
Mapping ConcurTaskTrees into UML 2.0

Leonel Nóbrega1, Nuno Jardim Nunes1 and Helder Coelho2

1 Department of Mathematics and Engineering, University of Madeira,
Campus da Penteada, 9000-390 Funchal, Portugal

{lnobrega,njn}@uma.pt
2 Department of Informatics of the Faculty of Sciences,

University of Lisbon, Bloco C6, Piso 2, 1749-016 Lisboa, Portugal
hcoelho@di.fc.ul.pt

Abstract. The ConcurTaskTrees (CTT) is one of the most widely used nota-
tions for task modeling, specifically tailored for user interface model-based de-
sign. The integration of CTT with a de facto standard modeling language was
already identified as an import issue, but there is no consensus about the best
approach to achieve this goal. The purpose of this paper is to examine the rela-
tive strengths and weaknesses of control and data flow specification in UML
2.0 Activity Diagrams to represent CTT semantics. The analysis is conducted
by the definition of pattern-based activities for the temporal operators in CTT.
Here, we propose an extension to the UML 2.0 abstract syntax that fully sup-
ports the concepts behind CTTs and provides an adapted graphical notation for
an UML like representation.

1 Introduction

Task modeling is a central and familiar concept in human-computer interaction (HCI)
but seldom-used in object-oriented software engineering (OOSE). A task model de-
tails users’ goals and the strategies adopted to achieve those goals, in terms of actions
that users perform, the objects involved in those actions and the underlying sequenc-
ing of activities [1]. Task models captures the dialog model of interactions and is
crucial for enabling model-base approaches for building interactive systems. The
UML insufficiencies for interaction design are widely recognized [2,3] and the inte-
gration of task model are a step further its limitations. The ConcurTaskTrees is one of
the most widely used notations for task modeling, specifically tailored for user inter-
face model-based design and its integration with UML is already identified as a desir-
able goal.

Integrating CTT in the UML can be generally achieved with the following ap-
proaches:

− Using the UML extension mechanisms (profiles), to represent elements and opera-
tors of a CTT model by an existing UML notation,

− Extending the UML metamodel, introducing a separate user task model, and estab-
lishing relationships between the CTT elements and existing UML elements.

The first solution is feasible and was already proposed in [2]. This approach repre-
sents CTT as stereotyped class diagrams. Constraints associated with UML class,
association and dependency stereotypes are defined to enforce the structural correct-
ness of the CTT models. The major drawbacks to this proposal are the expressiveness
of the notation and the semantic validation of the CTT temporal constraints in terms
of UML class diagrams.

The second solution is outlined in [3] and covers the definition of an UML for In-
teractive Systems. The approach proposed describes the integration points between
UML models and task models in a complementary way. Yet, a unified integration at
semantic and notational level should be provided towards an effective incorporation
of task models into UML.

In this paper we propose a different approach that enables the integration of CTT
in the UML through the extensions of UML 2.0 activity diagrams. Our approach
takes advantage of the new characteristics of the UML 2.0 semantics, in particular the
separation of statecharts and activity diagrams, that enables a better definition of the
temporal operators underlying CTT, without compromising the usability of the nota-
tion. We strongly believe the enhancements in the UML 2.0 activity diagrams, finally
enabled an effective integration of CTT into the UML. The solution presented here
could provide a common ground to effectively bring task modeling into software
engineering, promoting artifact interchange between tools and practitioners in SE and
HCI.

The remaining of the paper is organized as follows. Section 2 and 3 briefly intro-
duces ConcurTaskTrees and UML 2.0 Activity diagrams. Section 4 reports the
evaluation of UML Activities Diagrams to express CTT semantics. Section 5 presents
an extension to UML abstract syntax in order to support CTT concepts and the under-
lying notation. Finally, section 6 concludes the paper.

2 Overview of ConcurTaskTrees

ConcurTaskTrees is a notation that has been developed taking into account the previ-
ous experience in task modeling and adding new features in order to obtain an easy-
to-use and powerful notation to describe the dialogue in interactive systems. CTTs are
based in a graphical notation that supports the hierarchical structured of tasks, which
can be interrelated through a powerful set of operators that describe the temporal
relationships between subtasks. The formal semantics of the temporal relationships in
CTT are defined using a Labelled Transition System (LTS) formalism. In addition,
CTTs allow designers to indicate a wide set of optional task attributes, such as the
category (how the task performance is allocated), type, manipulation of objects, fre-
quency, and time requested for performance.

The CTT notation is supported by CTTE (the ConcurTaskTrees Environment), a
set of freely available tools supporting editing and analysis of task models. The CTT
notation is widely recognized as one of the more popular task notations in the HCI
field, it is used for teaching and research purposes in several universities, and there is
also evidence of usage in development projects. The CTT environment includes a
simulator and a number of features enabling, for instance, designers to dynamically

adjust and focus their attention in subsets of large task models, while analyzing large
specifications.

Fig. 1. Example of a ConcurTaskTree

Figure 1 illustrates a simple task model in CTT (provided in CTTE distribution).

As we can see from the example, task models are represented in CTT as inverted trees
(the task structured), each task can differ in type (user task, interactive task, abstract
task and system task). The temporal relationship between subtasks at the same level is
represented through lines annotated with the different temporal relationships. For a
full description of CTT refer to [4].

3 Overview of UML 2.0 Activity Diagrams

Since the early versions of the standard, the UML included the popular Harel state-
charts as the key notation to represent the dynamic aspects of software intensive sys-
tems. In addition, the UML 1.x versions also included activity diagrams, defined as a
subset of statecharts. Activity diagrams have since become one of the key diagrams of
the UML, in particular for business process modeling and user modeling [5].

Recognizing the problems with UML 1.x activity diagrams, in UML 2.0, activities
where redesigned to follow “Petri-like” semantics thus separating activity diagrams
from statecharts. Among other benefits, this widens the number of flows that can be
modeled, especially those that have parallel flows of control [6]. The fundamental
unit of behavior specification of an Activity Diagram is an Action. An action takes a
set of inputs and converts them to a set of outputs, though either or both sets may be
empty. There are three types of actions, namely:

− Invocation Actions, used for performing operations calls, signal sending and ac-
cept event actions;

− Read and Write Actions, for accessing and modifying objects and their values; and
− Computation actions, transforming input values into output.

Besides actions, an activity diagram can also contain control nodes, object nodes,
activity edges and activity groups. In the Figure 2 we represent a subset of the UML
2.0 activity diagram notation, which is of particular interest to the discussion in this
paper.

Fig. 2. UML 2.0 notation for Activity Diagrams

Among the possible activities groups we highlight the Interruptible Activity Re-

gion due to its intense use on this paper. This type of group is described as an activity
group that supports termination of tokens flowing in the portions of an activity [6].
The termination of all tokens occurs when a token leaves an interruptive region via an
interrupting edge. A token transition is never partial; it is either complete or it does
not happen at all [6].

4 Mapping CTT into UML 2.0 Activity Diagrams

The analysis of the UML activity diagrams to represent CTT semantics is provided in
terms of the behavior obtained by applying a temporal operator between two tasks.
For the purpose of the evaluation of the approach described in this paper, one can
consider atomic tasks (i.e., tasks that are not refined into subtasks) or composed tasks
(resulting from application of temporal operators to subtasks). We highlight these
definitions because they are slightly different from the original concepts in CTT. A
CTT task is either an atomic task or the task resulting from applying a full sequence
of operators to all sibling tasks. Furthermore, the composition of tasks (via temporal
operators) requires a detail control of starting and terminating conditions of composed
tasks. For instance, in the following sequence T1|=|T2>>T3, the T3 task only be-
comes enabled either after termination of the T1 or T2 tasks (depending upon the
selected order). This particular type of dependency between tasks implies that we
have to express the start and termination of composed tasks in terms of the start and
termination of the tasks being composed. In our UML 2.0 based approach we use
signals to control the aforementioned conditions. We assume that an atomic task
signals its own start and termination of execution. Hence, the composition of tasks

must take in account the precedence of temporal operators, for instance, the sequence
T1|||T2[>T3 must be considered as (T1|||T2)[>T3 and not as T1|||(T2[>T3).

To prevent the problem described previously, we consider the following sequence
of operator precedence: >>, [>, |>, [], |=|, |||.

In our UML 2.0 approach, a CTT task is mapped into an Action, if it is atomic, and
into a Call Behavior Action, otherwise. Finally, from the UML 2.0 semantics, a task
is enabled if it possesses a token and disabled otherwise.

In the following subsections we examine the UML semantics for each CTT tempo-
ral operator. All the operators descriptions used were taken from [7].

4.1 Independent Concurrency (T1 ||| T2)

Description: Actions belonging to two tasks can be performed in any order without
any specific constraint.

Proposed UML 2.0 mapping: The independent concurrency is captured by a Fork
node to create two independent flows of control for each task and a Join node to syn-
chronize them. The starting of the composed task T1|||T2 corresponds either to the
start of T1 or T2. This condition could be modeled using two Accept Event actions
for the start signals of T1 and T2 and, once of these actions succeed, a signal Start
T1|||T2 is produced, through a Send Signal action. An interruptible region is neces-
sary because only one signal must be produced. The termination of the composed task
occurs when both tasks signals its terminations and must wait for both signals before
sending a signal that correspond to the termination of task T1|||T2.

Fig. 3. UML specification for Independent Concurrency temporal operator

4.2 Choice (T1 [] T2)

Description: It is possible to choose from a set of tasks and, once the choice has been
made the task chosen can be performed and the other tasks are not available at least
until it has been terminated.

Proposed UML 2.0 mapping: In this case both tasks must be enabled at beginning
but once one of them starts its execution the other must be disabled. This can be mod-
eled using an interruptible region with the task and an Accept Event action for the
Start signal of the other task. Using this strategy we ensure that only one task is exe-
cuted. The start of T1[]T2 occurs when one of the tasks sends its Start signal (only
one Start signal will be produced). The same occurs with the task termination.

Fig. 4. UML specification for Choice temporal operator

In the previous figure two Accept Event actions are used to signal Start T1 (and

also to signal Start T2). In fact both signals should be considered as only one. This
simplification is adopted here and in the following figures, in order to increase the
readability of the diagrams.

4.3 Concurrency with information exchange (T1 | [] | T2)

Description: Two tasks can be executed concurrently but they have to synchronize in
order to exchange information.

Proposed UML 2.0 mapping: The solution is identical of the one presented for in-
dependent concurrency operator. Additionally, a Central Buffer node must be used
for information exchange purposes.

4.4 Order Independence (T1 | = | T2)

Description: Both tasks have to be performed but when one is started then it has to
be finished before starting the second one.

Proposed UML 2.0 mapping: The solution for this operator is similar to the choice
operator. The difference is that when a task is disabled (due to the execution of the
other), we must wait for the termination of the execution, before enabling the task
again. Moreover, both tasks must be executed before the send of Finish T1|=|T2 sig-
nal.

Fig. 5. UML specification for Order Independent temporal operator

4.5 Deactivation (T1 [> T2)

Description: The first task is definitively deactivated once the first action of the sec-
ond task has been performed.

Proposed UML 2.0 mapping: If the task T1 executes normally, T2 must be disabled
after the completion of task T1. This case is ensured by grouping task T2 and an
Accept Event action for Finish T1 signal in an interruptible region. The other case,
when T2 aborts the execution of T1, is modeled using an interruptible region and an
Accept Event action for Start T2 signal, thus if T2 starts its executions T1 will be
interrupted. The start of T1[>T2 corresponds to the start of T1 or the start of T2 with-

out starting T1. The termination corresponds to the termination of one of the two
tasks.

Fig. 6. UML specification for Deactivation temporal operator

4.6 Enabling (T1 >> T2)

Description: In this case one task enables a second one when it terminates.

Proposed UML 2.0 mapping: In this case a control flow is used to connect both
tasks. The start of T1>>T2 corresponds to the start of T1 and the termination corre-
sponds to the termination of T2.

Fig. 7. UML specification for Enabling temporal operator

4.7 Enabling with information passing (T1 []>> T2)

Description: In this case task T1 provides some information to task T2 other than
enabling it.

Proposed UML 2.0 mapping: Similar of enabling operator assuming in this case an
object flow between task T1 and T2.

4.8 Suspend-Resume (T1 |> T2)

Description: This operator gives T2 the possibility of interrupting T1 and when T2 is
terminated, T1 can be reactivated from the state reached before the interruption.

Proposed UML 2.0 mapping: There is no evidence in the UML 2.0 specification
that any behavior supports the resume functionality. Therefore, this operator is not
supported by existing UML semantics.

4.9 Iteration (T*)

Description: The task is performed repetitively.

Proposed UML 2.0 mapping: This unary operator has straightforward mapping in
UML. The Start signal occurs at first execution of task T1 and a flow loop is created
for task T1.

Fig. 8. UML specification for Iteration operator

4.10 Finite Iteration (T1(n))

Description: It is used when designers know in advance how many times a task will
be performed.

Proposed UML 2.0 mapping: A finite iteration can be mapped into UML using a
local variable for counting the iterations. The start of the iteration begins with the first
execution of task T1 and termination is signaled after n occurrences of Finish T1
signal. We use in this case an exception rule to the normal execution in Activities: If
an AcceptEventAction has no incoming edges, then the action starts when the con-
taining activity or structured node does. In addition, an AcceptEventAction with no
incoming edges is always enabled to accept events, no matter how many it accepts.
[6]

Fig. 9. UML specification for Finite Iteration operator

5 An UML notation for ConcurTaskTrees

In the previous section we described how the new UML 2.0 standard can successfully
support the CTT semantics taking advantage of the redesigned activity diagrams.
However, even a simple task tree results in very complex sets of activities with a
remarkable number of actions and control nodes. This is a well-known problem with
statechart like notations, that become unreadable as the number of states increases.
Although semantically correct, the previously described UML mappings to the CTT
temporal operators, will be completely useless even for a simple task model. This was
one of the major problems with the previous proposals to map CTTs into the UML: in
order to propose a useful solution to the mapping of temporal relationships one would
compromise the semantic correctness and the other way around.

The existing graphical representation for CTTs, based on a hierarchical structure,
is one of the most significant factors of its success. The hierarchical structure reflects
the logical approach of most designers, allowing the description of a rich set of possi-
bilities that is both highly declarative, and generates compact descriptions [4]. In the
following we propose to solve this dilemma with a small increment to the UML ab-
stract syntax. With this approach the concepts required for modeling CTTs can be
added to the UML. In the following figures we detail this original approach to extend
the UML abstract syntax.

Interactions UseCasesStateMachines
Activities

CommonBehaviors

Classes

ActionsTasks

Fig. 10. Package dependencies

As we can see from Figure 10, in order to isolate the extensions from the actual

UML specification, we create a new Package named Tasks to contain the new con-
cepts required for task modeling.

ActivityEdge
(from BasicActivi ties)

Action
(from BasicActivi ties)

Activity
(from BasicActivities)

TaskEdgeTaskTree *0..1

+/edge

*

{subsets ownedElement}
+/activity

0..1

{subsets owner}

Task
multiplicity = 1

* 0..1

+/node

*

{subsets ownedElement}
+/activity

0..1

{subsets owner}

*
0..1

+subtask

*

{subsets ownedElement}

+superTask

0..1

{subsets owner}

Fig. 11. Tasks Package

Figures 11 and 12 details the Task package. We introduce three new concepts:
TaskTree as a specialization of the Activity concept; Task for modeling the concept
of task; and TaskEdge for modeling temporal operators. These new concepts allow
the creation of a specialized type of Activity Diagrams for modeling task trees (we
may name this diagrams Task Tree Diagrams).

TaskEdge

IndependentConcurrencyEdge ChoiceEdge EnablingEdge OrderIndepenceEdge SuspendEdgeDeactivationEdge

Fig. 12. Tasks Operators

In order to foster recall from the existing UML 2.0 notation, we decided to main-

tain a very close relationship between the new task concepts and the existing activity

diagrams. Figure 13 illustrates the extension to the UML 2.0 abstract syntax and pro-
vides an example for each of the previously described temporal relationship.

AccessStudentData

ProvideRequest ShowResults

EnterParameters SubmitRequest

EnterName EnterDepartmente

T1 ||| T2 (Independent Concurrency)

T1 [] T2 (Choice) T1 |=| T2 (Order Independence)

T1 [> T2 (Deactivation)

T1 >> T2 (Enabling) T1 |> T2 (Suspend/Resume)

T1 * T1* (Iteration) T1 n T1(n) (Finite Iteration)

* *

Fig. 13. Example and summary of the notation

The previous illustration depicts a simple task tree that illustrates our approach (al-

ready presented in figure 1 using CTTs notation). The notation used for temporal
operators are inspired in UML activities notations, namely Independent Concurrency,
Choice and Deactivation have obvious similarities with Fork/Join Node, Decision
Node and Interrupting Edge, respectively. For information exchange between tasks
we adopt the Object Flow and Pin notation showed in the link between ProvideRe-
quest and ShowResults tasks. The relations between a task and its refinement sub-
tasks are inspired on the notation for showing Packages and its contents on the same
diagram, providing an adequate hierarchical representation.

6 Conclusions

We show in this paper that the ConcurTaskTrees semantics can be expressed in terms
of UML Activities semantics, allowing a truly unified integration of task model con-
cepts within UML framework, fostering co-evolutionary development of interactive
systems, providing a common ground to effectively bring task modeling into software
engineering and promoting artifact interchange between tools and practitioners in SE
and HCI. The Petri-net like semantics of UML 2.0 Activities represents a clearly
improvement over previous versions and brings this new opportunity to integrate
CTT in UML. The extensions and the adapted notation described here keep expres-
siveness and effectiveness of CTTs notation and reduce the difficulty of acceptance
of another notation. Finally, an activity based semantic for CCTs can take full advan-

tage of existing work on verification and execution of activities diagrams and pro-
motes the inclusion of task modeling in model-based approaches.

References

1. van Harmelen, M., Artim, J., Butler, K., Henderson, A., Roberts, D., Rosson, M. B., Tarby,
J. C., Wilson, S.; Object Models in User Interface Design, 29(4), SIGCHI Bulletin, New
York, ACM, 1997

2. Nunes, N. J., Cunha, J. F.: Towards a UML profile for interactive systems development: the
Wisdom approach, in Proceedings of UML´2000 Conference, Kent – UK, A. Evans (Ed.),
Springer Verlag LNCS, New York (2000) 50-58

3. Paternò, F: Towards a UML for Interactive Systems, in Proceedings of Human-Computer
Interaction Conference HCI’2001 (2001) 175-185

4. Paternò, F: Model-Based Design and Evaluation of Interactive Applications, Springer Verlag
(1999)

5. Patricio, L., Cunha, J. F., Fisk, R., Nunes, N. J.: Designing Interaction Experiences for
Multi-Platform Service Provision with Essential Use Cases in Proceedings of the 9th inter-
national conference on Intelligent user interface: Short Papers, Funchal, Madeira, Portugal
pp. (2004) 298-300

6. OMG: UML 2.0 Superstructure Specification, Revised Final Adopted Specification (ptc/04-
10-02) October 8 (2004)

7. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for Developing and Analysing Task Mod-
els for Interactive System Design, IEEE Transactions on Software Engineering, Vol. 28,
No. 8, IEEE Press, (2002) 797-813

