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ABSTRACT
Selecting a set of views for materialization is a required task
in many current database and data warehousing applications
including the design of a data warehouse, and the mainte-
nance of multiple materialized views. The selected views
can be materialized permanently or transiently depending
on the specific view selection problem. The view selection
algorithms are expensive due to the size of the search space
of the problem.

In this paper we propose an approach for generating can-
didate views for materialization for view selection problems
based on the definition of the input queries. We also provide
rewritings of the input queries using the generated candidate
views. In generating candidate views, we do not apply cost-
based techniques but we try to maximize the operations in
the views. Subsequently, view selection algorithms can ex-
ploit problem dependent cost functions to choose among the
generated candidate views. Our approach is not restricted
to a specific view selection problem. Compared to a previ-
ous one, it generates views that involve more relation occur-
rences (or operations) and can reduce the size of the search
space which can be very large. We implement our approach
and we report some experimental evaluation with compari-
son to previous works.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.2.4 [Database Management]: Systems—Query
processing

General Terms
Management, Algorithms, Performance

Keywords
query graph, common subexpression, data warehouse, view
selection
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1. INTRODUCTION
Current databases and warehouses are getting bigger in

size. Also, queries are getting more complex (e.g. queries in-
volving roll-up and drill down operations and top-k queries)
[21] while the user’s requirements on query performance are
getting stricter. Traditional query optimizers based on re-
lations and indexes can not satisfy these new needs. Mate-
rialized views have been found to be a very efficient way to
speed up query evaluation. They are increasingly supported
by commercial database management systems [4, 25, 2]. A
lot of research work has focused on the problem of view se-
lection, which can be abstractly modeled as follows: given
a set of queries and a number of cost-determining parame-
ters (e.g. query frequency/importance and source relation
update propagation frequencies), output a set of view defini-
tions that minimizes a cost function and satisfies a number
of constraints. The cost function can be, for instance, the
query evaluation cost, the view maintenance cost, or a com-
bination of them. A constraint can be a storage space con-
straint, or an upper bound on the materialized view main-
tenance cost [22]. Depending on the type of problem con-
sidered, the selected views can be materialized permanently
(e.g. in the case of the data warehouse design problem) or
transiently materialized (e.g. in the case of intermediate re-
sults during the concurrent evaluation of multiple queries)
or both (e.g. in the case of the maintenance of multiple
materialized views where some views are computed because
they are permanently stored while other views are stored
transiently as auxiliary views during the maintenance pro-
cess, in order to assist the maintenance of multiple other
views [15, 24]).

Most the work on view selection problem focuses on data
cube operations on multidimensional datasets [10, 3, 20,
12, 14, 6]. The reason is not only that this kind of oper-
ations is particularly important in On Line Analytical Pro-
cessing(OLAP) queries, but also because the search space
for the problem with this simplified class of queries can be
easily modeled and constructed as a multidimensional lat-
tice. There are also some works on view selection problem
on general database systems. However these approaches
assume, explicitly or implicitly, the existence of a search
space in a form of an AND/OR graph [17, 8, 9]. How-
ever, these AND/OR graphs require the construction of al-
ternative common plans for multiple general queries and the
common subexpressions among input queries need to be de-
tected and exploited. This is an intricate problem. Further,
the original queries need to be rewritten using the common
subexpressions.
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In order to determine a search space for a view selection
problem we need to identify common subexpressions among
workload queries. These common subexpression represent
part of the work needed to compute a query. When identi-
fied they can be computed only once and the result be used
by all queries that share it. This is expected to importantly
save computation time. Depending on the problem, a com-
mon subexpression might also be a good candidate view for
storage (e.g. in the case of the data warehouse design prob-
lem). In this paper, we focus on the computation of common
subexpressions for view selection problems.

1.1 Related Work
The concept of common subexpression initially referred to

identical or equivalent expressions [7]. Later on, the term
included subsumption [11]. Then the term included over-
lapping selection conditions [5]. More generally. the term
common subexpression between two queries refers to a view
that can be used in the rewritings of both queries, either
completely or partially [13]. One approach to exploit com-
mon subexpressions is on the query evaluation plan level
[19, 18, 15]. This method can give the global evaluation
plan in addition to selecting a set of views to materialize. It
requires the enumeration of all possible evaluation plans for
all queries in the workload. Although some heuristics can
be applied to reduce the number of evaluation plans con-
sidered, this method is still too expensive when the num-
ber of queries is big or when the queries in the workload
are complex. The resulting search space is also too big for
most view selection problems. Another approach to exploit
common subexpressions is on the query definition level[5,
13, 21]. In [5], all queries in a workload are represented as a
global multigraph. Using heuristic transformation rules, this
multigraph is transformed to a one where no more transfor-
mations can be applied. This approach can give the com-
mon subexpressions as well as the corresponding rewritings.
All the queries in the workload can be considered together.
However, this paper assumes there are no self-joins in the
queries and this assumption is too restrictive for the queries
of current applications. In [13], a general concept of com-
mon subexpression is introduced and some constraints (e.g.
key/foreign key constraints) are considered. An artificial
common subexpression (common subsumer) between a pair
of queries is constructed if there is no subsumption relation-
ship between them. Then rewritings (called compensations)
of the original queries using the common subexpressions are
given. This approach considers query pairs that follow some
specific patterns. In [21], common subexpressions between
different parts of one single query are exploited and used
to apply multi query optimization on a single query. The
algorithm to exploit commonalities in this paper is more on
a topology similarity level than on a predicate level. This is
because it is not known in advance which parts of the query
need to considered for comparison. In general, the prob-
lem of answering queries using views is a NP-hard problem
[1]. Implementation aspects of this problem, for restricted
classes of queries and views have been addressed in [16, 25].

1.2 Our Approach and Contributions
In order to compute common subexpressions between queries,

a “naive” approach would employ cost-based techniques on
all possible common subexpressions of two queries. This is
practically impossible because of the huge number of possi-

ble common subexpressions. Our approach is based on the
observation that, usually, including more operations in the
common subexpressions of two queries is beneficial for their
overall query evaluation cost. Therefore, we use the con-
cept of closest common derivator (CCD) of two queries to
represent the maximum commonality between two queries.
Intuitively, we are trying to include as many operations (se-
lect, join, projection) as possible in a CCD. The operations
have to be as restrictive as possible. For instance, join and
selection conditions are as strict as possible while project
operations have as few attributes as possible. A CCD of
two queries should be such that both queries can be rewrit-
ten using it. Our approach is general in that we do not
require these rewritings to be complete (they can be partial
as well). The rewritings of the queries are also produced.
Our approach uses syntactic rules for the computation of
CCDs. Subsequent view selection algorithms can operate
on the search space defined by the CCDs and the queries
by applying cost-based techniques relevant to the view se-
lection problem at hand. In a previous work [23], we defined
CCDs by matching a relation occurrence in one query to at
most one relation occurrence in the other query. In this pa-
per we relax this restriction. We show that this relaxation
brings more operations in the CCDs. Additionally, it re-
duces the size of the search space (by reducing the number
of CCDs). Both improvements are expected to be beneficial
to the subsequent application of view selection algorithms.

1.3 Outline
The paper is organized as follows: in Section 2, we define

the problem and show with intuitive examples how the re-
laxation of the definition of CCD is beneficial to some query
workloads. In Section 3, we formally define the new con-
cept of CCD and provide rules for computing CCDs between
query pairs along with their rewritings using CCDs. In Sec-
tion 4, we provide experimental result to compare the new
definition of CCDs with the old definition in [23]. Section 5
summarizes and suggests some future work.

2. MAXIMUM COMMONALITY BETWEEN
TWO QUERIES

In a typical view selection problem, the search space is
constructed using all common subexpressions among queries
in the workload. This search space is usually too big for a
view selection algorithm to examine it exhaustively. In this
paper, we define a subset of common subexpressions that
represents possible commonalities among queries.

2.1 Queries and Rewritings
We consider select-project-join (SPJ) queries, possibly with

self-joins. This class of queries constitutes the basis for more
complex queries that involve grouping aggregation opera-
tions. We use the relational algebra expression πP (σC(O))
to represent a query , O denotes a set of occurrences repre-
senting their cartesian product , C denotes a set of atomic
conditions (we assume conjunctive queries), and P denotes
the set of projected attributes. We assume set-theoretic se-
mantics. Since we allow self-joins, the same relation may
occur more than once in O. Therefore, relation occurrence
renaming may be needed. For simplicity, we give each oc-
currence a unique name in addition to the relation name,
and use the expression N [R] to represent an occurrence N
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R2[R] : E → E2

S.B = T.B

E < 3

R1[R] : E → E1

R1.A < S.A − 3 R2.C < T.D + 3

S[S] : A → A, B → B1 T [T ] : B → B2

Figure 1: Query Graph for Q1

of relation R. For example, O = {R1[R], S[S], R2[R]} is a
possible occurrence set. Note that the occurrence name may
be the same as the relation name, but must be unique among
the names in the occurrence set. C represents the predicates
to be applied to O. It consists of a set of atomic conditions
of the form A θ B + c or A θ c where θ is an operator from
{<,≤,=,≥, >}, A and B are attributes and c is a constant.
The latter atomic condition is a selection condition. The
former one is a selection condition when A and B are from
the same occurrence, and it is a join condition when A and B
are from different occurrences. For example, C = {R1.A <
S.B + 3, R1.C = 5, S.C = R2.C, R2.D ≤ R2.E} are possi-
ble atomic conditions for the previous occurrence set. Note
that we disallow “pure” cartesian products in queries. This
means that every occurrence in the occurrence set is in-
volved in at least one atomic join condition. P represents
all projected attributes. We allow attribute renaming in the
projected attribute set. The expression R1.A → A renames
attribute R1.A as A. For example, set P can be {R2.A →
A, R1.B → B1, R2.B → B2}. Note that we also allow the
renaming of one attribute to more than one attribute in the
projected attribute set. For example, one possible projected
attribute set may be {R1.A → A1, R1.A → A2}. Simi-
larly to relation occurrence names, the new names of the
attributes must be unique among all attribute names in the
projected attribute set. An example query follows:

Example 1. Query Q1:

• SQL

select R1.E as E1, S.A as A, S.B as B1,

T.B as B2, R2.E as E2

from R as R1, S as S, T as T, R as R2

where R1.E<3 and R1.A=S.A and S.B=T.B and

R2.C<T.D+3

• Relational Algebra expression: πP (σC(O))

- P = {R1.E → E1, S.A → A, S.B → B1, T.B →
B2, R2.E → E}

- O = {R1[R], S[S], T [T ], R2[R]}
- C = {R1.E < 3, R1.A ≤ S.A−3, S.B = T.B, R2.C <

T.D + 3}

Note that the order of the projected attributes, atomic
conditions and relation occurrences are of no importance.
Query rewritings are queries of the same form that involve
also at least one view.

We use query graphs to graphically represent queries. Re-
lation occurrences are represented by nodes. Relation occur-
rence and relation names along with new and old attribute
names are shown by the corresponding nodes. The query
graph of query Q1 of the previous example is shown in Fig-
ure 1. Figure 2 shows the query graph of another query
Q2.

S[S] : A → A, B → B1

R.A = S.A

E < 5
R.C < T.D + 3

S.B = T.B

R[R] : T [T ] : B → B2

Figure 2: Query Graph for Q2

R.A ≤ S.A

E < 5

S.B = T.B

R1 S T

R TS

R[R] : A → A1,
C → C, E → E

T [T ] : D → DS[S] : A → A2, B → B

(a) V1

S T R

S T R2

S.B = T.B R.C < T.D + 3

S[S] : A → A1, B → B T [T ] : R[R] : A → A2, E → E

(b) V2

Figure 3: CCDs of query Q1 and Q2

R[R] : E → E2

R.C < V.D + 3

E < 3 ∧ A1 < A2 − 3

B → B1, B → B2

V [V1] : E → E1, A1 → A,

(a) Q′
1

V [V1] : A1 → A,
B → B1, B → B2

A1 = A2 ∧ C < D + 3

(b) Q′
2

Figure 4: Rewriting of queries Q1 and Q2 using V1

R[R] : E → E1

E < 3

V [V2] : A1 → A, B → B1,
B → B2, E → E2

R.A < V.A1 − 3

(a) Q′
1

V [V2] : A1 → A,
B → B1, B → B2

E < 5 ∧ A1 = A2

(b) Q′
2

Figure 5: Rewriting of queries Q1 and Q2 using V2

E < 5

R

R1[R] : ∗ → ∗1

R1.A ≤ S.A

S

S[S] : A → A3,

B → B

S.B = T.B

T

T [T ] :

R1 S T

R2.C < T.D + 3

R2[R] : ∗ → ∗2

R

R2

Figure 6: Common subexpression V ′ of Q1 and Q2
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E < 3 ∧ A1 < A3 − 3

B → B1, B → B2, E2 → E2

V [V ′] : E1 → E1, A1 → A,

(a) Q′
1

A1 = A3 ∧ ∗1 = ∗2

V [V ′] : A3 → A
B → B1, B → B2

(b) Q′
2

Figure 7: Rewriting of queries Q1 and Q2 using V ′

2.2 Query Commonalities
In [23], we define CCDs of two queries by requiring mini-

mal rewritings of both queries using each CCD. A rewriting
is minimal if, for each relation, the sum of the number of its
occurrences in the rewriting and the views of the rewriting
equals the number of its occurrences in the query. Although
this requirement simplifies the definition and computation
of a CCD, it also prevents the detection of some common-
alities between queries. Consider the queries Q1 and Q2

shown in Figures 1 and 2. Based on the old definition of
a CCD, these queries have two CCDs V1 and V2 shown in
Figure 3. In general, we call an attribute A redundant in
a query if a condition of the form A = B + c, where B is
another attribute and c is a constant, can be implied from
the condition of the query.

Note that in both V1 and V2, we do not project attribute
B from T although it is projected in both Q1 and Q2. This
is because the condition in each of V1 and V2 imply that
S.B = T.B. Therefore, we can project only one attribute
among S.B and T.B (e.g. in V1 and V2, we project S.B)
and then use attribute renaming twice in the rewriting of
the queries using the CCDs. This is shown in both Figure
4 and Figure 5. In Figure 4, the two queries Q1 and Q2 are
rewritten using V1. In Figure 5, they are rewritten using V2.

However, for the previous two queries Q1 and Q2, we can
also find the common subexpression V ′ shown in Figure 6.
Symbol * is an abbreviation for all the attributes of a rela-
tion. Observe that V ′ has 4 relation occurrences in stead of
3, V ′ can be used for rewrite Q1 minimally, but cannot be
used for rewriting Q2 minimally. This is because V ′ contains
two occurrences of R while Q2 contains only one occurrence
of R. Notice though that V ′ can be used for rewriting both
queries. Figure 7 shows rewritings of Q1 and Q2 using V ′.

It is possible that V ′ is smaller than CCD1 and CCD2. In
this case, if the goal is to reduce the materialization space,
it is better to use V ′ as a materialized view for rewriting Q1

and Q2. Materializing V ′ will bring more benefit per space
unit. Even if V ′ is larger than CCD1 and CCD2, it might
be beneficial to consider V ′ instead of CCD1 and CCD2 be-
cause V ′ comprises one more join operation. This increases
the possibility to find more useful common subexpressions
between V ′ and other queries in the workload. Next we re-
lax the definition of [23] so that a minimal rewriting is not
a necessary requirement for a CCD.

3. DEFINITION AND COMPUTATION OF
CCDS

In this section, we provide a definition for a CCD. Then
we give an algorithm to compute CCDs. We also show how

*=*

Q′

S

T

R R

T

R′

S

Q

Figure 8: Node splitting

queries can be rewritten using their CCDs, which is part of
the search space construction.

3.1 CCD Definition
If a query Q can be rewritten using a view V , we call view

V a subexpression of Q.

Definition 1. A view V is a CCD of queries Q1 and Q2

if and only if:

1. V contains no redundant attribute
2. V is a subexpression of Q1 and Q2

3. There exists not another subexpression of Q1 and Q2,
V ′ such that V is a subexpression of V while V ′ is
not a subexpression of V .

3.2 CCD Computation
To compute the CCDs of two queries, we map nodes of one

query to those of the other so that the induced edge map-
ping associates join edges of the two queries whose condi-
tions are mergeable [23]. Two join conditions are mergeable
if there is another join condition that is implied by each of
them. Clearly this is possible only if a node of one query is
mapped to a node of the other query labeled by the same re-
lation. The mapped nodes and edges in each one of the two
queries should form a connected component. CCDs corre-
spond to mappings that cannot associate more edges of the
two queries.To compute CCDs according to the definition in
[23], the computation of one-to-one mappings between the
nodes of the two queries is sufficient.

With the definition of CCD in this paper, one node in a
query can be mapped to more than one node in the other
query. This is based on the observation that a query can be
rewritten equivalently by splitting a relation occurrence. For
example, R can be rewritten as R � �∗=∗R. An example of
occurrence splitting is shown in Figure 8 with query graph.
Note that in this example, we have a new edge between the
original occurrence node and the splitting node with edge
condition ∗ = ∗. This condition denotes a conjunction of
equalities between all attributes with the same names from
the two relation occurrences. We refer to this edge as an all-
attribute-equal edge. We depict it by dashed line. If there
is an edge (S, R) between a node S and the split node R,
then we may add an edge (S, R′) between S and the new
node R′ with the same condition as that of edge (S, R).

Before introducing the process of finding CCDs of two
queries, we show how a common subexpression of them can
be extended to contain one more edge. If this common
subexpression can not be extended any more, then it is a
CCD.
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Figure 10: One to one node and edge mapping

Assume we have a common subexpression V of queries Q1

and Q2. Initial V contains only one node. For a node N
in V , find its corresponding nodes N1 in Q1 and N2 in Q2

according to the mapping. For an edge e1 = (N1, N
′
1) in

Q1, find an edge e2 = (N2, N
′
2) from Q2 that is mergable to

e1. Let Cm be the merge condition. Based on whether e1

and e2 have been mapped and whether N ′
1 and N ′

2 has been
mapped, we have the following extension rules:

1. Edges e1 and e2 have not been mapped in V :

(a) Rule 1: If N ′
1 and N ′

2 have been mapped to the
same node N ′ in V , add the merging edge (N, N ′)
with condition Cm to V . An example of an ap-
plication of this extension rule is shown in Figure
9. Initially edges (S, T ) and (R, T ) have been
mapped and Rule 1 adds edge (S, R) to V .

(b) Rule 2: If neither N ′
1 nor N ′

2 has been mapped
in V , add a new node N ′ and map N ′

1 in Q1 and
N ′

2 in Q2 to N ′. Add a new edge (N, N ′) with
condition Cm to V . An example of an application
of this extension rule for edge (T, R) is shown in
Figure 10.

(c) Rule 3: If N ′
1 has been mapped to N ′ in V while

N ′
2 has not been mapped, rewrite Q1 as follows:

split node N ′
1 to get a new node N ′′

1 , add a virtual
edge (N1, N

′′
1 ) and an all-attribute-equal edge (N ′

1, N
′′
1 ),

remove edge (N1, N
′
1). After the rewriting, map

edge (N1, N
′′
1 ) in the rewriting Q′

1 of Q1 to (N2, N
′
2)

in Q2 with extension Rule 2. An example of an
application of this extension rule is shown in Fig-
ure 11.

(d) Rule 4: If N ′
1 in Q1 maps to N ′

1 in V and N ′
2

in Q2 maps to N ′
2 in V , rewrite Q2 as follows:

split node N ′
2 to get a new node N ′′

2 , add the

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Q1

R

S

T

R

S

T T

S

R R1

S

T

Q′
1 V Q2

Figure 11: One node splitting
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1R′
12

Q1 Q′
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Figure 12: Two nodes splitting

virtual edge (N2, N
′′
2 ) and the all-attribute-equal

edge (N ′
2, N

′′
2 ), remove edge (N2, N

′
2). After the

rewriting, map edge (N1, N
′
1) in Q1 to (N2, N

′′
2 )

in the rewriting Q′
2 of Q2 using extension Rule 3.

This will generate a node splitting in Q1 similar
to that in Q2. An example of an application of
this extension rule is show in Figure 12.

2. Edge e1 in Q1 has been mapped to e = (N, N ′) in V
while e2 in Q2 has not been mapped:

(a) Rule 5: If N ′
2 in Q2 has not been mapped, rewrite

Q1 to Q′
1 as follows: split node N ′

1 to get a new
node N ′′

1 , and add to Q1 an all-attribute-equal
edge (N ′

1, N
′′
1 ) and a virtual edge (N1, N

′′
1 ). After

this rewriting, map edge (N1, N
′′
1 ) Q′

1 to (N2, N
′
2)

in Q2 with extension Rule 2. An example of an
application of this extension rule is show in Figure
13.

(b) Rule 6: If N ′
1 in Q1 has been mapped to N ′

1 in
V , while N ′

2 in Q2 has been mapped to N ′
2 in

V , rewrite Q2 to Q′
2 as follows: split node N ′

2 to
get a new node N ′′

2 , add to Q2 an all-attribute-
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Figure 13: One node splitting
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Figure 14: Two nodes splitting

equal edge (N ′
2, N

′′
2 ) and a virtual edge (N2, N

′′
2 ),

and remove edge (N2, N
′
2) from Q2. After the

rewriting, map edge (N1, N
′
1) in Q1 to (N2, N

′′
2 )

in Q′
2 using extension Rule 3. An example of

an application of this extending rule is show in
Figure 14.

All the above 6 extension rules map regular edges and
not virtual or all-attribute-equal edge. There may be cases
where mapping those edges with regular edges generates
some useful CCDs. For simplicity here, we ignore this kind
of mappings.

Note that extension Rules 1 and 2 apply one to one node
mapping; extension Rules 3 and 4 apply one to many node
mapping, but only one to one edge mapping; extension Rule
5 and 6 apply one to many edge mapping (and consequently
one to many node mapping). Using the previous extension
rules, we can specify our CCD computation process as fol-
lows:

Algorithm 1 CCD Computation

1: Put both Q1 and Q2 into full form [23]
2: Find all possible single node mappings between Q1 and

Q2 to create initial common subexpressions V that
contains only one node

3: for each V do
4: extend V in all possible ways using the previous ex-

tension rules until it can not be extended any-
more. Return the resulting V

5: end for

Using extension rules 1 and 2, we get CCDs exactly the
same as they are defined in [23]. Using additionally Rules
3-6 makes the process more expensive since more possible
extensions are considered. To reduce the execution time,
one possible heuristic disallows extending rules 3-6 if one
common subexpression can be extended using Rule 1 or 2.

3.3 Rewriting the Queries Using the CCDs
The general problem of rewriting queries using views is

NP-hard. This is even true for simple queries and views
such as SPJ queries with self-joins, the case we are consid-
ering in this paper. However, here we consider only sim-
ple rewritings, which means that queries are rewritten using
only one occurrence of a view. Further, since we have a
mapping function from all occurrence nodes of the view to
occurrence nodes of the query, (generated during the compu-
tation of the CCDs), the rewriting is straightforward. The
process is outlined below:

1. Construct the relation occurrence set: Put an occur-
rence of the CCD to the occurrent set of the rewritten
query. Put also to the occurrence set of the rewritten
query all the relation occurrences in the query which
have not been mapped to a node in the CCD. Note
that all occurrence names must be unique in the con-
structed occurrence set.

2. Construct the projected attribute list: For each rela-
tion occurrence in the query which has been mapped
to a node in the CCD, list its projected attributes af-
ter the CCD occurrence. List all other projected at-
tributes in the query after their original relation occur-
rences. all projected attributes on occurrences which
has a mapped node in CCD, list the attribute under
the occurrence of CCD. Note that in the former case,
one attribute may be derived from another attribute
listed in the CCD. In this case, we need attribute re-
naming to recover the projected attribute of the query
in the rewriting.

3. Construct the predicate set: For edges between occur-
rences (join edges) or on one occurrence (loop edges) in
the query that have not been mapped to occurrences
in the CCD, add edges with the same condition be-
tween the corresponding occurrences in the rewriting
of the query. For edges between an unmapped occur-
rence and a mapped occurrence, add an edge with the
same condition between the corresponding occurrence
and the CCD occurrence in the query rewriting. For
edges between mapped occurrences, add a loop edge
to the CCD occurrence in the query rewriting with the
same condition. If the edge already exists, just add the
condition to the edge.

Figures 4, 5 and 7, show some examples of rewriting queries
using views.

4. EXPERIMENTAL RESULTS
We ran experiments to show the effectiveness of the new

definition of CCDs. We refer to the definition of CCD in
[23] as one-to-one CCD because it is constructed by allow-
ing each occurrence node from one query to be mapped to
at most one occurrence node from the other query. We refer
to the new definition of CCD as many-to-many because it
allows many occurrence nodes from one query to be mapped
to many occurrence nodes of the other query. In the experi-
ments, we initially generate a schema which includes a set of
base relations. Based on this schema, we generate a series of
workload queries (20 queries in each workload). For a given
workload, we compute all possible CCDs between each pair
of queries. Then, for each one of the two CCD definitions,
we measure the average time for computing the CCDs of
a pair, the average number of CCDs generated for a pair,
and the average number of occurrences in each CCD. Each
workload follows the following rules:

• Each query contains m base relations.

• Each query contains n relation occurrences, n ≥ m.
In general, the larger the number of occurrences for
a fixed number of relations, the higher the number of
node mappings between the two queries.
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• Approximately, n/3 of the queries have selection con-
ditions in every workload.

• In order to avoid having query graphs that are too
dense or too sparse, each one of them has in it slightly
over 20% of all possible edges in the query graph.

In the first experiment, we fix n to 8 and vary m from 7
down to 5. The result is shown in Figure15. In the second
experiment, we fix the difference of n and m to 3 and vary
n from 6 to 10. The result is shown in Figure 16. One
can see that for the same values of m and n, the number of
many-to-many CCDs is less than the number of one-to-one
CCDs, and the number of occurrences per many-to-many
CCD is larger than the number of occurrences per one-to-one
CCD. These remarks show that the new CCD incorporates
more operations. This is expected to improve the overall
cost of evaluating all the input queries together. Further,
the many-to-many CCD gives less options to view selection
algorithms since less CCDs are generated. Therefore, the
many-to-many CCD is expected to increase the speed and
accuracy of view selection algorithms in determining the op-
timal solution.

When the ratio of relations to occurrences of relation is
high (75% or higher), the computation time of the CCDs for
the two approaches is similar (e.g. column sets 1 and 2 in
Figure 15(a), and column set 3 in Figure 16(a)). When this
ratio drops bellow 75% the computation time of the many-
to-many CCD is much higher (e.g. column set 3 in Figure
15(a), and column sets 1 and 2 in Figure 16(a)). However,
this loss in CCD computation time might be compensated by
the important gains in time of the view selection algorithm
(due to the reduction in the number of many-to-many CCDs
- Figure 15(b) column set 3 and Figure 16(b) column sets
1 and 2). Therefore, when the ratio drops bellow 75%, the
type (e.g. greedy, heuristic) and the speed of the employed
view selection algorithm will determine whether the one-to-
one or the many-to-many CCD definition is preferable.

5. SUMMARY AND FUTURE WORK
We have defined CCDs of queries. CCDs are uesd for con-

structing search spaces for view selection problems that in-
volve multiple queries. Our definition extends a previous one
to allow many to many mappings of relation occurrences in
queries. It is particularly useful for query workloads that in-
volve also self-joins. An experimental evaluation shows that
our approach produces CCDs that involve more relational
occurrences. Therefore, it increases the chances for these
CCDs to be exploited in computing other input queries. It
also reduces the size of the search space to be exploited by
cost based view selection algorithms.

Although it is not difficult to construct a search space for
queries that involve exclusively grouping/aggregation oper-
ations (data cube), it is a hard problem to construct a search
space for generic queries which include both SPJ and group-
ing/aggregation operations. In this paper, we considered
SPJ queries only. In the future, we will extend the con-
cept of CCD to queries that include both SPJ and group-
ing/aggregation operations.

Database schemas include not only definitions of rela-
tions, but also integrity constraints such as keys, foreign
keys or general check constraints. It is obvious that these
constraints can play a role in detecting common subexpres-
sions between queries. In the future, we will also consider

taking into account existing constraints on the schema in
computing the CCDs of a query workload.
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