s text to fit in. For text with uniform height a quick and sim-
ple way is to use a greedy algorithm for text layout in which text
is placed sequentially upon each line until it is full. This has lin-
ear complexity. 2 In the case of text with non-uniform height, the
greedy text layout algorithm will compute the minimum number
of lines required but may not compute the minimum height. For
computing minimal height for text with non-uniform height, it is
possible to use a variant of the dynamic programming algorithm of
Knuth–Plass [8] for computing optimal line breaking in paragraphs.

Computing a cell’s minimum width for a fixed height is less easy.
However in our context we are primarily interested in computing
the next shortest configuration. This suggests that we actually need
an efficient algorithm that, given a minimal configuration (w,h) for
a cell d, will compute the next shorter minimal configuration, i.e.
the tallest minimal configuration (w′,h′) for d s.t. h′ < h. This
allows us to incrementally compute the minimal configurations as
needed.

The obvious approach to compute the next shorter minimal con-
figuration is to start with the configuration (w,h) and compute the
layout for width w with the greedy algorithm and then determine
the minimal increase to the width, say e, that will allow an extra
word to fit on some line in the layout. Next increase w to w+e and
compute the layout again, continuing this widening process until
the number of lines decreases in which case the next shorter mini-
mal configuration has been reached.

However, we have found a more efficient method. Figure 5 gives
a function next-shorter-cell-configuration for computing the next
shorter minimal configuration for a cell in linear time assuming
the text has uniform height. Note that for simplicity we assume
a mono-spaced font but it is straightforward to handle non mono-
spaced fonts. We assume that there are n words and that the array
width[w] contains the width of word w. The algorithm starts from
the layout computed by the greedy layout algorithm for the cur-
rent width cwidth. We assume that the layout has lastLine lines
and that the array lineStart[L] gives the index of the word start-
ing line L. The algorithm uses dynamic programming to compute
minWidth[w] which gives the narrowest width required to layout
words w . . .n in less lines than the current configuration assuming
that a line now starts at w, i.e., if w is on line L then the minimum
width required to layout words w . . .n in no more than lastline−L
lines. Actually if this narrowest width is less than cwidth we do not
compute it exactly but rather set minWidth[w] to cwidth since the
exact value will be ignored as we know that the final value must be
greater than cwidth. The algorithm works backwards from the last
line. Clearly, minWidth[1] is the width of the next shorter minimal
configuration.

As an example, consider the following text laid out in a width of
15. For simplicity we have used a mono-spaced font. The words
are annotated with their index.

It1 was,2 indeed,3

delightful4 to5

2We note that Anderson and Sobti [1] sketch a rather complex al-
gorithm for finding the minimal height for a cell in, as best we
understand, O(n1/2) time where there are n words although this re-
quires a once-off pre-computation which takes O(n3/2 logm) time
where m is the length of the longest word. They use this to com-
pute all minimal configurations in, we believe, O(n3/2 logN) time
where n is the number of words and N the text length.

THE UGLY DUCKLING

The corn-fields and
meadows were
surrounded by large
forests, in the midst
of which were deep
pools.

The stork
walking about
on his long red
legs chattered
in the Egyptian
language, which
he had learnt
from his
mother.

It was, indeed,
delightful to
walk about in
the country.

IT was lovely summer
weather in the
country, and the
golden corn, the green
oats, and the
haystacks piled up in
the meadows looked
beautiful.

THE UGLY DUCKLING

The corn-fields and
meadows were
surrounded by large
forests, in the
midst of which were
deep pools.

The stork
walking about
on his long red
legs chattered
in the Egyptian
language, which
he had learnt
from his
mother.

It was, indeed,
delightful to
walk about in
the country.

IT was lovely
summer weather in
the country, and
the golden corn,
the green oats, and
the haystacks piled
up in the meadows
looked beautiful.

THE UGLY DUCKLING

The stork
walking about
on his long red
legs chattered
in the Egyptian
language, which
he had learnt
from his
mother.

It was, indeed,
delightful to
walk about in
the country.

IT was lovely
summer weather in
the country, and
the golden corn,
the green oats, and
the haystacks piled
up in the meadows
looked beautiful.
The corn-fields and
meadows were
surrounded by large
forests, in the
midst of which were
deep pools.

(a) Initial layout resulting from using the
Area Approximation Algorithm. The
arrow above the table gives the maxi-
mum allowed table width and the grey
in each cell shows the approximate cell
area used in the approximation.

(b) Layout after narrowing each column.
The grey box shows the narrowest width
for each cell that does not increase the
row height.

(c) The algorithm computes for each row the
amount needed to widen the columns that will
allow the row height to be decreased by one
line. We show the required column widening
for each row by the grey box in the appropri-
ate cell in the row. The algorithm will choose
to widen the second column since this reduces
the height of the second row (and hence table)
for the smallest increase in table width.

THE UGLY DUCKLING

The stork walking
about on his long
red legs
chattered in the
Egyptian
language, which
he had learnt
from his mother.

It was, indeed,
delightful to
walk about in
the country.

IT was lovely
summer weather in
the country, and
the golden corn,
the green oats, and
the haystacks piled
up in the meadows
looked beautiful.
The corn-fields and
meadows were
surrounded by large
forests, in the
midst of which were
deep pools.

THE UGLY DUCKLING

The stork walking
about on his long
red legs chattered
in the Egyptian
language, which he
had learnt from
his mother.

It was, indeed,
delightful to walk
about in the
country.

IT was lovely
summer weather in
the country, and
the golden corn,
the green oats, and
the haystacks piled
up in the meadows
looked beautiful.
The corn-fields and
meadows were
surrounded by large
forests, in the
midst of which were
deep pools.

(d) The layout after widening the second column. The algo-
rithm recomputes the amount needed to widen the columns
that will allow the row height to be decreased by one line.
This is shown by the grey boxes. Again it will choose to
widen the second column since this reduces the height of the
second row (and hence table) for the smallest increase in ta-
ble width.

(e) The layout after widening the second column again. The grey box
shows the narrowest width for each cell that allows the row height to
be decreased by one line. The main loop of the Iterative Column
Widening Algorithm terminates since it is not possible to reduce the
height of any row by widening the table except by widening it beyond
its maximum width. Thus this is the final layout.

Figure 4: Example of how iterative column widening can be used to improve the table layout generated by the Area Approximation
Algorithm. (Text is from the start of Aesop’s fable “The Ugly Duckling.”)

walk6 about7 in8

the9 country.10

We have that cwidth = 15, lastLine = 4 and lineStart = [1,4,6,9].
The base case will compute minWidth for the words in the last two
lines: in this case the only way to reduce the number of lines is
to place the remaining words in a single line. Thus, minWidth
is set to the length of this line if it is greater than cwidth, oth-
erwise to cwidth. We have that minWidth[10] = minWidth[9] =
minWidth[8] = 15, minWidth[7] = 21 and minWidth[6] = 26.

The algorithm now computes minWidth for the words in the sec-
ond line. w is set to the start of line 2, i.e. 4, and nlw to the
start of line 3, i.e. 6. Basically the idea is to walk nlw along
line 3 to find the best possible line break to end the line start-
ing at w. lineLength is initialised to the length of the line be-
tween w and nlw i.e. the length of line 2 ignoring trailing spaces.
This is 13. Now minWidth[nlw] = 26 so that this tells us that

if we placed the line break at nlw = 6 the width required would
be max(13,26) = 26. We now move nlw along the line to word
7 and appropriately increase lineLength by 1 + width[6] = 5 to
give lineLength = 18. Since minWidth[7] = 21 this tells us that
if we placed the line break at nlw = 7 the width required would be
max(18,21) = 21. We now try nlw = 8. We increment lineLength
by 1+width[7] = 6 to give lineLength = 24. Since minWidth[8] =
15 this tells us that if we placed the line break at nlw = 8 the
width required would be max(24,15) = 24. Since lineLength ≥
minWidth[nlw] we can stop our search since all subsequent val-
ues will be worse since they will have larger values for lineLength.
Thus, minWidth[w] = minWidth[4] is set to min(21,24) = 21. We
now increment w to 5 and appropriately reduce lineLength by 1 +
width[4] so that lineLength continues to be the length of a line
from word w to word nlw. Thus lineLength is 24− 11 = 13. We
do not need to reset nlw to the start of line 3 since we can show
that the best line break for a line starting at w = 5 will always be

next-shorter-cell-configuration()
/* base case merge last line into previous line */
lineLength := width[n]
for w := n downto lineStart[lastLine−1] do

minWidth[w] := max(cwidth, lineLength)
lineLength = lineLength+1+width[w−1]

end for
for L := lastLine−2 downto 1 do

nlw := lineStart[L+1] /* pointer along line L+1 */
/* Initialize lineLength to the width of line L. */
lineLength := width[lineStart[L]]
for w := lineStart[L]+1 to lineStart[L+1]−1 do

lineLength := width[w]+1+ lineLength
end for
for w := lineStart[L] to lineStart[L+1]−1 do

/* lineLength is the width of words w, . . . ,nlw−1. */
while minWidth[nlw] > lineLength and

nlw < lineStart[L+2] do
lineLength := lineLength+1+width[nlw]
nlw := nlw+1

end while
/* Choose whether next line starts at word nlw−1 or nlw. */
minWidth[w] := min(minWidth[nlw−1], lineLength)
lineLength := lineLength− (1+width[w])

end for
end for
return minWidth[1]

Figure 5: Algorithm to compute next shorter minimal configu-
ration for a cell

greater than or equal to that for a line starting at w = 4. For the
current value of nlw = 8 the width required is max(13,15) = 15.
Since 13 < 15 we increment nlw to 9 and increase lineLength to
16. Since nlw = lineStart[4] the while loop terminates and the
minWidth[w] = minWidth[5] = min(15,16) = 15.

The algorithm now processes the words in the first line in a sim-
ilar fashion, obtaining minWidth[1] = 21, minWidth[2] = 21 and
minWidth[3] = 18. Thus the next shorter minimal configuration
has width 21. It is

It was, indeed,

delightful to walk

about in the country.

7. EVALUATION
In this section we compare our four layout algorithms with each

other and also with HTML table layout provided in the Mozilla
browser. We used the proprietary Mosek library [2] for solving
the continuous approximation of the problem and a memoization-
based variant of the algorithm in Figure 5 to compute the minimum
cell width for a particular height. All experiments were conducted
on a 1.2GHz AMD Athlon with 1.5GB RAM.

In our first experiment we took the seven tables shown in Fig-
ures 1, 6, 7 and 8 and laid out the tables using our layout algorithms
and Mozilla. All were laid out with a table width of 800 pixels and
automatic sizing of columns.

For each of our four methods we measured the time required to
layout our example tables. In the case of the hybrid approaches
we give two times: that for computing the initial column widths
using area approximation and our variant of the HTML algorithm,
respectively, and the time taken in the subsequent layout improve-

Example AA ICW AA+ICW HTML-V+ICW
AA ICW HTML-V ICW

2n2-linear 106 3 106 0 0 0
multipara 106 13 107 0 0 0
simple-brick 108 3 107 0 0 0
cs-schedule 111 3 111 0 0 0
diagonal5 109 3 110 0 0 1
columns 116 322 108 12 1 19
plants200 2199 7183 2178 1192 3 424

Table 1: Time taken by Area Approximation (AA), Iter-
ative Column Widening (ICW), the first hybrid approach
(AA+ICW) and the second hybrid approach (HTML-V+ICW)
to layout the example tables. All times are in milliseconds.

Figure 7: The example columns has uneven height multi-row
spanning columns and is a case where we would expect the
simple heuristic used in iterative column widening to perform
badly. Layout using Mozilla is on the left that with the first
hybrid approach on the right.

ment using iterative column widening. The layout times exclude
time taken for table parsing and final rendering. All times are in
milliseconds. The results are shown in Table 1. We have not given
times for Mozilla’s algorithm; we would expect similar times to
those given for our variant of the HTML algorithm, i.e. consider-
ably faster than any of the more complex algorithms presented in
this paper.

We see that iterative column widening is considerably faster than
the area approximation approach in all but the last two examples.
This is not too surprising, since conic programming has substantial
overhead and so can be expected to be relatively slow when solving
small problems while the second last example, columns, was cho-
sen as a pathological case for iterative column widening and in the
case of the last example, plants200, the large number of rows slows
iterative column widening considerably.

As one would expect starting iterative column widening from
initial column widths computed using either area approximation or
our HTML-variant significantly reduces the time taken for iterative
column widening. Of course our second hybrid version which uses
the HTML-variant is faster than the first using area approximation.
Indeed, the hybrid method using our HTML variant is the fastest
method and handles even large tables like plants200 in less than
0.5 seconds.

Example cs-schedule is based on an example from [11], showing a cycle among compound cells

Example diagonal5 has a simple solution to its continuous approximation, and was chosen to test how closely this
continuous solution matches the final solution

Figure 6: Two more example tables comparing layout using Mozilla (on the left) with our first hybrid approach (on the right).

Example Mozilla HTML-V HTML-V+ICW AA ICW AA+ICW
2n2-linear 63 63 63 63 63 63
multipara 209 209 150 165 150 150
simple-brick 128 70 70 70 70 70
cs-schedule 177 177 177 177 177 177
diagonal5 205 205 176 191 176 176
columns 1135 1134 1076 1031 1017 1017
plants200 6150 6150 5776 6200 5550 6086
2n2-linear 100.0% 100.0% 97.5% 100.0% 97.5% 97.5%
multipara 100.0% 100.2% 72.9% 75.1% 72.9% 72.9%
simple-brick 100.0% 66.4% 62.7% 63.6% 62.7% 62.7%
cs-schedule 100.0% 102.5% 91.8% 97.2% 91.8% 91.8%
diagonal5 100.0% 100.0% 87.6% 99.6% 87.9% 87.6%
columns 100.0% 100.5% 93.5% 90.7% 89.3% 89.6%
plants200 100.0% 100.2% 96.8% 99.0% 94.6% 97.4%

Table 2: Height (in pixels) of tables when using Mozilla, our HTML variant (HTML-V), Area Approximation (AA), Iterative Column
Widening (ICW) and the two hybrid approaches to layout the example tables; the first block shows heights with a requested width
of 800px; the second block shows the average over widths 400px, 450px,. . . ,1200px of the proportion of Mozilla’s height for the same
width.

Next we compared the quality of layout of our four methods with
each other, with Mozilla and with our variant of the HTML algo-
rithm. In Table 2 we give the table height in pixels for each of the
methods and in Figures 1, 6, 7 and 8 we show the layout obtained
with Mozilla and the first hybrid approach.

One possible criticism of this experiment is that the outcomes
may be too dependant on the exact table width. For this reason we
conducted a third experiment in which we compared the quality of
layout for the different methods on 17 different table widths. The
results are summarized in the second part of Table 2.

We find that our four methods give comparable layout and for
many of the examples it is significantly more compact than that
found by Mozilla. Our HTML variant gives better layout than
Mozilla for multi-column cells and similar layout otherwise. It is
not as compact as that produced by the four more complex meth-
ods. Area approximation gives the worst layout out of the other
methods, giving less compact layout on diagonal5 than the other
methods (but one could argue that the table looks more symmetric).
Arguably iterative column widening gives the best overall layout.
However, it is worth observing that if hyphenation is allowed then
we would expect the area approximation to be more accurate.

8. CONCLUSION
Despite the importance of table layout in document formatting,

there has been relatively little work on automatic formatting of ta-
bles. We have described two new techniques for automatic lay-
out, area approximation and iterative table widening and two hy-
brid techniques. We believe these techniques will have application
in web-browsers, document formatting systems and even spread-
sheets.

All of our techniques give better and arguably more robust ta-
ble layout than current HTML table layout engines with iterative
column widening giving the best layout in the sense that the table
height is minimised for a particular width. However for large tables
iterative column widening can be slow. For this reason probably the
hybrid approach combining iterative column widening with a vari-
ant of the HTML algorithm is the most practical of our approaches,
taking less than 0.5 seconds even for very large tables, yet produc-
ing quite compact layout.

Our approach to solving the continuous table layout problem is
relatively slow for small tables because of the overhead of conic
programming. However, we believe that it is possible to solve the
continuous table approximation problem more quickly than Mosek
does. We are currently investigating a specialised active set based
method for solving the continuous table layout problem and also

Figure 8: Last example comparing layout using Mozilla (on the
left) with our first hybrid approach (on the right). This ex-
ample, plants200, is a real-world example of a plant database
displayed as a large table with 200 rows.

heuristics for finding a “good” solution quickly. We believe the
ideal of approximating text by its area has other applications, such
as approximate page layout. We are also investigating this.

9. REFERENCES
[1] R. J. Anderson and S. Sobti. The table layout problem. In

COMPGEOM: Annual ACM Symposium on Computational
Geometry, pages 115–123, 1999.

[2] M. ApS. Mosek optimization toolkit. Web page, 2005.
http://www.mosek.com/products mosek.html.

[3] G. J. Badros, A. Borning, K. Marriott, and P. Stuckey.
Constraint cascading style sheets for the web. In Proceedings
of the 1999 ACM Conference on User Interface Software and
Technology, pages 73–82, New York, Nov. 1999. ACM.

[4] R. J. Beach. Setting tables and illustrations with style. PhD
thesis, University of Waterloo, 1985.

[5] A. Borning, R. Lin, and K. Marriott. Constraints for the web.
In Proceedings of ACM MULTIMEDIA’97, pages 173–182,
Nov. 1997.

[6] A. Borning, R. Lin, and K. Marriott. Constraint-based
document layout for the web. Multimedia Systems,
8(3):177–189, 2000.

[7] R. Fletcher. Practical Methods of Optimization. John Wiley
& Sons, Chichester, New York, Brisbane, Toronto,
Singapore, 1987.

[8] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines.
In Software—Practice and Experience, 11(11), pages
1119–1184, Nov. 1982.

[9] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01
Specification, section ‘Autolayout Algorithm’.
http://www.w3.org/TR/html4/appendix/notes.html#h-B.5.2,
1999.

[10] J. Renegar. A Mathematical View of Interior-Point Method in
Convex Optimization. SIAM, 2001. [Edital Universal,
2001].

[11] X. Wang and D. Wood. Tabular formatting problems. In 3rd
Principles of Document Processing, pages 171–181, 1996.

