
Availability Measurement and Modeling for An Application Server

Dong Tang, Dileep Kumar, Sreeram Duvur, Oystein Torbjornsen
Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, CA 95054
Email: dong.tang{dileep.kumar, sreeram.duvur, oystein.torbjornsen}@sun.com

Abstract

Application Server is a standard middleware
platform for deploying web-based business applications
which typically require the underlying platform to deliver
high system availability and to minimize loss of
transactions. This paper presents a measurement-based
availability modeling and analysis for a fault tolerant
Application Server system – Sun Java System Application
Server, Enterprise Edition 7. The study applies
hierarchical Markov reward modeling techniques on the
target software system. The model parameters are
conservatively estimated from lab or field measurements.
The uncertainty analysis method is used on the model to
obtain average system availability and confidence
intervals by randomly sampling from possible ranges of
parameters that cannot be accurately measured in limited
time frames or may vary widely in customer sites. As
demonstrated in this paper, the combined use of lab
measurement, analytical modeling, and uncertainty
analysis is a useful evaluation approach which can
provide a conservative availability assessment at stated
confidence levels for a new software product.

1. Introduction

Application Server has become an important category
of general-purpose middleware for deploying web-based
business applications such as on-line banking, stock
trading, merchandise purchasing and auction services. The
system availability supported by Application Server is a
critical metric for evaluating this category of software.
Although recent research effort has been made in
benchmarking dependability for OLTP systems [20] and
evaluating user-perceived availability for specific web-
based applications [6], there has been no published study
to demonstrate how to evaluate availability for the
Application Server middleware using current modeling
and analysis techniques, combined with measurement.

In this paper, we present an availability evaluation
study, which combines measurement, modeling, and

statistical analysis techniques, for a particular Application
Server – Sun Java System Application Server, Enterprise
Edition 7 (JSAS EE7). The model parameters are
conservatively estimated based on data collected from lab
or field measurements. For parameters that cannot be
accurately measured in limited time frames or may vary
widely in customer sites, we apply the uncertainty analysis
method on the model by randomly sampling these
parameters in wide ranges to obtain average system
availability and confidence intervals.

Previous studies [7, 10] have shown that in many
cases, it is possible to use a combination of measurement
and mathematical models to derive a quantitative
dependability assessment for the target software system.
Hsueh [4] was the first study to use Markov reward
models, combined with operational failure data, to model
an operating system (IBM/MVS). Later, similar
techniques were applied to the Tandem Guardian and
VAX/VMS operating systems [9]. The methodology was
further extended from using operational data to using test
data in evaluating availability for air traffic control
software [16]. All of these studies rely on failure data in
estimating parameters plugged into the models which can
be solved to generate system availability or performability
measures. Methods to estimate parameters and associated
confidence levels, including situations in which failure
was not observed during the measurement period, have
been addressed in [8].

Markov reward model is one of the most powerful
and widely accepted mathematical models in availability
and reliability analysis [3, 19]. The state space based
model structure and the reward rate associated with each
state in Markov reward models provide capabilities to
evaluate availability, performability, service cost, and
various metrics of interest for the modeled system.
However, in modeling real systems, the number of states
in the model often exceeds the range that can be handled
manually and introduces the state explosion problem. To
simplify model specification, stochastic Petri nets have
been used to construct models and solutions are supported
in well-known tools [2, 14]. To reduce model complexity,
the hierarchical modeling approach has been proposed to

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

decompose a complex model into multiple submodels and
implemented in modern modeling tools [13, 18].

The software tool used in this analysis is RAScad [17,
18], a Sun internal web-based Reliability, Availability,
and Serviceability (RAS) architecture modeling tool for
use in system design and development phases. RAScad
has been heavily used in designing new Sun hardware
products. It has also been used to develop availability
models for Sun Cluster software systems [12]. The model
and analysis presented in this paper were developed using
the RAScad hierarchical Markov modeling and
uncertainty analysis capabilities. The system metrics of
interest are availability, the associated yearly downtime,
and mean time between system failures.

The rest of the paper is organized as follow. Section 2
briefly introduces architecture for the target system.
Section 3 describes test environment and measurements.
Sections 4 and 5 discuss assumptions and parameters used
in the model. Section 6 presents the model. Section 7
analyzes results obtained from the model and conducts
uncertainty analysis. Section 8 concludes this study.

2. System Architecture

Figure 1 shows a general configuration for JSAS EE7
[15]. A Java 2 Enterprise Edition (J2EE) technology
based web services deployment model typically consists
of three tiers: web server, application server, and
database. The web server tier, including load balancers,
communicates with the Internet and distributes incoming
requests to application server instances, performing a
reverse proxy function. The web server tier may also be
used to serve static content such as images and dynamic
content that need not be secure. The web server tier does
not retain memory of prior requests and is thus stateless.
An application server specific Load Balancer Plugin
(LBP) is installed on the web server. This plugin is aware
of the state of application servers and performs user
application session load balancing and proxy functions.
Load balancing decisions are recorded as HTTP cookies,
keeping the web server stateless.

The application server tier, including its data
persistence support, processes user's requests in a stateful
context and potentially carry out single- or multi-step
business transactions. A transaction is typically a series of
dependent business logic functions that communicate with
the database tier. The database tier contains various
business data and users' information and is not necessarily
restricted to one database instance, as user application
transactions may span multiple databases. The database
tier is not necessarily always a relational database. It can
be any transactional data repository or even a message
broker that can store or transmit application data reliably.

To focus on the application server tier, we have omitted
showing the database tier, even though it is required and
used by our test applications.

Figure 1. General Configuration of JSAS EE7

Target System Modeled

As shown in the figure, multiple Application Server
(AS) instances are organized as a cluster to serve user
requests from load balancers. The session conversational
state of AS instances is written to a highly available
database (HADB), developed based on the "Always-On"
availability technolog [11]. Multiple pairs of HADB
nodes are organized as Database Redundancy Units
(DRU) to provide redundancy. When an AS instance fails,
the LBP plugin in web servers can detect the failure and
forward subsequent requests to another AS instance which
can then restore the last saved conversational state from
HADB. The AS instances and HADB pairs constitute the
target system to be analyzed in this paper.

The target system provides automatic recovery and
self-repair features, including HTTP session failover,
which is necessary for tolerating faults in a stateful
environment. For example, an insurance quote or loan
application typically requires multiple screens of user
input. A failure at any step of process results in loss of
state information, and a complete transaction loss which
requires the transaction to restart from the beginning.
JSAS EE7 supports persistence of HTTP session data in
its bundled HADB which is available to all instances in a
cluster. In the event of an instance failure, session data can
be recovered by other instances in the cluster. In addition
to unplanned events, this capability, along with the HADB
self-repair capability described below, also provides for
minimal impact on planned maintenance.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

HADB is a highly scalable and available distributed
database. It consists of two mirrored DRUs which are
logical groupings of nodes. Each DRU contains the
complete set of session data evenly distributed over
multiple nodes, ensuring optimal throughput and response
time. A node is a collection of processes, a dedicated area
of main memory, and some physical disk space. Two
different nodes normally do not share a physical host. A
node may be active, providing data access and update, or
spare, ready to take over for the failure of an active node.
Nodes are grouped and provide a mutual watchdog
service in the group.

For each node in a DRU, there is a mirrored node in
the other DRU. Should a node fail, the failed node
attempts to restart itself and and to recover data from the
companion node. If the restart procedure is successful, the
recovered node will return the system back to its pre-
failure configuration. If the restart attemp is not
successful, the companion node initiates a repair
procedure on a spare node by reconstructing data on the
spare. Completion of this repair procedure will convert
the spare node to an active node. The failed node will
become a spare node after a physical repair action is
fulfilled.

3. Measurements

To assess the stability of the target software system,
multiple longevity tests were performed by running
representative application benchmarks on the following
configuration: Two Application Server instances running
on two 4-CPU Sun E450 systems and two pairs of HADB
nodes running on four Sun Ultra 80 systems. Table 1
shows the test configuration and their logical relationship
between layers. System load was generated through a
commercial workload generator running on a Microsoft
Windows machine. A load balancer was included in the
test configuration to perform sticky round-robin load
balancing between multiple server instances. In these
tests, the systems were utilized at a load factor of 60-70%
and multiple 7-day duration runs were performed.
Roughly seven million requests were processed by the
system in each run.

Load Balancers

AS Instance 1

J2EE Web App/Nile Bookstore

AS Instance 2

J2EE Web App/Nile Bookstore

HADB Pair 1 (2 Nodes) HADB Pair 2 (2 Nodes)

Oracle Database & Sun Java System Directory Server

Solaris™ 9 OS running on Sun Enterprise 450 server

Table 1. Test Environment

The stability test was conducted on two large
applications. The first application is a sophisticated, real-
world J2EE Web Application benchmark for running
digital marketplaces. It includes Catalog, Auction, Pricing,
and Order Management modules and is used in many
customer deployments. The application uses pooled JDBC
technology to access an Oracle database and the Java
LDAP Software Developer Kit (SDK) to access the Sun
Java System Directory Server. The average session size is
50KB, which is larger than the typical size of HTTP
sessions.

The second test application is the Nile Bookstore
benchmark, which uses the JSAS EE7 connection pooling
capabilities to access an Oracle database. The average
session size is roughly 30KB. This application is a
complete, end-to-end, e-commerce application server
benchmark that has been widely used by independent
testing laboratories. Both applications were stable during
the course of the test. Application redeployment or server
restart was not necessary. One of the tests – which was
continued for 24 days for sanity checking and availability
demonstration purposes – survived a system reboot due to
a recoverable hardware problem.

To assess fault tolerance, a number of manual fault
injection tests were performed to ensure that system can
tolerate single faults, and behaves as expected. Some of
the faults injected are listed below:

� HADB node is brought down by killing all related
processes

� HADB node communication is disrupted by
unplugging network cable

� HADB node hardware power is unplugged
� Application Server node is brought down by killing

processes
� Application Server node host network cable is

unplugged
� Application Server node host power is unplugged

For all the fault injection tests listed above, the
system continued functioning without any major departure
from the expected performance. In addition to these
manual fault injection tests, automated fault injections
were conducted extensively on the HADB system. Some
of the faults injected are listed below:

� Simultaneously kill all processes in a node to simulate
a full node failure

� Randomly kill one of the processes to simulate
software bugs

� Ask processes to terminate immediately to simulate
fast fail scenarios

Both single-node and multi-node (not in a pair)
failures were induced in the fault injections. The

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

workloads were fluctuated from idle to fully loaded states,
in combination with rare conditions such as repair and
data reorganization modes, during the fault injection
process. For over 3,000 fault injections covering a variety
of failure scenarios, all recoveries were successful.

During these fault injection tests, measurements were
made to determine AS/HADB node recovery/restart times
under different failure scenarios. These fault injection
tests, along with the stability tests described previously,
provided data for estimating various temporal and the
imperfect recovery parameters used in the model. Details
are discussed later in Section 5.

4. Model Assumptions

Although the test environment is a fixed configuration
which consists of only 2 AS instances and 2 HADB node
pairs, the modeled configurations are not limited to the
test environment. Specifically, two common
configurations are repeatedly used in this analysis:

� Config 1: 2 AS instances, 2 HADB node pairs and 2
HADB spare nodes

� Config 2: 4 AS instances, 4 HADB node pairs and 2
HADB spare nodes

The modeled system is considered available, if at
least one AS instance is up and able to service requests
and the system is able to persist session state. Translating
this definition to the model specification, we require at
least one AS instance and at least one node in each HADB
node pair to be in the working state. The requirement for
the HADB node pairs is based on the fact that each AS
instance is potentially using all the HADB node pairs, as
the data table is fragmented across all node pairs due to
data partitioning.

Both hardware permanent faults and hardware/
software transient faults occurring on all computer
systems (nodes) in the configuration are modeled. When a
permanent HW failure occurs, that node has to be shut
down for repair. The result of a HW failure on an AS
node is that the affected server instance is put out of use
until repairs are completed. For HW failures on an HADB
node, the surviving companion node initiates repair by
invoking a spare node. When a transient fault occurs due
to hardware or software problems on a node, there are two
possible results: (1) Restart of the applications without a
system reboot or (2) reboot of operating system and cold
restart of all processes. The first event is an HADB failure
if it occurs on an HADB node or AS failure if it occurs on
an AS node. The second event is an OS failure.

It is assumed that failure/repair processes on different
computer systems are independent. The implication of this

assumption for the Application Server nodes is that the
failure and restart of an AS instance will not introduce a
failure on another AS instance. This is because the
interaction between the surviving AS instances and the
recovering AS instance is minimal and imperfect recovery
will have no effect on the surviving node except that
recovery time may be increased. However, when an
HADB node pair is in the recovery mode, the surviving
companion node is actively participating the recovery
process by transferring data updated during the outage to
the recovering node, and thus the possible common mode
failure due to imperfect recovery should be modeled.

It is also assumed that the failure rate is constant
(exponential distribution) for the purpose of steady-state
analysis. In the uncertainty analysis discussed later, all the
failure rates in given ranges are changed to quantify the
impact of different failure rates on availability. In
addition, the failure rate/workload dependency is modeled
in the following way. After a failure of HADB node or
AS instance, the failure rate on the remaining HADB node
or AS instances is doubled to reflect the increased failure
risk due to increased load. Let La_0 denote the base
failure rate for an AS instance. The AS failure rate after
the ith instance has failed, La_i = La_0×2i. This is based
on the observation that the risk of software failure
increases exponentially with increasing workload [5].

There are several other aspects of a physical
deployment that are beyond the scope of the current
model. To simplify our study, failures of the following
elements are not included in the model: The web server
tier, the database tier, network communications, electrical
power and air conditioning. It should be emphasized that
human error, which is not considered in the model, could
be critical to system availability. Historical data from
many sources suggest that human error accounts for
roughly 50% of all outages in production server
environments during the past three decades [1]. Although
redundancy provisions in the target system could tolerate
a human error induced failure on an AS instance or an
HADB node, the product is not designed to prevent
catastrophic failure from human error introduced during
on-line maintenance when redundancy may become
temporarily unavailable.

Online upgrades to the applications, Application
Server or the underlying operating system and hardware,
can be orchestrated by the administrator, using single or
dual cluster deployments. This model is restrict to simple
one cluster deployments. As such, only four scheduled
maintenance events are modeled for the HADB nodes. It
is possible to extend this hierarchical model to include
more events and subsystems, but the focus of this effort is
the Application Server and associated HADB.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

5. Model Parameters

The following parameters are used in the model.
Lambda (or La) represents a mean failure rate, and T
represents a mean recovery time. These parameters are
estimated conservatively from test or field data. For
example, many recovery times are longer than those
measured and OS and HW failure rates are higher than
those observed in the field.

HADB Node Parameters
� Node failure rate (all failures) = 4/year

� HADB (restartable) failure rate: La_hadb = 2/year
� OS failure rate: La_os = 1/year
� HW failure rate: La_hw = 1/year

� Restart Time
� Restart time for HADB failure: Tstart_short = 1

min.
� Restart time for OS failure: Tstart_long = 15 min.
� Repair time for HW failure: Trepair = 30 min.

� Fraction of Imperfect Recovery: FIR = 0.1%
� Maintenance event

� Maintenance rate: La_mnt = 4/year
� Maintenance switchover time: Tmnt = 1 min.

� Restore time: Trestore = 1 hour

AS Instance Parameters
� AS instance failure rate: La = 52/year

� AS (restartable) failure rate: La_as = 50/year
� OS failure rate: La_os = 1/year
� HW failure rate: La_hw = 1/year

� Recovery time: Trecovery = 5 sec.
� Restart time

� Restart time for AS failure: Tstart_short = 90 sec.
� Restart time for OS/HW failure: Tstart_long = 1

hour
� Outage time for HW failure = 100 min.
� Outage time for OS failure = 15 min.

� Restore time: Tstart_all = 30 minutes

HADB Restart/Repair Time. When an HADB node
suffers a failure, the node automatically tries to restart.
The restart may be successful (for HADB and OS failures)
or not successful (for HW failure). In the first case, the
time from the detection of the failure to completion of the
restart is the restart time. Although the measured restart
time under an HADB failure is only around 40 seconds, a
more conservative value of 1 minute is used in the model.
The restart time for the OS failure is assumed to be 15
minutes. In the second case, an automatic repair process is
initiated. All the session data in the companion node are
copied to a spare node to make it the new mirroring node.
The time taken to complete this procedure is called repair
time which depends on the amount of data stored on the
node. It is estimated that the size of data on an HADB

node is within 1GB which can support up to 10,000
concurrent sessions with the average size of 50KB on
each AS instance. Measurements show it takes about 12
minutes to copy 1GB data from one node to another. The
model sets this parameter to 30 minutes to accommodate
possible variance on difference configurations.

Fraction of Imperfect Recovery. The HADB
automatic recovery (restart or repair) process may not be
perfect, due to various unexpected situations such as
defects in the fault handling software running on the
companion node and latent faults on the disk activated
during the data reconstruction. Thus, there is a small
chance that the companion node could also fail during the
recovery process, resulting in system failure. Although the
occurrence probability of such an event is very low, we
use a parameter, Fraction of Imperfect Recovery (FIR), to
model the event. Based on the fact that imperfect recovery
was not observed for over 3287 fault injections covering
various failure scenarios, FIR is estimated to be below
0.1% (default value in the model) at the 95% confidence
level and below 0.2% (upper bound in the uncertainty
analysis) at the 99.5% confidence level, using the
following statistical function for estimating lower bounds
for the coverage parameter, C = 1–FIR, a binomial
random variable [8]:

where n is the total number of trails, s the number of
successful trials, F the F distribution function, and � the
significance level (1 – confidence level).

HADB Restore Time. When both nodes in an
HADB node pair are down (a rare event), the session data
supported by the pair is irretrievably lost, resulting in a
catastrophic failure. A human intervention has to be
invoked to recreate a functional HADB node pair and
system. The time to complete this procedure is restore
time which includes "time to notice failure" plus the
HADB recreation time. For 7x24 on-site maintenance, the
restore time is estimated to be less than one hour. During
this time, the system is not available.

Session Recovery Time. When an AS instance
experiences a failure, the user requests originally serviced
by this instance are forwarded to other working instances.
Average response time for a user request after this failover
is increased due to the time spent reestablishing the
session on another instance. This time increment is
defined as session recovery time. Although the session
recovery time was measured at the sub-second levels, to
be conservative, it is conservatively set to 5 seconds in the
model.

Clow�
1

1�
n�s�1

s
F 1�� ; 2�n�s��2 ; 2 s

�1�

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

AS Restart Time. When an AS instance suffers a
failure, it is automatically restarted on the same computer
if no system reboot is required for the recovery (result of
an AS failure). The time to complete this procedure is
short restart time. The measured short restart time is less
than 25 seconds. Taking into account the time for a load
balancer to notice the recovery of the failed AS node
(time interval between two health condition checks is 1
minute), the parameter is set to 90 seconds. In an OS
failure case, it requires a system reboot (15 minutes). In a
HW failure case, it requires a physical repair action (100
minutes, based on field data). So the average restart time
for the HW/OS failures (once a year for each) is
approximately one hour, which is called long restart time.

AS Restore Time. When all AS instances are down
(a rare event), human intervention is required to restart
them. The time to complete this procedure is restore time
which includes "time to notice failure" plus actual time to
restart all AS instances. For the 7x24 on-site maintenance,
the average AS restart time is estimated to be 30 minutes.
During this time, the system is not available.

AS Failure Rate. The failure rate on an AS node is
conservatively set to once a week (including HW and OS
failures), based on the fact that the duration for most test
runs is one week. This rate is higher than upper bounds
estimated based on the longest duration test. Given that no
failure was observed during a 24-day test for two AS
instances, a failure rate upper bound is estimated to be
1/16 days at the 95% confidence level and to be 1/9 days
at the 99.5% confidence level, using the following
statistical function [8]:

where T is the total execution time, n the number of
failures observed, �2 the Chi-square distribution function,
and � the significance level (1 – confidence level).

6. Model Structure

The target software system is modeled by a hierarchy
of three Markov diagrams. The first diagram (Figure 2)
models the overall system, as a 3-state Markov model.
Each state has a number associated with it. This is number
is called reward rate. A reward rate of 1 means the state is
a working state. A reward rate of 0 means the state is a
failure state. The notation of these states is listed below:

� Ok: At least one node in each HADB node pairs is
functioning properly and at least one AS instance is
functioning properly. Working state.

� AS_Fail: All AS instances have failed. Failure state.
� HADB_Fail: At least one pair of HADB nodes have a

double node failure. Failure state.

The system is normally working in the Ok state. It
goes into state AS_Fail at the rate La_appl and comes
back at the rate Mu_appl, where La_appl and Mu_appl
are the failure rate and recovery rate evaluated from the
subsystem model “Appl Server”. The system also goes
into state HADB_Fail at the rate N_pair*La_hadb and
comes back at the rate Mu_hadb, where La_hadb and
Mu_hadb are the failure rate and recovery rate evaluated
from the subsystem model “HADB Node Pair” and
N_pair is the number of HADB node pairs in the system.

Figure 2. JSAS System Model

Figure 3 shows the HADB Node Pair subdiagram.
The state notation used in this diagram is:

� Ok: Both nodes are functioning. Working state.
� RestartShort: A node is being restarted from an

HADB failure. Working state.
� RestartLong: A node is being restarted from an OS

failure. Working state.
� Repair: A spare node is being rebuilt to replace a

node with HW failure. Working state.
� Maintenance: A node to be serviced is switching over

to a standby node. Working state.
� 2_Down: Both nodes are down. Failure state.

The transitions and associated rates at which the
system moves between states are clearly shown in the
diagram. When a failure occurs, with a probability of 1-
FIR (successful recovery), the system goes into a recovery
state (RestartShort, RestartLong, or Repair), depending on
the type of failure. The system also goes into the failure
state with probability FIR (unsuccessful recovery) which
is a coefficient of the overall failure rate La. When the
system is in a recovery or the Maintenance state, only one
node is functioning. As stated previously, the failure rate

�upp�

X 2
1�� ; 2 n�2

2T
�2�

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

on the remaining node is assumed to be accelerated by a
factor of 2. A second failure on this node results in data
loss and system failure. Should a system failure occur, it
would take one hour (at the rate of 1/Trestore) for the
system to restore to its working state.

Figure 3. HADB Node Pair Model

Figure 4 shows the Appl Server Model (2 instances)
subdiagram. The notation used for the states in the
diagram is listed below:

� All_Work: All instances are functioning. Working
state.

� Recovery: After an AS failure, sessions originally
running on the failed AS are being reestablished on the
remaining AS instance. Working state. It could be a
degraded state in performability modeling.

� 1DownShort: An instance is being restarted from an
AS failure. Working state.

� 1DownLong: An instance is being restarted from an
HW or OS failure. Working state.

� 2_Down: Both instances are down. Failure state.

The transitions and associated rates at which the
system moves between states are clearly shown in the
diagram. The overall failure rate (La) for an AS instance
is the sum of AS failure rate (La_as), HW failure rate
(La_hw), and OS failure rate (La_os). When an instance
fails, the system goes into the Recovery state and stays
there for a short time interval Trecovery. Then with the
probability of FSS (fraction of short start = La_as/La), it
will go into state 1DownShort and stay there for a period
of Tstart_short, or with the probability of 1-FSS, it will go
into state 1DownLong and stay there for a period of
Tstart_long, before going back to the normal state.

When the system is in the states Recovery,
1DownShort, and 1DownLong, should the second failure

(with an accelerated rate) occur on the remaining instance,
the system goes into the failure state 2_Down and stays
there for Tstart_all (0.5 hour) to go back to the normal
state. But this is not the case for the configuration of 4 AS
instances (Config 2), because such a configuration is able
to tolerate up to three instance failures. The 4-instance
Application Server model is more complex and not
discussed in detail in this paper.

Figure 4. Application Server (2 instances) Model

7. Analysis of Results

Given the models and parameters presented in
previous sections, system results for the two modeled
configurations generated by RAScad are shown in Table
2. For both Config 1 and Config 2, the system availability
is above five 9's. In Config 1, yearly downtime is
dominated by the AS submodel (67%) while in Config 2,
yearly downtime is dominated by the HADB submodel.
When the number of AS instances is 4 or above, the AS
submodel's yearly downtime is at the millisecond level
and can be ignored in availability analysis.

Configura-
tion

Availability Yearly
Downtime

(YD)

YD due to
AS

Submodel

YD due to
HADB

Submodel

Config 1 99.99933% 3.5 min.
2.35 min.

(67%)
1.15 min.

(33%)

Config 2 99.99956% 2.3 min.
0.01 sec.
(<0.01%)

2.3 min.
(99.99%)

Table 2. System Results

The model parameters can be classified into three
categories: failure rate, recovery rate, and coverage (1-
FIR) parameters. Failure rates cannot be accurately
measured in limited time frames through testing and may
vary on different customer sites, depending on the
configuration, workloads, and environmental factors. All

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

the failure rates used in the model are varied in the
uncertainty analysis discussed later. Fraction of Imperfect
Recovery (FIR) has been estimated to be below 0.1% at
the 95% confidence level, based on the fault injection
data. In the uncertainty analysis, it is allowed to go up to
0.2% which is above the 99.5% confidence level upper
bound.

Most recovery times (automatic restart time, repair
time, etc.) are deterministic and are measured in the lab
testing. An exception is the recovery time for
hardware/OS failure on an AS node. This parameter is, to
a large extent, controllable by customers. A customer can
minimize the hardware/OS failure recovery time by
implementing high quality maintenance procedures and
deploying a standby AS node. The RAScad parametric
analysis capability is used to investigate how this
parameter can impact availability. Figures 5 and 6 show
the analysis results on the AS node HW/OS failure
recovery time (Tstart_long varies from 0.5 to 3 hours).
When the HW/OS failure recovery time increases to 2.5
hours, the five 9's availability is no longer retained for
Config 1. However, even if the parameter increases to 3
hours, the 99.9995% availability is still retained for
Config 2.

Figure 5. Sensitivity of Availability to HW/OS Failure
Recovery Time on AS node for Config 1

Figure 6. Sensitivity of Availability to HW/OS Failure
Recovery Time on AS node for Config 2

One of the advanced analysis capabilities of RAScad
is the uncertainty analysis which performs random
sampling from parameter ranges defined by the user. This
analysis method can address questions such as: Assume
we have N systems with each system's parameters selected
by randomly sampling from possible ranges in customer
sites, what is the average system availability and
confidence intervals? In the uncertainty analysis for this
study, we select six parameters which either cannot be
accurately measured in limited time frames through
testing, or may vary on different customer sites. The
selected parameters and their varying ranges are:

� AS failure rate La_as: 10/year – 50/year
� HADB failure rate La_hadb: 1/year – 4/year
� OS failure rate La_os: 0.5/year – 2/year
� HW failure rate La_hw: 0.5/year – 2/year
� AS HW/OS failure recovery time Tstart_long: 0.5 – 3

hours
� Fraction of imperfect recovery FIR: 0 – 0.2%

The uncertainty analysis results for Config 1 and
Config 2, generated for a sample size of 1,000, are shown
in Figures 7 and 8, respectively. For Config 1, the average
yearly downtime for 1,000 systems is 3.8 minutes and the
80% confidence interval is (1.9 min., 6.0 min.). Over 80%
of sampled systems have yearly downtime less than 5.25
minutes, or above the 99.999% availability level. For
Config 2, the average yearly downtime is 3 minutes and
the 80% confidence interval is (1.0 min., 5.2 min.). Over
90% of the sampled systems have yearly downtime less
than 5.25 minutes, or above the 99.999% availability
level.

Finally, we compare system availability for different
configurations listed in Table 3. In the table, one instance
means there is no failover mechanisms and the server can
be restarted in 90 seconds for AS failures and in 1 hour
for HW/OS failures. The following observations are
obtained from the results:

of
Instances

of HADB
Pair

Availability Yearly
Downtime

MTBF
(hr.)

1 N/A 99.9629% 195 min. 168

2 2 99.99933% 3.49 min. 89,980

4 4 99.99956% 2.29 min. 229,326

6 6 99.99934% 3.44 min. 152,889

8 8 99.99912% 4.58 min. 114,669

10 10 99.99891% 5.73 min. 91,736

Table 3. Comparison of Configurations

� Availability is significantly improved from a 1-
instance configuration to a 2-instance configuration.
That is, the redundancy and failover provisions in
JSAS EE7 are able to enhance system availability by

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

two 9's.

� When the number of AS instances increases to 4,
availability is dominated by HADB. While increasing
the number of HADB node pairs provides better
scalability, it also introduces more chances to lose
fragments of data, resulting in system failures. The

99.999% availability level can no longer hold when
the number of HADB node pairs reaches 10.

� The configuration with 4 AS instances and 4 HADB
node pairs is the optimal configuration in terms of
availability.

Figure 7. Uncertainty Analysis Results for Config 1

Figure 8. Uncertainty Analysis Results for Config 2

8. Conclusions

In this paper, we demonstrated a measurement-based
availability evaluation approach for a new middleware
platform – Sun Java System Application Server,

Enterprise Edition 7. Both hardware permanent faults and
software transient faults, as well as workload dependent
failure rates, were considered in the model. Extensive lab
measurements were conducted to obtain data for
estimating model parameters. The model was developed

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

based on the widely accepted methodology using RAScad.
Under conservative assumptions used in building the
model and estimating model parameters from test and
field data, the average system availability was evaluated to
be at the 99.999% level in the Solaris and Sun server
environment. Uncertainty analysis on wide ranges of input
parameters not accurately measurable in limited time
frames or likely variable in customer sites were applied on
the model to obtain availability confidence intervals. The
analysis also showed that the configuration of four AS
instances and four pairs of HADB nodes is the optimal
configuration in terms of availability. These results could
be useful in planning data centers and web services
deployments.

Acknowledgments

The authors would like to thank William Shannon,
Richard Sharples, David Van Couvering, Lawrence
White, and Masood Mortazavi for their valuable
comments on this paper. Thanks are also due to Kenneth
Chan and Suveen Nadipalli for participating the early
model development and providing the JSAS EE7 test
data. Special thanks go to William Franklin, Timothy
Cramer, Madhu Konda and Roy Andrada for their support
for this work and constructive input to the model.

References

[1] A. Brown and D. A. Patterson, "To Err is Human,"
Proceedings of the First Workshop on Evaluating and
Architecting System dependability (EASY 01), Göteborg,
Sweden, July 2001.

[2] G. Ciardo, J. Muppala, and K. S. Trivedi, "SPNP: Stochastic
Petri Net Package," International Conference on Petri Nets and
Performance Models, 1989.

[3] A. Goyal, S. S. Lavenberg and K. S. Trivedi, "Probabilistic
Modeling of Computer System Availability," Annals of
Operations Research, No. 8, March 1987, pp. 285-306.

[4] M. C. Hsueh and R. K. Iyer, "Performability Modeling
Based on Real Data: A Case Study," IEEE Transactions on
Computers, April 1988, pp. 478-484.

[5] R. K. Iyer and D.J. Rossetti, "Effect of System Workload on
Operating System Reliability: A Study on IBM 3081," IEEE
Transactions on Software Engineering, Dec. 1985, pp. 1438-
1448.

[6] M. Kaaniche, K. Kanoun, and M. Martinello, "A User-
Perceived Availability Evaluation of a Web Based Travel
Agency," Proceedings of the International Conference on
Dependable Systems and Networks (DSN-2003), San Francisco,

June 2003.

[7] K. Kanoun, M. Kaaniche and J. C. Laprie, "Qualitative and
Quantitative Reliability Assessment," IEEE Software,
March/April 1997, pp. 77-87.

[8] D. Kececioglu, Reliability and Life Testing Handbook, Vol.
1 & 2, PTR Prentice Hall, Englewood Cliffs, NJ, 1993.

[9] I. Lee, D. Tang, R. K. Iyer and M. C. Hsueh, "Measurement-
Based Evaluation of Operating System Fault Tolerance," IEEE
Transactions on Reliability, June 1993, pp. 238-249.

[10] M. R. Lyu, Editor, Handbook of Software Reliability
Engineering, McGraw-Hill, New York, 1996.

[11] Oystein Torbjornsen. Multi-Site Declustering Strategies for
Very High Database Service Availability, Dr. Ing. Thesis,
Division of Computer Science and Telematics, The Norwegian
Institute of Technology, University of Trondheim, Norway,
1995.

[12] I. Pramanick, "Modeling Sun Cluster Availability," Sun
Users Performance Group Conference, SUPerG-2002, San
Francisco, 2002.

[13] R. A. Sahner and K. S. Trivedi, "Reliability Modeling
Using SHARPE," IEEE Transactions on Reliability, Feb. 1987,
pp. 186-193.

[14] W. H. Sanders, W. D. Obal II, M. A. Qureshi and F. K.
Widjanarko, "The UltraSAN Modeling Environment,"
Performance Evaluation, Oct./Nov. 1995, pp. 89-115.

[15] Sun Microsystems, Sun Java System Application Server,
Enterprise Edition 7, White Paper, August 2003, available at
http://wwws.sun.com/software/products/appsrvr_ee/home_appsr
vr_ee.html

[16] D. Tang and M. Hecht, "Evaluation of Software
Dependability Based on Stability Test Data," Proceedings of the
25th International Symposium on Fault-Tolerant Computing
(FTCS-25), June 1995, pp. 434-443.

[17] D. Tang, J. Zhu, and R. Andrada, "Automatic Generation of
Availability Models in RAScad," Proceedings of the
International Conference on Dependable Systems and Networks
(DSN-2002), June 2002, pp. 488-492.

[18] D. Tang and K. S. Trivedi, "Hierarchical Evaluation of
Interval Availability in RAScad," Proceedings of the
International Conference on Dependable Systems and Networks
(DSN-2004), Florence, Italy, June 2004.

[19] K. S. Trivedi, Probability & Statistics with Reliability,
Queuing, and Computer Science Applications, Second Edition,
John Wiley & Sons, Inc., New York, 2002.

[20] M. Vieira and H. Madeira, "Benchmarking the
Dependability of Different OLTP Systems," Proceedings of the
International Conference on Dependable Systems and Networks
(DSN-2003), San Francisco, June 2003.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

	footer1:

